# Review of results from SND detector

### T.Dimova

## BINP, Novosibirsk, Russia

Ð





1 - beam pipe, 2 - drift chambers, 3 - scintillation counter, 4 - lightguides, 5 - PMTs, 6 - NaI(Tl)
 crystals, 7 - vacuum phototriodes, 8 - iron absorber, 9 - streamer tubes, 10 - 1 cm iron plates, 11 - scintillation counters, 12 and 13 - collider magnets.



| $\Delta \varphi = \Delta \vartheta = 9^{\circ}$ $\sigma_E / E = \frac{4.2\%}{\frac{4.2\%}{\sqrt{E(GeV)}}}$ $\sigma_{\varphi} = \frac{0.82^{\circ}}{\sqrt{E(GeV)}} \oplus 0.63$ $\Delta \varphi \sim \Delta \vartheta \sim 18^{\circ}$ | Angular size of the counter<br>Energy resolution for $\gamma$ 's<br>Angular resolution for $\gamma$ 's<br>Minimal spatial angle for<br>two photons separation |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ers   1632                                                                                                                                                                                                                            | Total number of NaI(Tl) counter                                                                                                                               |

Page 4

D

BINP,Novosibirsk

### **SND** calorimeter performance







Invariant-mass spectra in  $\omega \to \pi^0 \gamma$  decay



Invariant-mass spectra in  $K_S \rightarrow \pi^0 \pi^0$  decay



Invariant-mass spectra in  $\eta \rightarrow 3\pi^0$  decay

### BINP,Novosibirsk

# List of SND parameters: Drift chambers:



| Spatial resolution for tracks                          | $\sigma_{arphi}=0.54^{\circ},$   |
|--------------------------------------------------------|----------------------------------|
| (P=300  MeV/c)                                         | $\sigma_{\vartheta}=1.9^{\rm o}$ |
| Minimal azimuth angle for charged particles separation | $\Delta arphi \sim 18^{\circ}$   |
| Material before the chamber                            | $0.27 g/cm^2$                    |
| Drobability of a conversion before the chamber         | 0 570Z                           |

representation denote the chamber  $\gamma$ 0.5770



view of results from SND detector

August, 30, 2001

D

Page 7

### Integrated Luminosity





Integrated luminosity collected by SND per experimental year Integrated luminosity collected by SND in the energy region  $\sqrt{s}$  = 360 - 1380 MeV

Total integrated luminosity  $IL \simeq 30 \text{ (pb)}^{-1} (1995 - 2000 \text{ )}$ Luminosity measurement:  $e^+e^- \rightarrow e^+e^-, e^+e^- \rightarrow \gamma\gamma$ Accuracy  $\sim 1.5\% - 2\%$ 

### **Electric dipole radiative decays**



$$V \rightarrow S\gamma$$

$$(V = \phi, \omega, \rho)$$

$$(S = f_0(980), a_0(980), \sigma(?))$$

SND study:  

$$e^+e^- \rightarrow \phi \rightarrow \pi^0 \pi^0 \gamma, \ \eta \pi^0 \gamma$$
  
 $e^+e^- \rightarrow \omega \rightarrow \pi^0 \pi^0 \gamma,$   
 $e^+e^- \rightarrow \rho \rightarrow \pi^0 \pi^0 \gamma$ 



# Electric dipole radiative decays of $\phi$ meson

|                          |                          |                             | $(\cdot 10^{-4})$                                         |
|--------------------------|--------------------------|-----------------------------|-----------------------------------------------------------|
| $0.58 \pm 0.05 \pm 0.06$ |                          | $0.88\pm0.17$               | ${ m B}(\phi 	o a_0 \gamma)$                              |
|                          |                          |                             | $(\cdot 10^{-4})$                                         |
| $2.37 \pm 0.06 \pm 0.24$ | $2.90 \pm 0.21 \pm 1.54$ | $3.5\pm0.3^{+1.3}_{-0.5}$   | ${ m B}(\phi 	o f_0 \gamma)$                              |
|                          |                          |                             | $(\cdot 10^{-4})$                                         |
| $0.74 \pm 0.05 \pm 0.07$ | $0.90 \pm 0.24 \pm 0.10$ | $0.88\pm0.17$               | ${ m B}(\phi 	o \eta \pi^0 \gamma)$                       |
|                          |                          |                             | $m_{\pi\pi} > 700 { m MeV}$                               |
| $0.79 \pm 0.02 \pm 0.08$ | $0.92 \pm 0.08 \pm 0.06$ | $1.034 \pm 0.066 \pm 0.046$ | $\mathcal{B}(\phi \to \pi^0 \pi^0 \gamma)(\cdot 10^{-4})$ |
| $\mathrm{KLOE}^{(*)}$    | CMD-2                    | SND                         |                                                           |

(\*) - systematic error was set to 10%

BINP,Novosibirsk

Ð

Page 11





 $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$  cross-section

SND results  $(IL = 9 \text{ (pb)}^{-1})$ :

$$B(\omega \to \pi^0 \pi^0 \gamma) = (6.3 \pm 1.4 \pm 0.8) \cdot 10^{-5}$$
  
$$B(\rho \to \pi^0 \pi^0 \gamma) = (4.0 \pm_{0.9}^{1.0} \pm 0.4) \cdot 10^{-5}$$

$$B(\rho \to S\gamma \to \pi^0 \pi^0 \gamma) = (2.0 \pm_{0.7}^{0.8} \pm 0.3) \cdot 10^{-5}$$

### Magnetic dipole radiative decays



$$egin{aligned} V & o P\gamma \ (V = \phi, \omega, 
ho) \ (P = \pi^0, \eta, \eta') \end{aligned}$$

SND study:  

$$e^+e^- \rightarrow \phi \rightarrow \eta' \gamma, \pi^0 \gamma, \eta \gamma,$$
  
 $e^+e^- \rightarrow \omega \rightarrow \pi^0 \gamma, \eta \gamma$   
 $e^+e^- \rightarrow \rho \rightarrow \pi^0 \gamma, \eta \gamma$ 



 $B(\phi \to \eta' \gamma) \cdot 10^5 \quad 4.9 \pm 1.6_{1.5}^{1.6} \quad 6.4 \pm 1.6 \quad 6.8 \pm 0.8$ 



 $B(\phi \to \eta \gamma)(\cdot 10^{-2})$   $\eta \to \gamma \gamma: \ 1.34 \pm 0.01 \pm 0.05$   $\eta \to \pi^{+} \pi^{-} \pi^{0}: 1.26 \pm 0.03 \pm 0.06$   $\eta \to \pi^{0} \pi^{0} \pi^{0}: 1.35 \pm 0.01 \pm 0.05$ Average: \ 1.310 \pm 0.045

 $B(\rho \to \eta \gamma) = (2.77 \pm 0.26 \pm 0.16) \cdot 10^{-4}$  $B(\omega \to \eta \gamma) = (4.22 \pm 0.47 \pm 0.17) \cdot 10^{-4}$ 

 $\frac{\text{Experimental ratio of the partial width:}}{\Gamma_{\omega\eta\gamma}:\Gamma_{\rho\eta\gamma}:\Gamma_{\phi\eta\gamma}=1:(11.7\pm1.9):(15.9\pm1.9)}$ Prediction of the simple quark model: 1:8:12



$$\rho, \omega, \phi \to \pi^0 \gamma$$

$$B(\rho \to \pi^0 \gamma) = (5.03 \pm 1.17 \pm 0.83) \cdot 10^{-4}$$
$$B(\omega \to \pi^0 \gamma) = (9.17 \pm 0.16 \pm 0.46) \cdot 10^{-2}$$
$$B(\phi \to \pi^0 \gamma) = (1.23 \pm 0.04 \pm 0.09) \cdot 10^{-3}$$

 $\begin{array}{l} \displaystyle \frac{\text{Experimental ratio of the partial width:}}{\Gamma_{\omega\pi^{0}\gamma}:\Gamma_{\rho\pi^{0}\gamma}:\Gamma_{\phi\pi^{0}\gamma}=1:(0.97\pm2.8):(7\pm0.6)\cdot10^{-3}\\ \text{Prediction of the quark model:} \quad 1:1/9:0.01 \end{array}$ 

Conversion decays  $\phi \to \eta e^+ e^-, \phi \to \pi^0 e^+ e^-, \eta \to e^+ e^- \gamma$ 



### $P(\gamma)$ V(P) $\gamma^{*}$ $F(q^{2})$ $e^{+}$



| Transition Fo | rm Facto | rs Slopes |
|---------------|----------|-----------|
|---------------|----------|-----------|

|              | $\phi \rightarrow \eta e^+ e^-$ | $\eta  ightarrow e^+ e^- \gamma$ | $\phi \to \pi^0 e^+ e^-$ |
|--------------|---------------------------------|----------------------------------|--------------------------|
|              | $\mathrm{GeV}^{-2}$             | ${\rm GeV}^{-2}$                 | ${\rm GeV}^{-2}$         |
| SND          | $3.8 \pm 1.8$                   | $1.6\pm2.0$                      |                          |
| Theory (VDM) | 1.0                             | 1.8                              |                          |
| Previous     |                                 |                                  |                          |
| measurement  |                                 | $-0.7 \pm 1.5$                   |                          |





# $\phi$ meson parameters study

|                                                                   | I                | ,                    |
|-------------------------------------------------------------------|------------------|----------------------|
|                                                                   | SND              | PDG-2000             |
| $m_{\phi},  \mathrm{MeV}$                                         | $1019.42\pm0.05$ | $1019.417 \pm 0.014$ |
| $\Gamma_{\phi}, \mathrm{MeV}$                                     | $4.21\pm0.04$    | $4.458 \pm 0.032$    |
| $B(\phi  ightarrow e^+e^-) \cdot 10^4$                            | $2.93 \pm 0.14$  | $2.91 \pm 0.07$      |
| $B(\phi \rightarrow K^+K^-), \%$                                  | $47.6 \pm 1.7$   | $49.2\pm0.7$         |
| $B(\phi  ightarrow K_S K_L), \%$                                  | $35.1 \pm 1.3$   | $33.8\pm0.6$         |
| $B(\phi  ightarrow 3\pi), \%$                                     | $15.9\pm0.8$     | $15.5\pm0.6$         |
| $B(\phi  ightarrow \eta \gamma), \%$                              | $1.33\pm0.06$    | $1.297\pm0.033$      |
| $rac{g_{\phi K}+_K-}{g_{\phi K_S K_L}}rac{1}{\sqrt{Z(m_\phi)}}$ | $0.92\pm0.03$    | $0.95\pm0.01$        |

Ð









D

BINP,Novosibirsk









### BINP, Novosibirsk





Systematic error: 5%



## New project: VEPP-2000

Maximum beam energy -1 GeVPerimeter -24.388 mTime between collisions  $-0.04 \mu \text{ s}$ 

Beta function at interaction point  $-\beta_x = \beta_z = 6.3$  cm Number of particles in one bunch  $-1 \cdot 10^{11}$ parameters at  $E_{beam} = 900$  MeV: Beam current – 200 mA Bunch length -3.3 cm Luminosity  $-1 \cdot 10^{32}$ 

Energy spread  $-\sigma_E = 6.4 \cdot 10^{-4}$ 



1 - beam pipe, 2 - drift chamber, 3 - aerogel cherenkov counters, 4 - NaI(Tl) crystals, 5 - vacuum phototriodes, 6 - iron absorber, 7 - streamer tubes, 8 - 1cm iron absorber, 9 - scintillation counters, 10 - solenoids

### BINP,Novosibirsk

### Drift chamber New project: SND Upgrade $\sigma_{R-\phi} = 150\mu$ m; $\sigma_z = 1 \div 1.5$ mm;

| Aerogel Counters                    | Calorimeter                     | (jet, gas $Ar+10\%CO_2$ )                                                                                                |  |
|-------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| $\pi/K$ for 250MeV< $ p  < 900$ MeV | new phototriods and electronics | $\sigma_{\phi} = \sigma_{\theta} = 0.25^{\circ}$<br>dE/dx: $\pi/K$ for $ p  \leq 300$ MeV;<br>$\Omega = 0.94 \cdot 4\pi$ |  |

## Physics program

measurement of cross sections of different processes, for example,

$$e^+e^- \rightarrow 2\pi, \rho\pi, \omega\pi, KK, 4\pi, KK\pi$$
 etc.;

- measurement of full cross section  $e^+e^- \rightarrow$  hadrons;
- studying of parameters of vector resonances in energy range  $1.2 \div 2 \text{GeV}$ ;
- $n\bar{n},p\bar{p}$  form factors on threshold;
- two-photon physics:  $e^+e^- \rightarrow e^+e^- + \pi^0, \eta, \eta', 2\pi^0$  etc.