Timing Events (and the associated outbursts) Anomalous X-ray Pulsars

Rim Dib (McGill University),
Vicky Kaspi (McGill University),
Fotis Gavriil (NASA/GSFC).

Part I: Introduction

How to recognize a magnetar?

- / X-ray Pulsars in the top-right corner of the p- \dot{p} diagram (p~5s, \dot{p} ~10⁻¹¹, \dot{v} ~10⁻¹³s⁻²).
- / Luminosity ($\sim 10^{35}$ erg/s) > spindown luminosity.
- X-ray spectra traditionally fit to a BB+PL model (SGR photon index < AXP photon index).</p>
- / Exhibit X-ray bursts. SGRs: several forests of bursts during active periods. AXPs: a few isolated bursts, forests seen in 2 sources.
- / Located in the galactic plane (except 2 sources in the LMC/SMC). 3 AXPs and 1 SGR are associated with SNRs.

List of Known Magnetars

Magnetar	\dot (X10 ⁻¹³)s ⁻²	Activity
1E <u>2259</u> +586*	-0.10	(P) ◆ 1 Major Outburst (+glitch/burst forest) ◆ 1 Glitch
4U <u>0142</u> +61	-0.27	(P) ♦ 1 Glitch? ♦ 1 Timing anomaly (+bursts)
RXS <u>J1708</u> 49	-1.58	(P)♦ Several glitches
1E <u>1841</u> -045*	-2.96	(P)♦ Several glitches
1E <u>1048</u> -5937	-5.43	(P) ♦ 2 Slow flares (+timing anomalies/bursts) ♦ 1 Outburst (+glitch/burst) ♦ Extreme torque noise
XTE <u>J1810</u> -197	-2.6 (2003)	(T)♦ 2003 brightening (+radio pulses/bursts while fading).
1E <u>1547</u> -5408*	- 50 (2007) - 250 (2008)	(T) ♦ 1980→2006 dimming ♦ 2007 brightening (+radio pulses) ♦ 2008,2009 outbursts (+bursts/fast increase in v)
CXO <u>J1647</u> 10	-0.2 (2006)	2005 discovery ♦ 2006 outburst (+glitch/burst)
CXOU J010043	-2.9 (2004)	Far (SMC)
SGR <u>0501</u> +4516	-4.5 (2008)	Active in: 2008 (bursts)
SGR <u>0526</u> -66*	-10 (2000)	Active in: 1979-1983 (giant flare, bursts) ♦ Far (LMC)
SGR <u>1900</u> +14	-18 to -45	Active in: several periods (giant flare, flares, bursts, timing anomaly in 1998)
SGR <u>1806</u> -20	-15 to -96	Active in: several periods (giant flare, flares, bursts)
SGR <u>1627</u> -41	?	Active in: 1998 (bursts), 2008 (bursts)

Not included: Candidate AXP <u>J1845</u>-0258 (1993) & candidate SGR <u>1801</u>-23 (1997).

To constrain the physics of magnetars (internal structure, magnetospheric structure, how they form, origin of their variability, etc. etc.), long-term monitoring helps.

It allows the discovery of correlations/patterns in the variability (timing, flux, spectra).

It facilitates comparisons between magnetars and rotation-powered pulsars.

The AXP Monitoring Program: weekly RXTE observations of the AXPs which can be used to

1- Do pulsar timing

(Cule Timing Carloon)

- 2- Look for pulsed flux changes.
- 3- Look for pulse profile changes.
- 4- Look for short bursts.

Part II: Quick summary of AXP activity

AXP 1E 2259+586 (in SNR CTB109)

 $p\sim7s$, $v\sim0.14s^{-1}$, $\dot{v}\sim-0.1x10^{-13}s^{-2}$, $B\sim0.6x10^{14}G$

2 Events in 12 yr of monitoring

Refs Kaspi et al 03, Woods et al 04, Dib et al 08 (proceedings)

AXP 4U 0142+61:

 $p \sim 8.7s$, $v \sim 0.12s^{-1}$, $\dot{v} \sim -0.27x10^{-13}s^{-2}$, $B \sim 0.9x10^{14}G$

2? Events in 2+8 yr of monitoring

Refs Dib et al 2007, Gavriil et al 2009 (in prep)

AXP RXS J170849.0-400910:

 $p\sim11s$, $v\sim0.09s^{-1}$, $\dot{v}\sim-1.58x10^{-13}s^{-2}$, $B\sim3.2x10^{14}G$

3-5 Events in 11 yr of monitoring

AXP 1E 1841+045 (in SNR Kes73)

 $p\sim12s$, $v\sim0.09s^{-1}$, $v\sim-2.96x10^{-13}s^{-2}$, $B\sim4.8x10^{14}G$

4 "silent" Glitches in 10 yr of monitoring

Refs: Dib et al, 2008 (paper+proceedings)

AXP 1E 1048-5937:

 $p\sim7s$, $v\sim0.15s^{-1}$, $v\sim-5.4x10^{-13}s^{-2}$, $B\sim2.7x10^{14}G$

3 Events and 2 "noise episodes" in 2+12 yr of monitoring

★ Timing parameters fit using splines.

Refs Gavriil & Kaspi 2004, Dib et al 2008 (submitted).

AXP 1E 1547.0-5408 (in SNR G327.24-0.13)

 $p\sim2.07s$, $v\sim0.483s^{-1}$, $\dot{v}\sim-70X10^{-13}s^{-2}$, $B\sim2.5x10^{14}G$

Part III: Timing Puzzles:

(in other words, "here is what we would like future/ existing theories to be able to explain")

<u>Puzzle #1:</u> Why do some AXP glitches have a recovery and other AXP glitches do not?

<u>Puzzle #1 (contin.):</u> Why do some AXP glitches have a recovery and other AXP glitches do not?

AXP Glitch recoveries have unusually large Δὐ/ὑ!

Puzzle #2: What causes the episodes of large (65%–900%) and rapid (< 2 months) changes in \dot{v} ?

<u>Puzzle #3:</u> Why are some AXP glitches "radiatively silent" and other AXP glitches are not?

<u>Puzzle #3 (contin.):</u> Why are some AXP glitches "radiatively silent" and other AXP glitches are not?

Note: This slide was shown as a response to the question: "does a quiet pulsed flux necessarily imply a quiet total phaseaveraged flux?" <u>Puzzle #4:</u> Why does every radiative outburst seem to be associated with a timing event (glitch/timing anomaly)? And why is the converse not true?

Example: AXP 2259

Summary

- AXP Timing: AXPs glitch 2-3 times per decade.
 Sometimes, they exhibit episodes of extreme timing noise.
- AXP Outbursts: AXPs exhibit a variety of sudden outbursts, roughly once per decade.

Some Unanswerred Timing-Related Questions:

- Why do some AXP glitches have a recovery and other AXP glitches do not? (and why are the recoveries different from those of rotation-powered pulsars?)
- / What causes the episodes of large and fast changes in \dot{v} ?
- Why are some AXP glitches radiatively silent and other AXP glitches are not?
- Every radiative outburst is accompanied by a timing event but the converse is not true. Why?

