Parte I la perdita di energia delle particelle cariche

Interazioni con la materia di particelle subnucleari

- Ci interessano le particelle stabili, o quelle con vita media lunga rispetto al tempo di attraversamento del detector. Le altre decadono prima di essere rivelate (ma nota lo studio dei vertici secondari di decadimento)
- Particelle cariche
 - Interazioni elettromagnetiche con elettroni e nuclei del mezzo
 - Se ad alto γ anche emissione di radiazione E.M (tipicamente per gli elettroni)
 - Se adroni, anche interazioni forti con i nuclei che producono altre particelle (cariche o neutre)
- Adroni neutri (neutroni, k₀)
 - Interazioni forti con i nuclei
- Leptoni neutri (neutrini)
 - Interazioni deboli con elettroni o nucleoni
- Fotoni
 - Effetto fotoelettrico
 - Scattering su elettroni atomici
 - Creazione di coppie e+e⁻

• Fenomeni 1,2,4 rilevanti per il corso

la perdita di energia delle particelle cariche

Volume dell'atomo è 10^{15} volte maggiore di quello del nucleo $(10^{-10}/10^{-15})^3$. Le particelle cariche interagiscono soprattutto con gli elettroni atomici

Una particella carica in un mezzo perde energia con molti piccoli urti con gli elettroni continuando la sua traiettoria fino a fermarsi

la perdita di energia delle particelle cariche

- Processo principale
 - interazione EM con gli elettroni dell'assorbitore
 - ionizzazione
 - eccitazione
 - l'energia cinetica diminuisce a piccoli passi, fino all'arresto
 - le particelle sono in generale molto più pesanti degli elettroni, subiscono deflessioni trascurabili
 - deflessioni importanti negli urti con i nuclei, molto più rari
 - Range
 - percorso medio nell'assorbitore
- I processi individuali sono soggetti a fluttuazioni statistiche
 - Range straggling
 - fluttuazioni del range attorno alla media
 - Energy straggling
 - fluttuazioni dell'energia persa in un dato spessore

la perdita di energia delle particelle cariche

- Perdita di energia media: <u>dE</u> <u>dx</u>
 Si utilizza spesso al posto dello spessore la "mass thickness" – dt=ρ dx [g/cm²]
- In questo modo la perdita di energia si esprime come

$$-\frac{dE}{dt} \left[\frac{\text{MeV}}{\text{g/cm}^2}\right]$$

(moltiplicando per la densità si ottiene la perdita di energia in MeV/cm)

 NB spesso nei testi si usa comunque "x", si capisce dall'unità di misura

calcolo della perdita di energia in un mezzo

• Impulso I acquisito da un elettrone quando una particella con carica ze passa a distanza b (parametro d'impatto)

$$I = \int F \, dt = e \int E_{\perp} \, dt = e \int E_{\perp} \frac{dt}{dx} \, dx = e \int E_{\perp} \frac{dx}{v}$$

• Utilizzando Gauss per ottenere E_{\perp} (cilindro centrato sulla traiettoria e passante per l'elettrone)

$$\int E_{\perp} 2\pi b \, dx = 4\pi z e \rightarrow \int E_{\perp} \, dx = \frac{2ze}{b}$$
$$I = \frac{2ze^2}{bv} \rightarrow \Delta E_K(b) = \frac{I^2}{2m_e} = \frac{2z^2e^4}{m_eb^2v^2}$$

- Se N_e è la densità di elettroni l'energia persa verso gli elettroni in un volumetto dV attorno a b è

$$dV = 2\pi b \cdot db \cdot dx$$
$$-dE(b) = \Delta E_k(b) N_e dV = \frac{4\pi z^2 e^4}{m_e v^2} N_e \frac{db}{b} dx$$

Perdita di energia - Bohr

 Calcolo l'energia trasferita tra un b_{MIN} e un b_{MAX}. Nota che per b_{MIN}=0 avrei una divergenza, quando invece esiste un massimo di energia trasferita

$$-\frac{dE}{dx} = \frac{4\pi z^2 e^4}{m_e v^2} N_e \ln\left(\frac{b_{MAX}}{b_{MIN}}\right)$$

$$\Delta E(b_{MIN}) = \Delta E_{MAX} = 2m_e \gamma^2 v^2 \quad \text{(urto frontale)}$$

$$\Delta E(b_{MIN}) = \frac{2z^2 e^4}{m_e b_{MIN}^2 v^2} = 2m_e \gamma^2 v^2 \rightarrow b_{MIN} = \frac{ze^2}{m_e \gamma v^2}$$

• Per calcolare b_{MAX} tengo conto che l'urto deve avvenire in un tempo piccolo rispetto alla frequenza orbitale (gli elettroni sono legati)

$$t_{URTO} \leq T = \frac{1}{\overline{v}}$$

$$t_{URTO} \approx \frac{b}{v} \rightarrow \frac{b}{\gamma v} \text{ (relativisticamente)}$$

$$t_{URTO} = \frac{b}{\gamma v} \leq \frac{1}{\overline{v}} \rightarrow b \leq \frac{\gamma v}{\overline{v}}$$

$$b_{MAX} = \frac{\gamma v}{\overline{v}}$$

$$-\frac{dE}{dx} = \frac{4\pi z^2 e^4}{m_e v^2} N_e \ln\left(\frac{b_{MAX}}{b_{MIN}}\right) = \frac{4\pi z^2 e^4}{m_e v^2} N_e \ln\left(\frac{\gamma^2 m_e v^3}{z e^2 \overline{v}}\right)$$

 Funziona bene per particelle massive e materiale con nuclei pesanti. Per stime più precise → Bethe-Bloch

Bethe-Bloch

$-\frac{dE}{dx}\left[\frac{MeV}{cm}\right] = 4\pi N_A r_e^2 m_e c^2 z^2 \rho \frac{Z}{A} \frac{1}{\beta^2} \left(\ln\frac{2m_e c^2 \gamma^2 \beta^2}{I} - \beta^2 - \frac{\delta}{2}\right)$
 z è la carica della particella incidente (in unità di carica elementare) Z,A sono numero atomico e peso atomico dell'assorbitore 4π N_Ar_e²m_ec²=D=0.3071 MeV/(g/cm²) contiene costanti (massa dell'eletrone, raggio classico dell'elettrone, numero di Avogadro) I è l'energia di eccitazione media dell'assorbitore I=16Z^{0.9} eV β =v/c γ = 1/√(1-β²) fattore di Lorentz δ è un parametro che descrive la schermatura del campo eletrico della particella incidente dovuta alla polarizzazione del mezzo (effetto densità)

mean excitation energy: I

- E' il parametro più importante che descrive le caratteristiche dell'assorbitore
- Dipende anche dallo stato molecolare e dalla fase (per elementi leggeri):
 - idrogeno atomico I=15eV
 - idrogeno molecolare I=19.2 eV
 - idrogeno liquido I=21.8eV

Bethe-Bloch: dipendenza dall'energia

$$-\frac{dE}{dx}\left[\frac{MeV}{cm}\right] = 4\pi N_A r_e^2 m_e c^2 z^2 \rho \frac{Z}{A} \frac{1}{\beta^2} \left(\ln \frac{2m_e c^2 \gamma^2 \beta^2}{I} - \beta^2 - \frac{\delta(\gamma)}{2}\right)$$

• L'equazione è valida per velocità molto superiori a quella degli elettroni atomici

$$- \beta >> \alpha z (\alpha = 1/137)$$

- per velocità inferiori entrano in gioco effetti di cattura degli elettroni atomici (se la particella è uno ione positivo)
- per valori di $\beta \leq 0.96$, domina il termine 1/ β^2
 - la perdita di energia diminuisce rapidamente con l'energia
- Si arriva ad un minimo molto largo per $\beta \gamma \approx 4$
 - β diventa quasi costante al crescre dell'energia
 - particelle al minimo di ionizzazione, MIP
- poi la ionizzazione ricresce come $2 \ln \gamma$
 - relativistic rise
- il relativistic rise è poi limitato dal termine δ (correzioni di densità, importanti ad alte energie)

Bethe-Bloch, dipendenza dall'energia

- Dato un assorbitore, la perdita di energia a parità di momento dipende dalla massa della particella (diverso β)
 - Se è noto il momento, si può usare per l'identificazione della particella
- Al minimo di ionizzazione la perdita di energia è la stessa per tutte

Bethe-Bloch dipendenze dall'assorbitore

• a parità di $\beta \gamma$ l'energy loss dipende dall'assorbitore

$$-\frac{dE}{dt} = z^2 \frac{Z}{A} f(I)$$

- le dipendenze sono modeste, a parte per i materiali più leggeri (H,He)
 - naturalmente, il tutto va moltiplicato per la densità

B-B dipendenza dall'assorbitore

- al crescere di Z diminuisce Z/A
- la differenza tra solidi e gas diminuisce con Z, è rilevante solo per assorbitori leggeri
- Il termine z^2 è importante, una particella α ionizza il quadruplo di una particella di carica unitaria a parità di altre condizioni

esempi di calcolo

• Argon gassoso STP
• 0 °C, 100 kPa:
$$\rho = 1.78 \times 10^{-3} \text{ g/cm}^{-3}$$

• $Z=18$, $A=40$, $I=16Z^{0.9}=215.7 \text{ eV}$

$$-\frac{dE}{dx} = \frac{0.246 \cdot 10^{-3}}{\beta^2} \left(\ln \left(8.463 \cdot \frac{\beta^2}{1-\beta^2} \right) - \beta^2 \right) \text{MeV/cm}$$
- minimo per $\beta = 0.952$, $\beta \gamma = 3.12$
- dE/dx = 2.66 KeV/cm (1.49 MeV/(g/cm²))
- per $\beta \gamma = 100$ aumenta di un fattore
1.54
• Argon liquido
• $\rho = 1.4 \text{g/cm}^3$
- cambia il fattore moltiplicativo
- dE/dx al minimo = 2.09 MeV/cm

– uguale in termini di $MeV/(g/cm^2)$

esempi di calcolo

• alluminio

- $\rho = 2.7 \text{g/cm}^{3}$, Z=13, A=27, I=16Z^{0.9}=160.9 eV
- minimo per $\beta = 0.954$, $\beta \gamma = 3.175$
- dE/dx =4.47 MeV/cm (1.65 MeV/(g/cm²) al minimo di ionizzazione
- idrogeno liquido
 - $\rho = 0.07 \text{g/cm}^{3}$, Z=1, A=1, I=21.8 eV
 - minimo per β =0.962, β γ =3.504
 - dE/dx =0.287 MeV/cm (4.1MeV/(g/cm²) al minimo di ionizzazione

curve di Bragg

- Particelle al minimo di ionizzazione perdono una quantità di energia circa costante per unità di lunghezza, fino a che vengono rallentate a $\beta \gamma < 4$
- Poi la perdita di energia cresce con 1/ β ² le particelle si portano rapidamente a riposo
- Questo fatto viene usato nei trattamenti con radiazioni, in quanto gran parte della dose viene depositata nella parte finale del percorso
 - calibrazione dell'energia in modo che il range corrisponda alla zona da trattare

eccezioni alla B-B

- elettroni e positroni
 - gli elettroni sono in generale ultrarelativistici: γ =4 a 2MeV
 - nell'urto con gli elettroni atomici non si possono trascurare le deflessioni
 - differenze tra elettroni e positroni (indistinguibilità)

$$-\frac{dE}{dx} = D\frac{Z}{A}\rho\frac{1}{\beta^2}\left(\ln\frac{\gamma m_e c^2\beta\sqrt{\gamma-1}}{\sqrt{2}I} + f(\gamma)\right)$$

- dove $f(\gamma)$ è differente per e^+ ed e^- :

$$f(\gamma)_{elettroni} = \frac{1}{2} \left(1 - \beta^2\right) - \frac{2\gamma - 1}{2\gamma^2} \ln 2 + \frac{1}{16} \left(\frac{\gamma - 1}{\gamma}\right)^2$$

$$f(\gamma)_{positroni} = \frac{\beta^2}{24} \left(23 + \frac{14}{\gamma + 1} + \frac{10}{(\gamma + 1)^2} + \frac{4}{(\gamma + 1)^3} \right)$$

 la differenza più significativa però è che esistono fenomeni radiativi che diventano presto più importanti delle perdite di energia per collisione

eccezioni alla B-B

• Channeling

- l'assorbitore è un solido cristallino
- la particella incidente è allineata con un piano di simmetria del reticolo
- la particella viene guidata lungo il canale
- perdita di energia ridotta
 - fenomeni diversi per particelle positive o negative
- angolo critico rispetto al piano per avere channeling:

$$\phi_C = \frac{\sqrt{zZa_0Ad}}{1670\beta\sqrt{\gamma}}$$

- dove d è la distanza interatomica e a₀ il raggio di Bohr
- l'angolo è piccolo e diminuisce con l'energia

$$\phi_C \simeq 1^\circ \text{ per } \beta \simeq 0.1$$

- il channeling può essere usato per deflettere e collimare fasci di particelle
 - Con cristalli piegati si possono ottenere deflessioni equivalenti a quella di un magnete da 100T

Range

- Integrando la Bethe-Bloch si può pensare di calcolare il range di una particella carica in un assorbitore
 - R= spazio percorso fino a fermarsi

$$R(E_{TOT}) = \int_{0}^{E_{TOT}} \left(\frac{dE}{dx}\right)^{-1} dE$$

- Ci sono effetti minori da tenere in considerazione
 - il moto della particella non sarà esattamente rettilineo (vedi "multiple scattering" più avanti)
 - la B-B non vale a energie molto basse
- Si usano formule semi-empiriche:

$$R(E_{TOT}) = R_0 \left(E_{MIN} \right) + \int_{E_{MIN}}^{E_{TOT}} \left(\frac{dE}{dx} \right)^{-1} dE$$

- dove E_{MIN} è la minima energia a cui la B-B funziona
- Per energie non relativistiche R è proporzionale a $E_{TOT}^{1.75}$

- Range espresso in R/M, dove M è la massa della particella incidente in GeV/c²
- NB per alte energie (range lungo) bisogna tenere conto anche di radiazione ed interazioni con i nuclei

fluttuazioni (straggling)

- Grandi spessori:
 - $dt \ge 1 g/cm^2$
 - numero grande di urti, distribuzione gaussiana della perdita di energia:

$$\sigma_0^2 = D \cdot m_e c^2 z^2 \rho \frac{Z}{A} x$$
$$D = 0.307 MeV cm^2 / mole$$

- dove x è lo spessore di materiale attraversato
- il tutto vale se le perdite di energia sono piccole rispetto all'energia totale
 - piccole variazioni di velocità
- Esempi
 - x=1cm di Al,
 - $\sigma = 0.45 \text{MeV}, \Delta \text{E} = 4.5 \text{MeV}$
 - dispersione di circa il 10% (al minimo di ionizzazione)
 - muone al minimo di ionizzazione in Pb
 - dE/dx=12.83 MeV/cm (≈1GeV/m)
 - $\sigma = 8.5 \text{MeV}$ in un metro

fluttuazioni della perdita di energia

- Piccoli spessori
 - grande fluttuazione della perdita di energia
 - grandi code ad alti trasferimenti di energia, distribuzione asimmetrica
 - curve di "Landau"
 - valore più probabile (picco) molto più piccolo del valore medio

- NB spesso il detector sottile non vede queste fluttuazioni
 - elettroni che ricevono una grande energia (δ electrons) possono sfuggire dal rivelatore
 - Energia rivelata minore dell'energia persa dalla particella
 - Fluttuazioni rivelate minori della fluttuazione di energia persa

fluttuazioni della perdita di energia

$$L(\lambda) = \frac{1}{\sqrt{2}} e^{\left(-\frac{1}{2}(\lambda + e^{-\lambda})\right)}$$

$$\lambda = \frac{\Delta E - \Delta E_{Picco}}{\zeta}$$

$$\zeta = 2\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \rho x$$

$$\Delta E_{Picco} = \zeta \left(\ln \left(\frac{2m_e c^2 \beta^2 \lambda^2}{I}\right) + \ln \frac{\zeta}{I} + 0.2 - \beta^2 - \delta \right)$$

- Curva di Landau complessa
 - valori medio e di picco tabulati per i casi più comuni
- Esempio:
 - particella al minimo di ionizzazione ($\beta \gamma = 4$)
 - 1 cm di Ar in condizioni standard
 - $\Delta E_{\text{Picco}} = 1.2 \text{keV}$
 - $\Delta E_{\text{Medio}} = 2.71 \text{keV}$
- Rilevante per rivelatori a gas (poco densi) e per rivelatori sottili (silicio)

ionization yield

- Quante coppie ione-elettrone vengono prodotte lungo la traccia?
 - Ionizzazione primaria: ioni prodotti direttamente dall'interazione particellaassorbitore
 - Ionizzazione secondaria: ioni prodotti da elettroni primari sufficientemente energetici
- Numero di ioni prodotti
 - $n_{\rm T} = \Delta E/W$
 - W potenziale efficace di ionizzazione (maggiore del potenziale di ionizzazione dell'elemento, spesso le interazioni sono con elettroni dei gusci interni)
- Esempio
 - in Ar gassoso a STP, per una MIP
 - W = 26 eV
 - $n_{\rm P}=29/{\rm cm}$
 - $n_T = 94/cm$
 - In Si
 - W=3.6 eV
 - numero di coppie molto maggiore per unità di t (g/cm²): dE/dx = 3.87 MeV/cm
 - 30000 coppie per 300 µ m di Si (circa 4 fC)
- valori molto variabili per i vari gas e miscele
 tabulati

Bremsstrahlung

- Radiazione di frenamento
 - le particelle cariche che vengono frenate emettono energia sotto forma di fotoni (Bremsstrahlung)
 - la sezione d'urto è proporzionale a $1/m^2$

$$\boldsymbol{\sigma} \propto \left(\frac{e^2}{mc^2}\right)^2$$

 a energie inferiori a qualche centinaio di GeV, solo gli elettroni perdono sensibilmente energie per radiazione

$$- m_e/m_\mu \approx 200$$

- fattore 40.000 in probabilità di radiazione
- L'effetto principale è dovuto allo scattering con il campo elettrico dei nuclei
- L'energia radiata per unità di lunghezza è proporzionale all'energia della particella, ed è funzione del materiale
 - Lunghezza di radiazione X₀

$$-\frac{dE}{dx} \approx \frac{E}{X_0}$$

- X_0 = distanza percorsa nel mezzo tale che l'energia diminuisce di un fattore 1/e
- integrando: $E = E_0 e^{-\frac{x}{X_0}}$

Bremsstrahlung

Valore approssimato per X₀ (per elettroni)

$$\frac{1}{X_0} = 4\alpha r_0^2 N_A \frac{Z^2}{A} \rho \ln \frac{183}{Z^{1/3}}$$
$$\alpha = \frac{1}{137}$$
$$r_0 = \frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2}$$

- Anche l'interazione con gli elettroni del mezzo contribuisce
 - proporzionale a Z e non a Z^2
 - inoltre ci sono correzioni coulombiane

$$\frac{1}{X_0} = 4 \left(Z(Z+1) N_A \frac{\rho}{A} \right) \alpha r_0^2 \left(\ln \frac{183}{Z^{1/3}} - f(Z) \right)$$
$$F(Z) = \alpha^2 \left(\frac{1}{1+\alpha^2} + 0.202 - 0.036\alpha^2 + 0.008\alpha^4 - 0.002\alpha^6 \right)$$
$$\alpha = Z/137$$

Bremsstrahlung

- Lo spettro dell'energia di emissione dE/ d ν è costante, quindi il numero di fotoni emessi diminuisce con l'energia
- L'energia massima è l'energia cinetica della particella (tutta l'energia emessa in un'unica interazione)
- Un fascio di particelle cariche che frena in un materiale emette un fascio di fotoni non monocromatico

$$\frac{dE}{dv} = \cos t = \frac{d(N_f hv)}{dv} \Longrightarrow \frac{dN_f}{dv} \propto \frac{1}{v}$$
$$hv_{\text{max}} = E_k = E - mc^2 = mc^2(\gamma - 1)$$

Energia critica

• L'energia critica scala con il quadrato del rapporto delle masse

$$E_C^{\mu} \approx E_C^{\mu} \left(\frac{m_{\mu}}{m_e}\right)^2$$

- in Fe l'energia critica di un μ è 890 GeV (20.7 MeV per un elettrone)
- Formula approssimativa (per l'elettrone):

$$E_C \approx \frac{700 \, MeV}{Z + 1.2}$$

Energia critica

- Definizione di Rossi dell'energia critica
 - energia in cui la perdita di energia per ionizzazione in una lunghezza di radiazione è uguale all'energia dell'elettrone

$$\left(\frac{dE}{dx}\right)_{ion} X_0 = E_{elettrone}$$

• sono equivalenti in buona approssimazione

Riassunto perdite energia

- muoni positivi su rame
- 9 ordini di grandezza di energia del mu!

lunghezze di radiazione

Materiale	Ζ	Α	$X_0[g/cm^2]$	X ₀ [cm]	E _C [MeV]
Idrogeno	1	1.01	61.3	731000	350
Elio	2	4.00	94	530000	250
Litio	3	6.94	83	156	180
Carbonio	6	12.01	43	18.8	90
Azoto	7	14.01	38	30500	85
Ossigeno	8	16	34	24000	75
Alluminio	13	26.98	24	8.9	40
Silicio	14	28.09	22	9.4	39
Ferro	26	55.85	13.9	1.76	20.7
Rame	29	63.55	12.9	1.43	18.8
Argento	47	109.9	9.3	0.89	11.9
Tungsteno	74	183.9	6.8	0.35	8.0
Piombo	82	207.2	6.4	0.56	7.4
Aria	7.3	14.4	37	30000	84
Acqua	7.5	14.2	36	36	83

Miscele

• Regole di Bragg

$$- dE/dx$$

$$\frac{1}{\rho} \frac{dE}{dX} = \frac{w_1}{\rho_1} \left(\frac{dE}{dx}\right)_1 + \frac{w_2}{\rho_2} \left(\frac{dE}{dx}\right)_2 + \cdots$$

$$- w_1 \text{ sono le frazioni in PESO dei vari elementi$$

$$- \text{ Analogamente per } X_0$$

$$\frac{1}{X_0} = w_1 \left(\frac{1}{X_0}\right)_1 + w_2 \left(\frac{1}{X_0}\right)_2 + \cdots$$

diffusione multipla

- Le collisioni elastiche con i nuclei sono meno probabili rispetto alle collisioni inelastiche con gli elettroni
 - elastiche → non contribuiscono alla perdita di energia
- Contribuiscono però alla deviazione della traiettoria
- Se il materiale non è troppo sottile, si può usare una trattazione statistica degli urti per calcolare le quantità medie (angolo, deviazione dalla retta)

diffusione multipla

• Ingrediente principale: scattering di Rutherford

$$\frac{d\sigma}{d\Omega} = z_1^2 z_2^2 r_e^2 \frac{(m_e c)^2}{(\beta p)^2} \frac{1}{4\sin^4(\theta/2)}$$

- dominano i piccoli angoli
- nuclei in generale molto più pesanti delle particelle (trasferimento di energia piccolo)

diffusione multipla

• Approssimazione gaussiana per piccoli angoli

$$\vartheta_0 = \frac{14.1 MeV/c}{p\beta} z \sqrt{\frac{x}{X_0}} \left(1 + \log_{10}\frac{x}{X_0}\right)$$

• ϑ_0 angolo quadratico medio

- p in MeV/c, β e z della particella incidente
- x spessore attraversato

diffusione multipla

• Approssimazione gaussiana per piccoli angoli

- pione con p=1 GeV/c (β=0.9905) su una foglio di acciaio di 1mm (X₀=1.76 cm)
- $\theta_0 = 2.92 \times 10^{-3} \approx 0.17^{\circ}$

 − NB per grandi spessori p diminuisce → programmi di simulazione

backscattering

- Nello scattering multiplo sono comunque possibili diffusioni a grande angolo
 - per gli elettroni, non è improbabile uno scattering all'indietro
- elettroni di energia limitata (sotto 10 MeV) hanno probabilità di backscattering non trascurabili,
 - in particolare da nuclei pesanti come Pb
- Coefficiente di backscattering o "albedo"
 - rapporto tra numero di elettroni con angolo di scattering >90° e numero di elettroni incidenti
 - fino a 0.5 per elettroni di energia <1MeV su oro
- rilevante per gli sciami elettromagnetici nei calorimetri

altre perdite di energia

- produzione diretta di coppie e⁺e⁻
 - importante per muoni ad alta energia
 - μ + nucleo -> μ + e⁺e⁻ + nucleo

$$-\frac{dE}{dx}\Big|_{pairproduction} = b_{PAIR}(Z,A,E) \cdot E$$

 – il parametro b_{PAIR} varia poco con E per alte energie. Attorno a 100 GeV in Ferro:

$$-\frac{dE}{dx}\Big|_{pair} = 0.3\frac{MeV}{g/cm^2} = 2.34\frac{MeV}{cm}$$

 da confrontare con circa 1GeV/m per ionizzazione. Al crescere di E compete con la bremsstrahlung.

perdite di energia dei muoni

- Dato un assorbitore, per i muoni di alta energia si può scrivere
 - $-dE/dx = a(E) + b_{TOTAL}(E) \times E$
 - domina il termine b_{TOTAL}(E) in cui bremsstrahlung e pair production sono comparabili
- Vedi figura, in Fe

altre perdite di energia

- Interazioni nucleari degli adroni
 - soprattutto processi inelastici
 - interazione forte, adroni secondari prodotti nel processo
 - lunghezza di interazione λ_{I}
 - descrive l'assorbimento esponenziale degli adroni con lo spessore attraversato

$$N = N_0 e^{-\overline{\lambda_I}}$$

- lunghezza di interazione in Fe è circa 17cm
 - per spessori comparabili, non ha più senso parlare di dE/dx perché l'adrone interagisce e crea uno sciame
- Dettagli nel capitolo dei calorimetri adronici

radiazione Cherenkov

- onda d'urto elettromagnetica
 - si genera quando la velocità della particella nel mezzo è maggiore della velocità della luce
 - $\beta c \ge c/n$
 - $\beta \ge 1/n$

Cherenkov

- La particella carica polarizza gli atomi
 - n ≈ √k_e costante dielettrica relativa del mezzo
- se v<c/n la polarizzazione è simmetrica e i dipoli non emettono radiazione
- 2. se v>c/n la polarizzazione è asimmetrica ed i dipoli emettono radiazione

Cherenkov

- Dalla geometria: $-\cos \theta_c = 1/n(\omega)\beta$
 - nota che l'indice di rifrazione dipende dalla frequenza della luce emessa (dispersione)
 - l'angolo dipende dalla frequenza delle luce

– l'angolo cresce con β e n

• vetro, n ≈ 1.5 , $\beta \approx 1$ si ottiene $\Theta_c \approx 48^\circ$

Cherenkov

• numero di fotoni emesso:

$$\frac{d^2 N}{dx d\lambda} = \frac{2\pi z^2 \alpha}{\lambda^2} \left(1 - \frac{1}{n(\lambda)^2 \beta^2} \right)$$

- spettro va come 1/ λ²

 ma a piccole lunghezze d'onda (sopra l'UV) n=1 quindi non c'è emissione Cherenkov
- integrando si può ottenere numero di fotoni emessi nel visibile (400÷700nm) in vetro

$$\frac{dN}{dx} = 2\pi z^2 \alpha \left(\frac{1}{\lambda_{\min}} - \frac{1}{\lambda_{\max}}\right) sen^2 \vartheta_C$$

- 273 fotoni/cm

perdita di energia per radiazione Cherenkov

• Perdita di energia per radiazione Cherenkov

$$-\frac{dE}{dx} = z^2 \frac{4\pi^2 \hbar}{c} \int \left(1 - \frac{1}{\beta^2 n(v)^2}\right) v dv$$

- integrata sulle frequenze per cui $\beta > 1/n(\nu)$
- La perdita di energia è piccola
 - 5% per idrogeno, 1% per Z>5, rispetto alla ionizzazione
 - comunque già contenuta nella Bethe Bloch
- Cherenkov importante perché la radiazione può essere utilizzata per identificare le particelle (PID)
 - effetto soglia, presente se $\beta > 1/n(\nu)$
 - se è noto p = $\beta \gamma$ mc, misurando β si risale alla massa

Radiazione di transizione

vuoto n=1)

dielettrico (n>1)

carica immagine

- dipolo elettrico variabile (si annulla quando la carica entra nel dielettrico)
- emissione di radiazione E.M.
- presente anche sotto la soglia Cherenkov
- trascurabile dal punto di vista di dE/dx

Radiazione di transizione

- Angolo di emissione $\vartheta \approx 1/\gamma$
- Energia media emessa per singola transizione

$$E = z^{2} \frac{\alpha}{3} \hbar \omega_{P} \cdot \gamma$$
$$\omega_{P} = \sqrt{\frac{n_{e}e^{2}}{\varepsilon_{0}m_{e}}}, \quad n_{e} = \rho N_{A} \frac{Z}{A}$$

- energia cresce con γ
- proporzionale alla frequenza di plasma: $h\omega_P$ = 20÷30eV per radiatori tipici
- E=320eV per $\gamma = 4 \times 10^3$ e $\omega_P = 33$ eV
- metà dell'energia è irradiata nel range:

$$0.1 < \frac{\gamma \hbar \omega}{\hbar \omega_P} < 1$$

- quindi con energie negli X soffici per grandi γ
 - se l'energia media è ≈ 300eV, la probabilità di radiare un fotone da 10kEv ≈ 3%
 - conviene usare molte transizioni (stack di qualche centinaio di fogli di radiatore)
- Interessante la dipenenza da γ (e non da β), possibile discriminare particelle ad alto γ

la radiazione di transizione

• frequenza di plasma

- consideriamo un gas di ioni negativi e positivi (plasma)
- se si spostano di una piccola quantità x le due distribuzioni, si ottiene una forza di richiamo elastica, con pulsazione $\omega_{\rm P}$.

$$E = \frac{\sigma}{\varepsilon_0} = \frac{n_e xe}{\varepsilon_0}$$

$$F_e = -eE = -\frac{n_e xe^2}{\varepsilon_0} = m_e \frac{d^2 x}{dt^2}$$

$$\frac{d^2 x}{dt^2} + \frac{n_e xe^2}{m_e \varepsilon_0} = 0$$

$$\omega_P = \sqrt{\frac{n_e e^2}{m_e \varepsilon_0}}$$

$$x$$