Advanced Topics in the Theory of Fundamental Interactions

F. Feruglio

January 17, 2020

1. The Lagrangian

$$
\int d t d^{3} x\left[\frac{1}{2}\left(\partial_{t} \varphi\right)^{2}-\frac{1}{2} \varphi\left(\partial_{k} \partial_{k}\right)^{2} \varphi+c_{1} \varphi \partial_{k} \partial_{k} \varphi+c_{2} \varphi^{2}\right]
$$

describes an anisotropic four-dimensional theory where space and time scale differently:

$$
\vec{x}=e^{\alpha} \vec{x}^{\prime}, \quad t=e^{z \alpha} t^{\prime}
$$

Keeping \hbar dimensionless, we can use momenta p as basic unit. In these units, from the previous relations we have

$$
[p]=+1, \quad[\vec{x}]=-1, \quad[t]=-z
$$

Determine the p-dimension of φ.
2. Find z such that the operator $\varphi\left(\partial_{k} \partial_{k}\right)^{2} \varphi$ is marginal.
3. With the previously determined value of z, determine the p-dimension of the coefficients c_{1} and c_{2}.
Classify the corresponding operators as relevant/marginal/irrelevant.
4. With the value of z found in 2., determine the highest power n such that the operator φ^{n} is marginal.
5. The generators of space and time translations are

$$
P_{i}=\partial_{i}, \quad P_{0}=\partial_{t}
$$

while the scaling transformations are generated by

$$
D=-z t \partial_{t}-x^{i} \partial_{i}
$$

Derive the algebra (commutation relations) among P_{i}, P_{0} and D.

