Advanced Topics in the Theory of Fundamental Interactions

F. Feruglio

January 6, 2020

1. The non-relativistic Lagrangian

$$\mathcal{L}_{NR} = i\phi^*\partial_t\phi + \phi^*\frac{\partial_k\partial_k}{2m}\phi - c_2\phi^*\phi - c_4(\phi^*\phi)^2$$

is defined in d space-time dimensions. Take as dimensions defining the scaling properties $[\hbar] = 0$ and generic $[t], [l], [t] \neq [l]$. (In terms of scaling this means $t = e^{-[t]\alpha}t'$ and $x = e^{-[l]\alpha}x'$, t' and x' kept fixed). Determine the dimensions of the field φ as well as of momenta p, velocities v, masses m and energies E in terms of [t] and [x].

- 2. Find the dimensions of $c_{2,4}$. Assuming $c_{2,4}$ are powers of a fundamental mass m and the light velocity $c, c_i \propto m^{\alpha_i} c^{\beta_i}$, determine the correct powers α_i and β_i .
- **3.** Classify the operators $(\phi^*\phi)$ and $(\phi^*\phi)^2$ as relevant/marginal/irrelevant, with respect to the scaling $t = e^{-[t]\alpha}t'$ and $x = e^{-[l]\alpha}x'$, assuming [l] = -1 and [t] = -2, that is smaller velocities for larger α .
- 4. From now on set d = 4. Let φ describe neutral atoms. Determine the dimensions of the electric and magnetic fields E_k and B_k , using the Lorentz force F = e(E + v/cB).
- 4. List the most important (that is, less irrelevant) operators describing the interaction between neutral atoms and the electric/magnetic fields, requiring invariance under parity and time reversal.
- 5. Assign the operators of the previous point the correct power counting (in terms a relevant mass scale M and the light velocity c) and estimate the cross section of elastic scattering of light on neutral atoms, as a function of the photon energy E

6. Which meaning has M? At which an ergy the above approximation breaks down?