

Lccal^{*}: an R&D project for the Electromagnetic barrel Calorimeter

TALK SUMMARY

- •Design principles
- •Prototype description
- •Status of the production
- •Beam test results

•Future plans

* Official INFN R&D project, official DESY R&D project PRC R&D 00/02 Contributors (Como, LNF, Padova, Trieste): M. Alemi, A.Anashkin, M.Bettini, S.Bertolucci, E. Borsato, M. Caccia, P.C, C. Fanin, G. Fedel, S. Miscetti, M. Nicoletto, M.Paganoni, M. Prest, R. Peghin, L. Ramina, E. Vallazza 1

P. Checchia LCWS02 Jeju

2002 08 28

Design principles

From the TESLA TDR requirements: • high granularity,(Energy Flow)

- longitudinal segment. (e/π) separation
- working in magnetic field
- high density (25-30 X_0 in \sim 50 cm)

• Shashlik (thanks to CALEIDO)

Alternative solution:

Keep SiW advantages (flat geometry, high granularity)
Erec. not from Si but from Scintillator-WLS fibers
Reduce (factor >10) the number of channels

•Si W

P. Checchia LCWS02 Jeju

2 solutions:

Prototype description

Pb/Sc + Si

- 50 layers:
- $25 \times 25 \times 0.3 \text{ cm}^3 \text{ Pb}$
- $25 \times 25 \times 0.3 \text{ cm}^3$ Scint.: 25 Cells $5 \times 5 \text{ cm}^2$
- 3 planes:
- 625 $1 \times 1 \text{ cm}^2$ Si Pads
- at: 2, 6, 12 X_0

(Slightly reduced to cope with budget)

>

P. Checchia LCWS02 Jeju

3 2002 08 28

Prototype description

Pb/Sc + Si

- 50 layers:
- $25 \times 25 \times 0.3 \text{ cm}^3 \text{ Pb}$
- $25 \times 25 \times 0.3 \text{ cm}^3$ Scint.: 25 Cells $5 \times 5 \text{ cm}^2$
- 3 planes:
- 625 $1 \times 1 \text{ cm}^2$ Si Pads
- at: 2, 6, 12 X_0

(Slightly reduced to cope with budget)

BEAM

27 X

2002 00 20

>

Prototype (cntd) 3 Si planes

Goal: shower-shower separation:

•Pad dimension< shower dimension: .9x.9 cm²

•Longitudinal sampling: 3 planes

•Analogic RO VA hdr9c from IDEas

•Next year: shower dimension reduction W absorber

Actual design

•Detector: 6x7 pads

•Plane: 3x2 detectors

pcb contact with conductive glue Pad diode ac coupled

P. Checchia LCWS02 Jeju

5 2002 08 28

• Scintillator tiles:

- 3 mm Kuraray SCSN-61 (25x25 cm²)
- 3 mm Bicron BC-408 (25x25 cm²)

Machined with vacuum plate as holder

Whole Production (>50 tiles) done

• Scintillator tiles:

Fibres:

Kuraray 1mm d. Y11 300 ppm multicladding

Face polished and aluminized by sputtering

To make the 2.4 cm radius curvature : middle temperature(50⁰-70⁰) oven

Splicing going on :

>3 ph e⁻/m.i.p./tile obtained stable in >30 day time

P. Checchia LCWS02 Jeju

9

2002 08 28

• Scintillator tiles:

Fibres:

Si pad detectors:

Full depletion at <30 V

C vs Vbias

20 detectors produced by ITE (Warsaw) with reasonable performance (under test now)

• Scintillator tiles:

Fibres:

Si pad detectors:

Detector assembling:

First segment (2 X₀) completed

Pb plates produced (>50)

Fiber insertion, tile assembling up to 45 Pb/Sc layers: starts in september

Mechanical support for beam test to be builded in Frascati

Test beam* results

Set up:

- •2 planes Si µstrip telescope
- •2 trigger Scintillators
- •Calorimeter first segment (2 X₀) read by PM
- •1 Si pad detector

e⁻ 40 / 50 GeV π 50/150 GeV (used as m.i.p.)

*CERN SPS H4

Test beam results CALORIMETER (2.1 X₀)

4 layers

m.i.p.→check light output and uniformity in Light collection:

Ratio signal/sigma → **lower limit for photoelectrons**

Test beam results: CALORIMETER (2.1 X₀)

Test beam results: Si pad detector

Test beam results: Si pad detector

Future Plans

- complete the detector (next month)
- go to test beam (low energy Frascati, high energy DESY/CERN)
- analyse two particle impact
- substitute the absorber: Pb to W (next year)
- study new optical device (i.e. multianod PM's)
- collaborators are wellcome

Conclusions

- The proposed prototype is going to be completed (all the production problems are solved)
- A preliminar beam test at CERN with a partial set up gave reasonable and incouraging results
- Tests with the complete detector are necessary to answer to all questions
- but it they will be successfully answered, why do not include a calorimeter made following this technique into the general LC simulation and Pattern recognition?

