Advanced Topics in the Theory of Fundamental Interactions

F. Feruglio

January 6, 2020

1. The Euler-Heisenberg Lagrangian describes electromagnetic interactions below the electron mass

$$\mathcal{L}_{EH} = \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + c_1 (F_{\mu\nu} F^{\mu\nu})^2 + c_2 (F_{\mu\rho} F^{\rho\nu}) (F^{\mu\lambda} F_{\lambda\nu})$$

Assign the correct power counting to the coefficients $c_{1,2}$ in terms of the electric charge e and the electron mass m_e .

- 2. Estimate the low-energy cross section of light-by-light scattering
- **3.** List all the symmetries of \mathcal{L}_{EH}
- **4.** Let

$$\mathcal{L}_{SM} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}W^{i}_{\mu\nu}W^{i\mu\nu} + (D_{\mu}\varphi)^{\dagger}D_{\mu}\varphi - V(\varphi^{\dagger}\varphi)$$

the bosonic part of the SM, φ being the Higgs doublet, $D_{\mu}\varphi = (\partial_{\mu} + ig\frac{\sigma^{i}}{2}W_{\mu}^{i} + i\frac{g'}{2}B_{\mu})\varphi$, B_{μ} and W_{μ}^{i} the gauge bosons of U(1) and SU(2). List all the symmetries of \mathcal{L}_{SM} .

- 5. Set g = 0 (that is ignore the SU(2) part) and consider the unrealistic case $m_h \gg m_Z$. Ignoring fermions, at energies below the Higgs mass the theory is described by an IR Lagrangian \mathcal{L}_{IR} depending on the gauge vector boson fields $Z_{\mu} = B_{\mu}$. List all the symmetries of \mathcal{L}_{IR} .
- 6. List all relevant and marginal operators of \mathcal{L}_{IR} and determine their power counting in terms of v^2 , m_Z^2 and m_h^2 .
- 7. Determine \mathcal{L}_{IR} at the TL, up to terms containing four gauge vector bosons B_{μ} .