

Two-fermion Production at LEP(2)

measurements and interpretations

Paolo Checchia DELPHI Coll. & INFN PADOVA

Summary

Channel description and Physics motivations

Data analysis

Results

Excursus to two-photon production

Interpretations

Conclusions

Channel description and Physics motivations

Channel description and Physics motivations

• Test of Standard Model :

-measured quantities (σ,dσ/dcos(θ),A_{FB},...) compared with SM predictions
 -check of the Zγ interference (S-Matrix fit)

- Search for Physics Beyond the SM
 - virtual effects⇒ well above kinematic limit (sensitivity from interf.)
 - test of specific models
 - largest sensitivity on non radiative events

NB: 'clean' channel with signal much larger than expected backgrounds

			√s (GeV)	Year	~∫∠dt (pb ⁻¹)	
LEP2 data se	et: ~700 pb ⁻¹	per experiment	130	95/97	6	
	•		136	95/97	6	
			161	96	10	
Final state measurements vs experiment 172 96						
	-		183	97	55	
qq	σ	ADLO	189	98	155	
μ+μ - σ +σ -	$\sigma \Lambda d\sigma/d\cos\theta$		192	99	25	
μμ,ιι	$0, A_{FB}, u0/ucoso$	ADLO	196	99	75	
e ⁺ e-	$\sigma A_{\rm rr} d\sigma/d\cos\theta$	ADLO	200	99	85	
	$0, r_{FB}, a0, a0000$		202	99	40	
bb, <mark>cc</mark>	R, A_{ED}	ADLO	205	00	85	
, 		~	207	00	140	
with $A_{FB} = \frac{N_{c}}{N}$	$\frac{1}{\cos\theta > 0} - \mathbf{N}_{\cos\theta < 0} + \mathbf{N}$	$R_{b,c} = \frac{\sigma_{b\overline{b},c\overline{c}}}{\sigma_{b\overline{b},c\overline{c}}}$	LEP2	95-00	~700	
1 N	$\cos\theta > 0$ $\cos\theta < 0$	$\nabla_{q}\overline{q}$				

LEP ElectroWeak Working Group: all measurements combined taking into account systematic effects and correlations

results are still preliminary

selection efficiencies and backgrounds given the clean topology and large signal:

qq eff. ~90%

μ⁺μ ⁻ eff. ~90%

 $\tau^{+}\tau^{-}$ eff. ~50%

eff. ~90%

e⁺**e**⁻

bckg. 10-50% (WW,ZZ rejection)

bckg. 1-3%

bckg ~10%

bckg. <1%

Flavour Tagging

b

lifetime variablemass of secondary vertex

track rapidity

•jet, vertex charge

c (**R**_c:A)

•anti b tag

- •multivariable NN to separate from light quarks
- NN+combined A_{fb} fit (O)

center of mass energy after initial state radiation (\sqrt{s} ')

in order to select high energy peak: $\sqrt{s'} \sim \sqrt{s}$:

- jet/lepton angles
- γ detection
- Z⁰ peak used as a cross check

non radiative:

 $\sqrt{s'} / \sqrt{s} > 0.85 - 0.90$ or (e⁺e⁻) acol<20°

Cross section and Asymmetries

Cross section and Asymmetries

Differential Cross section

Good agreement with the S.M. expectations

Differential Cross section

- + No running ($\alpha = 1/137$): $\chi^2/\text{ndof} = 173/80$ (CL=10⁻⁸)
- + Consistency with the running of α : $\chi^2/\mathrm{ndof} = 81/80$

Heavy quarks

Excursus to two-photon production

S-Matrix fit

LEP I 5 parameter fit to 2-fermion c.s. and asymm. provides a precise M_Z/Γ_Z determination but γ-Z interference as in SM. In S-Mat. formalism boson exchange and interference contributions can vary independently \Rightarrow 9 \rightarrow 16 parameters (5 \rightarrow 8 lept. universality)

$$\sigma^{0}_{\text{tot, f}}(s) = \frac{4}{3}\pi\alpha^{2} \left(\frac{g^{\text{tot}}_{f}}{s} + \frac{j_{f}^{\text{tot}}(s - M_{Z}^{2}) + r_{f}^{\text{tot}}s}{(s - \overline{M}_{Z}^{2})^{2} + \overline{M}_{Z}(\overline{\Gamma}_{Z}^{2})} \right)$$
LEP I: only 3 precise points in had c.s. \Rightarrow large correlation $M_{Z} \leftrightarrow j^{\text{tot}}_{had}$

$$A^{0}_{\text{fb, f}}(s) = \frac{\pi\alpha^{2}}{\sigma^{0}_{\text{tot, f}}(s)} \left(\frac{g^{\text{fb}}_{f}}{s} + \frac{(j_{f}^{\text{fb}}(s - \overline{M}_{Z}^{2}) + r_{f}^{\text{fb}}s}{(s - \overline{M}_{Z}^{2})^{2} + \overline{M}_{Z}(\overline{\Gamma}_{Z}^{2})} \right)$$
LEP I: only 3 precise points in had c.s. \Rightarrow large correlation $M_{Z} \leftrightarrow j^{\text{tot}}_{had}$

$$A^{0}_{\text{fb, f}}(s) = \frac{\pi\alpha^{2}}{\sigma^{0}_{\text{tot, f}}(s)} \left(\frac{g^{\text{fb}}_{f}}{s} + \frac{(j_{f}^{\text{fb}}(s - \overline{M}_{Z}^{2}) + r_{f}^{\text{fb}}s}{(s - \overline{M}_{Z}^{2})^{2} + \overline{M}_{Z}^{2}\overline{\Gamma}_{Z}^{2}} \right)$$
LEP II data constrain the interference contributions

 $f=e,\mu,\tau$ or l

data	M _Z (GeV)	j ^{tot} had	corr.	$\chi^2_{/d.o.f}$	
LEP I only	91.1925 ±0.0059	-0.084 ±0.324	-0.935	<mark>62/48</mark>	
LEPI + LEPII	91.1869* ±0.0023	0.277 ±0.065	-0.461	64/60	

*91.1876±0.0021 9-par. fit

Contact Interactions*

Effective Lagrangian

I

$$\mathcal{L}_{eff} = \frac{g^2}{(1 + \delta)\Lambda^2} \sum_{i,j=L,R} \eta_{ij} (\overline{e}_i \gamma e_i) (\overline{f}_j \gamma^{\mu} f_i)$$

 Λ energy scale of contact interactions g unknown coupling (usually g²=4π) δ =1 for e final state (0 elsewhere) ηij =±1,0 chiral structure of each model

fit $\sigma, A_{FB}, d\sigma/dcos\theta, R_{b,c}$

For photons:

 Λ_{\pm} >392/364 GeV

* parametrization to describe deviations from SM

Leptoquarks

- quark-lepton transition: F=L+3B
- scalar S_I, vectors V_I, hypercharge(~)
- modify σ_{had} , A_{FB} and R $_{b,c}$
- limits on coupling to $n^{th} \ q$ generation as function of M_{LO}

equivalent to R_p violating squarks

Limit on scalar LQ mass (GeV/2) $g=\sqrt{4\pi\alpha}$							
	$S_0(L)$	$\mathbf{S}_{0}(\mathbf{R})$	$\tilde{S}_0(R)$	$S_{\frac{1}{2}}(L)$	$S_{\frac{1}{2}}(R)$	$\tilde{S}_{\frac{1}{2}}(L)$	$S_1(L)$
LQ_{1st}	655	520	202	178	232	-	361
LQ_{2nd}	539	430	285	269	309	-	478
LQ_{3rd}	NA	NA	465	NA	389	107	1050

Limit on vector LQ mass (GeV/c^2)								
	$\mathrm{V}_0(\mathrm{L})$	$\mathrm{V}_0(\mathrm{R})$	$\tilde{\mathrm{V}}_0(R)$	$V_{\frac{1}{2}}(L)$	$\mathrm{V}_{\frac{1}{2}}(\mathrm{R})$	$\tilde{V}_{\frac{1}{2}}(L)$	$V_1(L)$	
LQ_{1st}	917	165	489	303	227	176	659	
LQ_{2nd}	692	183	630	357	256	187	873	
LQ_{3rd}	829	170	NA	451	183	NA	829	

Quantum Gravity extra dimensions

Conclusions

- •Fermion (and photon) pair production studied at LEP in the whole energy range from Z⁰ to \sqrt{s} ~208 GeV
- •Good agreement with Standard Model both from the single experiments and the combined results
- •S matrix fit ~ as precise as SM fit
- •Limits on several models of Physics beyond Standard Model: Contact Interactions, Z ', Leptoquarks, Quantum Gravity

Still preliminary but final results and combinations coming soon

LEP 1

T.K 4

Final A_{FB}^{b} using leptons will follow soon.

Quantum Gravity extra dimensions

Direct Effects $e^+e^- \rightarrow G\gamma$: single photon (see also superlight \widetilde{G})

Produzione centrale e a bassa \mathbf{E}_{γ}

M_D

γ,g

Limits depend on the number of extra dimensions

