With:

- Fulvio Baldovin
- Michele Caraglio
- Attilio Stella
Outline

1. Empirical features of asset returns
2. The model
3. Calibration of the model
4. S&P500 index
5. Conclusions
Detrended asset logarithmic return

\[X_t := \ln S_t - \ln S_{t-1} - \mu \quad (t = 1, 2, \ldots), \]

\(S_t \) being the price of a financial asset.

\textit{Stylized facts} are statistical features common to many assets:

- Heavy tails of returns’ distribution
- Absence of linear autocorrelations
- Slow decay of autocorrelation in absolute returns
- Anomalous scaling and multiscaling of aggregated returns
- Leverage effect
- ...
Scaling properties

The aggregated return over a period t is $X_1 + \ldots + X_t$.

Simple scaling is present if

$$X_1 + \ldots + X_t \overset{dist}{=} t^H X_1.$$ \hspace{1cm} (1)

Normal scaling when X_1 is a Gaussian variable and $H = 1/2$, **anomalous scaling** otherwise.

Multiscaling is present if

$$\mathbb{E}[|X_1 + \ldots + X_t|^q] = t^{q H_q} \mathbb{E}[|X_1|^q]$$ \hspace{1cm} (2)

for existing moments with H_q non–trivial function of q.
Baldovin–Stella suggestion (PNAS, 2007)

Anomalous scaling with X_1 non-Gaussian and/or $H \neq 1/2$:

$$
\begin{align*}
X_t &:= a_t \ Y_t; \\
Y_t &:= \sum G_t,
\end{align*}
$$

with

- a modulating factor $a_t := \sqrt{t^{2H} - (t - 1)^{2H}}$
- $\{G_t\}_{t=1}^{\infty}$ i.i.d. standard normal variables
- Σ a positive random variable independent of $\{G_t\}_{t=1}^{\infty}$.

Model inspired by an inverse renormalization–group strategy.
Strengths and weaknesses

Merits:

- **simple scaling** with any H is obtained
 $$(X_1 + \ldots + X_t \overset{\text{dist}}{=} t^H X_1)$$
- The distribution of X_t’s belongs to the **rich class** of variance–Gaussian mixtures:

 \[
P[X_1 = x] = \int_0^\infty d\sigma \, \rho(\sigma) \frac{e^{-x^2/2\sigma^2}}{\sqrt{2\pi}\sigma^2},
\]

 ρ being the probability density of Σ

Important **missing** properties:

- **stationarity** of the observed process
- **ergodicity**
Recover stationarity

Time restart mechanism of the modulating factor a_t:

- set $l_{t+1} = 1$ with probability $0 < \nu \leq 1$, otherwise $l_{t+1} = l_t + 1$
- in a_t, substitute t with the random time l_t

$$X_t := a_{l_t} Y_t$$

$\{X_t\}_{t=1}^{\infty}$ is a stationary process if

- $\{l_t\}_{t=1}^{\infty}$ is independent of $\{Y_t\}_{t=1}^{\infty}$
- $\mathbb{P}[l_1 = i] := \nu(1 - \nu)^{i-1}$

Interpretation: time restarts may reflect exogenous events.
Recover ergodicity

Fix a memory order M.

- Distribute Y_1, \ldots, Y_{M+1} as before:

$$P[Y_1 = y_1, \ldots, Y_{M+1} = y_{M+1}] := \int_0^\infty d\sigma \rho(\sigma) \prod_{t=1}^{M+1} \frac{e^{-y_t^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}}.$$

- For $t > M + 1$, draw Y_t according to the law

$$P[Y_t = y_t | Y_{t-1} = y_{t-1}, \ldots, Y_1 = y_1] := P[Y_{M+1} = y_t | Y_M = y_{t-1}, \ldots, Y_1 = y_{t-M}]$$

Stationarity is preserved and ergodicity is recovered.
Long and short memory

\[X_t := a_{l_t} Y_t \]

is stationary and ergodic with

- \(\{a_{l_t}\}_{t=1}^{\infty} \) short memory (1) process
 - (exogenous events)
- \(\{Y_t\}_{t=1}^{\infty} \) long memory (M) process
 - (endogenous dynamics – volatility clustering)

Simple scaling promoted to approximated multiscaling!
A convenient choice of the density ρ

Weigh σ^2 according to an inverse–gamma distribution:

$$\rho(\sigma) := \frac{2^{1-\alpha/2}}{\Gamma(\alpha/2)} \frac{\beta^{\alpha}}{\sigma^{\alpha+1}} e^{-\beta^2/2\sigma^2}$$

with α and β form and scale parameters.

- X_t’s display heavy tails with tail index α
- β fixes the scale of X_t’s fluctuations
- $\{ Y_t \}_{t=1}^{\infty}$ becomes a pure ARCH process of order M
- $X_t = a_t Y_t$ becomes a SWARCH model (Hamilton & Susmel, 1994)
Model parameters

Five parameters within the SWARCH prescription:

- $M \geq 1$ (memory of “endogenous component”)
- $\alpha > 0$ (tail index of returns’ distribution)
- $\beta > 0$ (fixes the scale of returns’ fluctuations)
- $0 < \nu \leq 1$ (time restart probability)
- $0 < D \leq 1/2$ (quantifies the effects of restarts):

$$a_i := \sqrt{i^{2D} - (i - 1)^{2D}}$$
Calibration via moment optimization

Compare theoretical and empirical moments.

Given M, estimate α, ν, and D with

$$
\begin{align*}
m_q(t) & := \frac{\mathbb{E}[|X_1 + \ldots + X_t|^q]}{\mathbb{E}[|X_1|^q]} ;
\end{align*}
$$

$$
\begin{align*}
r_q(t) & := \frac{\mathbb{E}[|X_1 X_t|^q] - \mathbb{E}[|X_1|^q]^2}{\mathbb{E}[|X_1|^{2q}] - \mathbb{E}[|X_1|^q]^2} ,
\end{align*}
$$

for all $t \leq M$.

Estimate β with $\mathbb{E}[|X_1|^q]$.

Calibration for S&P500

Calibration with only moment order $q = 1$.

- $M = 21, \alpha = 4.0, \beta = 0.04, \nu = 0.030, D = 0.21$
- $M = 42, \alpha = 4.5, \beta = 0.07, \nu = 0.011, D = 0.19$
- $M = 63, \alpha = 5.5, \beta = 0.14, \nu = 0.004, D = 0.16$
Fit performances
Multiscaling features

The graph shows the scaling behavior of the S&P index from 1950-2010, with distinct periods marked from 1950-1970, 1970-1990, 1990-2010, and 1950-2010 (*). The data points are plotted on a log-log scale, indicating the superlinear scaling of the index returns with respect to the scaling parameter q. The different colors and markers represent different periods, illustrating how the scaling behavior changes over time.
Returns’ distribution
Endogenous volatility

Can we distinguish long– and short–memory contributions to volatility?

- Try to identify time restarts in a time series \(\{\bar{x}_t\}_{t=1}^T \) studying
 \[
P[l_t = 1 | X_n = \bar{x}_n, |n - t| \leq \tau] \quad (t = 1, 2, \ldots, T)
 \]

- Isolate the endogenous path \(\{\bar{y}_t\}_{t=1}^T \)

- Sample volatility on time horizon \(t \):
 \[
 \sqrt{\frac{1}{t} \sum_{n=1}^{t} Y_n^2}
 \]
Calibration with $M = 63$ and time horizon $t = M$
Scaling symmetry allows to construct a discrete–time stochastic model for asset dynamics which is

- a combination of a short–memory modulating component and a long–memory endogenous component
- rich (multiscaling, heavy tails, slow autocorrelation decay)
- parsimonious (five parameters)
- easy to calibrate
- useful in applications (derivative pricing)

arXiv:1305.3243v2 [q-fin.ST]