Table 2

(a) Decay times for fast (τ_s) and the slow (τ_T) components of scintillation light from liquid Ar, Kr and Xe excited by 1 MeV electrons. τ_R , the recombination time, and the intensity ratios I_s/I_T of fast component to the slow components are also shown. All decay times are in ns (b) Decay times for fast (τ_s) and the slow (τ_T) component of scintillation light from liquid Ar, and Xe excited by α -particles. The intensity ratios I_s/I_T of the fast component are also shown. All decay times are in ns

(a)	Liquid Ar	Liquid Kr	Liquid Xe
$ au_{ m S}$	6.3 \pm 0.2 ^a ns (5.0 \pm 0.2 ns for <i>E</i> = 6 kV/cm) ^b 6 \pm 2 ^b	2.0 \pm 0.2 ^a ns (2.1 \pm 0.3 ns for $E = 4 \text{ kV/cm})^{\text{b}}$	$(2.2 \pm 0.3 \text{ ns})$ for $E = 4 \text{ kV/cm}^{\text{b}}$
$ au_{\mathrm{T}}$	$1020 \pm 60^{a}, 1590 \pm 100^{b} \text{ ns}$ (860 ± 30 ns for $E = 6 \text{ kV/cm}^{b}$	91 \pm 2 ^b ns (80 \pm 3 ns for <i>E</i> = 4 kV/cm) ^b	$34 \pm 2^{b} \text{ ns}$ (27 ± 1 ns for $E = 4 \text{ kV/cm})^{b}$
$ au_{ m R}$ $I_{ m S}/I_{ m T}$	< 1 ns 0.083^{b} (0.045 for $E = 6 \text{ kV/cm}^{b} 0.3^{a}$	0.01^{b} (0.02 for $E = 4 \text{ kV/cm})^{b}$	45^{a} ns 0.05 for $E = 4$ kV/cm) ^b
(b)	Liquid Ar		Liquid Xe
$ au_{ m S}$	$7.7 \pm 1.0^{a} \text{ ns}$ ~ 5 ^b ns		$\begin{array}{c} 4.3 \pm 0.6^{\rm a} \text{ ns} \\ 3^{\rm c} \text{ ns} \end{array}$
$ au_{\mathrm{T}}$	1660 ± 100 ^a ns 1200 + 100 ^b ns		22 ± 1.5^{a} ns 22^{a} ns
$I_{\rm S}/I_{\rm T}$	1.3ª		0.45 ± 0.07^{a} 1.5^{a} ns
aD of [1/1], bD	of [45]		

^aRef. [44]; ^cRef. [45].

^aRef. [44]; ^bRef. [47]; ^cRef. [48].