Advanced Topics in the Theory of Fundamental Interactions

F. Feruglio

January 2, 2020

1. List all operators (redundant or not) up to dimension 8 we can build out of a real scalar field ξ , and invariant under Z_2 , $\xi \to -\xi$, and under a global continuous shift symmetry:

 $\xi \to \xi + \alpha \qquad \qquad \alpha \in \mathbb{R}$

item[2.] Write the most general Lagrangian including operators up to dimension 8, eliminating the redundant ones.

- **3.** Derive the classical equations of motion for ξ
- 4. Consider the UV Lagrangian of a complex scalar field φ

$$\mathcal{L}_{UV} = \partial_{\mu}\varphi^{\dagger}\partial^{\mu}\varphi - \frac{\lambda}{4}\left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)^{2}$$

with $\lambda > 0, v^2 > 0$, invariant under the global U(1) symmetry

$$\varphi \to e^{i\alpha}\varphi$$

Using the parametrization

$$\varphi(x) = \frac{\sigma(x) + v}{\sqrt{2}} e^{i \frac{\xi(x)}{v}} \quad ,$$

determine the masses of the ξ and σ particles.

5. Find the tree-level IR Lagrangian \mathcal{L}_{IR} , describing the physics at energies much smaller than $\sqrt{\lambda}v$, containing up to dimension 8 operators. [Hint: solve the classical equations of motion for the heavy particle iteratively, by expanding them in $1/(\lambda v^2)$.] 6. Estimate the cross section of the elastic scattering $\xi\xi \to \xi\xi$, at energies much smaller than $\sqrt{\lambda}v$.