v_{μ} disappearance

MARCO LAVEDER - June 17, 2019

Sterile Neutrino

Sterile Neutrino

Sterile Neutrino

Sterile Neutrinos from Physics Beyond the SM

- Neutrinos are special in the Standard Model: the only neutral fermions
- Active left-handed neutrinos can mix with non-SM singlet fermions often called right-handed neutrinos
- Light left-handed anti- ν_R are light sterile neutrinos

 $\nu_R^c \rightarrow \nu_{sL}$ (left-handed)

Sterile means no standard model interactions

[Pontecorvo, Sov. Phys. JETP 26 (1968) 984]

- Active neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$ can oscillate into light sterile neutrinos (ν_s)
- Observables:
 - Disappearance of active neutrinos (neutral current deficit)
 - Indirect evidence through combined fit of data (current indication)
- Short-baseline anomalies $+ 3\nu$ -mixing:

C. Giunti – SBL Neutrino Oscillation Anomalies and Light Sterile Neutrinos – Roma Tre – 22 Nov 2017 – 12/53

3+1 Neutrino Model

3+1 Model Dependent Results: v_e

3+1 Model Independent Results: \bar{v}_e

3+1 Model Independent Result: \bar{v}_e

NEUTRINO-4 $sin^2 \ 2\theta \approx 0.4$ $\Delta m^2 \approx 7 \ eV^2$

1809.10561

3+1 Model Independent Predictions: $v_e \& \bar{v}_e$

GALLIUM+BEST

1905.07437

STATUS 3+1 Model nonpragmatic: $v_e \& \bar{v}_e$

STATUS 3+1 Model nonpragmatic:

3+1 Model Independent Result: v_{μ}

Problems with MINOS/MINOS+ limit

T2K Experiment

T2K Beam

• ν_{μ} beam created by π^+ and $\overline{\nu}_{\mu}$ beam by π^- decay

T2K 280 Near Detector OFF-axis

v_{μ} Interactions – POD

arXiv:1706.04257

v_{μ} Disappearance – POD

v_{μ} Disappearance – POD

3+1 Model Dependent Result: v_{μ}

3+1 Fit Parameters

No Osc.	χ^2 NDF	$\frac{114.7}{48}$
	GoF	2e - 07
Osc.	$\chi^2_{ m min}$	63.1
	NDF	46
	GoF	0.05
	$\sin^2 2\vartheta$	0.14
	Δm^2	2.8
No Osc. $-$ Osc.	$\Delta \chi^2_{ m NO}$	51.5
	NDF_{NO}	2
	$n\sigma_{\rm NO}$	6.9σ

Problems with MINOS/MINOS+ limit

Problems with MINOS/MINOS+ limit

MINOS+ constraints ν_μ flux using MINERVA ve scattering data

Constraint of the MINERvA Medium Energy Neutrino Flux using Neutrino-Electron Elastic Scattering

E. Valencia,^{1,2} D.Jena,³ Nuruzzaman,^{4,5} F. Akbar,⁶ L. Aliaga,^{1,7} D.A. Andrade,² M. V. Ascencio,⁷ A. Bashyal,⁸ L. Bellantoni,³ A. Bercellie,⁹ A. Bodek,⁹ J. L. Bonilla,² A. Bravar,¹⁰ H. Budd,⁹ G. Caceres,¹¹ T. Cai,⁹ M.F. Carneiro,⁸ J. Chaves,¹² D. Coplowe,¹³ H. da Motta,¹¹ S.A. Dytman,¹⁴ G.A. Díaz,^{9,7} J. Felix,² L. Fields,³ A. Filkins,¹ R. Fine,⁹ N. Fiza,¹⁵ A.M. Gago,⁷ R.Galindo,⁵ H. Gallagher,¹⁶ A. Ghosh,^{5,11} T. Golan,^{17,9} R. Gran,¹⁸ D.A. Harris,³ S. Henry,⁹ S. Jena,¹⁵ J. Kleykamp,⁹ M. Kordosky,¹ D. Last,¹² T. Le,^{16,4} X.-G. Lu,¹³ E. Maher,¹⁹ S. Manly,⁹ W.A. Mann,¹⁶ C. Mauger,¹² K.S. McFarland,^{9,3} A.M. McGowan,⁹ B. Messerly,¹⁴ J. Miller,⁵ J.G. Morfín,³ D. Naples,¹⁴ J.K. Nelson,¹ C. Nguyen,²⁰ A. Norrick,¹ A. Olivier,⁹ V. Paolone,¹⁴ J. Park,⁹ G.N. Perdue,^{3,9} M.A. Ramírez,² R.D. Ransome,⁴ H. Ray,²⁰ D. Rimal,²⁰ P.A. Rodrigues,^{21,9} D. Ruterbories,⁹ H. Schellman,^{8,22} C.J. Solano Salinas,²³ H. Su,¹⁴ M. Sultana,⁹ V.S. Syrotenko,¹⁶ B. Yaeggy,⁵ and L. Zazueta¹ (The MINERνA Collaboration)

arXiv:1906.00111

J.Park – FNAL seminar, Dec 20, 2013

Known Interaction (Standard Candle)

J.Park – FNAL seminar, Dec 20, 2013

MINERvA Detector

J.Park – FNAL seminar, Dec 20, 2013

MINOS+ constraints v_{μ} flux using MINERVA ve scattering data

arXiv:1906.00111

Minerva ve scatering constraints the v_{μ} flux

Minerva ve scatering error budget

3+1 Model Dependent Fit : Good news

 $\chi^2(0,0,A=1) = 104.53$ $\chi^2(bf,A=1) = 11.13$ $^{2} = 93.40$

3+1 Model Dependent Results: muon channel : neutrinos

 sin^2 2 $\theta \approx 0.4$ $\Delta m^2 \approx 1.2 \ eV^2$

Problems with MINOS/MINOS+ limit

3+1 with Decay Model Dependent Results: muon channel : neutrinos

3+1 with Decay Model Dependent Results: muon channel : neutrinos

P-value (A)

А	p-value	
1	0,00E+00	
0,99	5,10E-13	
0,98	1,12E-10	
0,97	1,37E-08	
0,96	9,38E-07	
0,95	3,62E-05	
0,94	7,90E-04	
0,93	9,85E-03	
0,92	7,15E-02	
0,91	3,11E-01	
0,9	1,00E+00	
0,89	6,86E-01	
0,88	2,18E-01	
0,87	4,37E-02	
0,86	5,21E-03	
0,85	3,58E-04	
0,84	1,41E-05	
0,83	3,11E-07	
0,82	3,88E-09	
0,81	2,70E-11	
0,8	1,05E-13	
0,79	0,00E+00	

cfr with MINOS/MINOS+ limit

T2KND280 is a 3 detector complex

T2KND280 is a 3 detector complex @fixed L with 3 beams of different E_v

- 1) INGRID+PM+WM ON-AXIS @ 0 deg $\langle E_{v} \rangle = 1.5 \text{ GeV} \rightarrow \Delta m^{2} \sim 5 eV^{2}$
- 2) WAGASCI+Baby MIND OFF-AXIS @1.5 deg $\langle E_v \rangle = 0.7 \text{ GeV} \rightarrow \Delta m^2 \sim 2 \ eV^2$
- 3) ND280 OFF-axis @ 2.5 deg $\langle E_{v} \rangle = 0.6 \text{ GeV} \rightarrow \Delta m^{2} \sim 2 \ eV^{2}$

v_{μ} Interactions – On-axis detector

Proton Module (PM)

Study of neutrino interaction with T2K on-axis neutrino detector proton module

T2K Collaboration (T. Kikawa (Kyoto U.) for the collaboration). 2013. 4 pp. Published in J.Phys.Conf.Ser. 408 (2013) 012082

v_{μ} Interactions – Proton Module

Study of neutrino interaction with T2K on-axis neutrino detector proton module

T2K Collaboration (T. Kikawa (Kyoto U.) for the collaboration). 2013. 4 pp. Published in J.Phys.Conf.Ser. 408 (2013) 012082

v_{μ} Interactions – Water Module (WM)

- First H₂O module installed @ beam-axis in autumn 2016 w/ INGRID electronics (Trip-T front-end boards [TFBs])
- Goals :
 - Demonstrate module performance
 - Measure absolute cross section of $\nu/\bar{\nu}$ on H₂O and H₂O/CH ratio on-axis (E \sim 1.5 GeV) using INGRID module as muon calorimeter

 v_{μ} Interactions – Off-axis WAGASCI detector @ 1.5 deg

v_{μ} Interactions – Off-axis WAGASCI detector @ 1.5 deg

- Second H₂O module installed @ 1.6° off-axis angle (Oct. 2017) w/ new DAQ (SPIROC2d chips)
- Goals : reproduce on-axis measurement at lower energy (\sim SK neutrinos) using proton module as CH target and INGRID module as calorimeter

WAGASCI H₂O module

Side View

ν_µ Interactions – Off-axis WAGASCI detector @ 1.5 deg

• Final goal : 4π cross-section on H₂O @ 1.6° off-axis \Rightarrow cover SK phase space

- Measure momentum up to 2 GeV/c with 50 MeV resolution
- Separate 25% ν contamination in $\bar{\nu}$ -mode (Baby-MIND) FY 2018
- High angle muon range detectors (Side-MRD)

T2K strategy for SBL – ON AXIS

T.Koga et al. TN 335

T2K strategy for SBL – OFF AXIS

T.Koga et al. TN 335

MODEL INDEPENDENT Results pending

-For side escaping sample, data/postfit = 0.885(-2.2σ) for WM, 0.880(-2.3σ) for PM -For 2track sample, data/postfit = 0.857(-2.3σ) for WM, 0.820(-3.2σ) for PM -Tendency is similar between WM and PM

T.Koga General Meeting 8.10.2017

... if they're roses they'll bloom!

THANKS!

References

- C.Giunti Seminar @ Roma, Nov 2017
- C.Riccio WIN 2019 conf. Bari , Jun 2019
- F.Suekane GRD meeting Paris, Nov 2017
- T.Muller GRD meeting Paris, Nov 2017
- B.Quilain NNN17 Coventry UK, Oct 2017
- A.Minamino JPARC meeting JP , April 2017