Advanced Topics in the Theory of Fundamental Interactions

F. Feruglio

January 14, 2020

1. An $O(4)$ invariant theory describes the interactions of 4 real scalar fields $h, \pi^{a}(a=1,2,3)$:

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2} \partial_{\mu} h \partial^{\mu} h+\frac{1}{2} \partial_{\mu} \pi^{a} \partial^{\mu} \pi^{a}-V(h, \pi) \\
V(h, \pi)=-\frac{\mu^{2}}{2}\left(h^{2}+\vec{\pi}^{2}\right)+\frac{\lambda}{4}\left(h^{2}+\vec{\pi}^{2}\right)^{2} \quad \lambda, \mu^{2}>0
\end{gathered}
$$

The scalar potential V has a minimum at $h=v=\sqrt{\mu^{2} / \lambda}$ and $\vec{\pi}=0$. Define $\sigma=h-v$ and derive the mass spectrum of the theory
2. By neglecting terms higher than quadratic in the field σ, derive the low-energy effective theory of the fields $\vec{\pi}$, at the three level and for $m_{\sigma} \gg E \gg m_{\vec{\pi}}$. In the relevant expansion keep terms containing up to $4 \pi^{a}$ and up to 2 derivatives, included (that is $\left(\vec{\pi}^{2}\right)^{2}$ and $\left.\vec{\pi}^{2} \square \vec{\pi}^{2}\right)$.
3. The low-energy Lagrangian can be used to evaluate, at the TL, the amplitude for the $\pi \pi$ scattering. Such an amplitude has the general form:
$\mathcal{A}\left(\pi^{a} \pi^{b} \rightarrow \pi^{c} \pi^{d}\right)=A(s, t, u) \delta_{a b} \delta_{c d}+B(s, t, u) \delta_{a c} \delta_{b d}+C(s, t, u) \delta_{a d} \delta_{b c}$
where $s=\left(k_{a}+k_{b}\right)^{2}, t=\left(k_{a}-k_{c}\right)^{2}, u=\left(k_{a}-k_{d}\right)^{2}$. Making use of the invariance under the two crossing the symmetries

$$
\begin{cases}a \leftrightarrow c & k_{a} \leftrightarrow-k_{c} \\ a \leftrightarrow d & k_{a} \leftrightarrow-k_{d}\end{cases}
$$

show that the amplitude depends on a single function of the Mandelstam variables s, t and u, for instance $A(s, t, u)$, enjoying a discrete symmetry.
4. Expand $A(s, t, u)$ in powers of s, t and u, keeping only terms up to the first order:

$$
A(s, t, u)=A_{0}+A_{1}^{s} s+A_{1}^{t} t+A_{1}^{u} u+\ldots
$$

Using the previous results, including points 1. and 2., show that $A(s, t, u)$ depends on a single combination of the four constants A_{0}, $A_{1}^{s, t, u}$.
Determine the parametric dependence of such a constant on λ and v.
Determine the parametric dependence of the cross-section $\sigma\left(\pi^{a} \pi^{b} \rightarrow\right.$ $\pi^{c} \pi^{d}$) on λ, v and the c.o.m. energy E.
5. The initial Lagrangian is deformed into

$$
\begin{gathered}
V(h, \pi)=-\frac{\mu^{2}}{2}\left(h^{2}+\vec{\pi}^{2}\right)+\frac{\lambda}{4}\left(h^{4}+\left(\pi^{1}\right)^{4}+\left(\pi^{2}\right)^{4}+\left(\pi^{3}\right)^{4}\right) \\
+\frac{2 \rho}{4}\left(h^{2} \vec{\pi}^{2}+\left(\pi^{1}\right)^{2}\left(\pi^{2}\right)^{2}+\left(\pi^{1}\right)^{2}\left(\pi^{3}\right)^{2}+\left(\pi^{2}\right)^{2}\left(\pi^{3}\right)^{2}\right) \\
\lambda, \rho, \mu^{2}>0
\end{gathered}
$$

such that $\rho=\lambda$ gives back the original theory. The one-loop beta functions for the quartic interaction of a scalar theory

$$
-\frac{\lambda_{a b c d}}{24} \varphi_{a} \varphi_{b} \varphi_{c} \varphi_{d}
$$

are

$$
16 \pi^{2} \beta_{a b c d}=\frac{1}{8} \sum_{e, f}\left(\lambda_{a b e f} \lambda_{e f c d}+\lambda_{a c e f} \lambda_{e f b d}+\lambda_{a d e f} \lambda_{e f b c}\right)
$$

Identify $\lambda_{a a a a}$ and $\lambda_{\text {aabb }}(a \neq b)$ in terms of λ and ρ and derive the one-loop RGE for λ and ρ.
6. What is the symmetry of the new theory?

Derive the 1-loop RGE for the ratio $r=\rho / \lambda$ and discuss the asymptotic IR behavior for UV initial conditions $r_{U V}>1$ and $r_{U V}<1$.

