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Chapter 1

Introduction

Quantum Field Theory (QFT) is the fundamental tool that is currently used for the

description of physics at very short distances and high energies. Since high energy implies

relativistic motion, QFT has to nicely combine special relativity with quantum mechanics.

The description in terms of “fields”, indeed, arise to have a manifestly relativistic invariant

description, where time and space are treated (almost) on equal footing. One might think

that including special relativity in quantum mechanics should be possible without drastic

consequences. This is not true, and its reason is intuitively clear. At very short time scales,

the energy-time uncertainty principle tells us that particles with energy E ≥ mc2 could

be created from the vacuum for a time t ∼ !/E (virtual particles), before disappearing

again in the vacuum. This effect is totally negligible in studying physical systems at low

energies and long time scales, but it becomes relevant for physical processes whose time

scale is t ∼ !/E or less. A quantum description in terms of single-particle wave function

is then inadequate and a more powerful description is needed. This formulation is in

fact Quantum Field Theory. It leads to striking consequences, such as the prediction of

anti-particles and an understanding of the spin-statistic relation between particles. The

experimental successes of QFT are impressive, in particular when applied to the description

of electrodynamics, giving rise to the Quantum Electro Dynamics (QED).

Most of the considerations in these lectures are devoted to the study of fields which

are weakly interacting, namely in which the interactions can be studied in a perturbative

fashion, starting from the description of free fields.

These notes do assume that the reader has a basic knowledge of QFT. Quantizations of

spin 0, spin 1/2 and abelian spin 1 fields are assumed, as well as basic notions of the path

integral formulation of QFT (including Berezin integration for fermions), Feynman rules,

basic knowledge of renormalization and the notion of functional generators of disconnected,
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connected and one-particle irreducible (1PI) Green functions.

In writing these notes we have often consulted refs. [1] and especially [2]. Some parts

of these notes follow in part either ref. [1] or ref. [2]. When this is the case, we warn the

reader with a footnote. Notice that in these notes the metric convention is mostly minus,

like in ref. [1], in contrast to ref.[2], where it is mostly plus. This implies a multitude of

sign changes with respect to ref. [2]. Moreover, we warn the reader that we do not always

follow the same notation as refs. [1, 2], in order to have a common and light notation

throughout the notes.

These notes cover most of the QFT course given at SISSA by M.S., in collaboration

with Roberto Iengo until the academic year 2010-2011, in collaboration with Andrea Gam-

bassi until 2014-2015, and in collaboration with Joan Elias-Miró in the years 2016-2017

and 2017-2018. The tutorials and exercises, essential parts of the QFT course, are not

reported in these notes. This implies that some technical topics closely associated with the

exercises, such as details of the renormalization of QED, Yukawa and other theories, are

not currently included in these lecture notes. The notes are far from being comprehensive.

Due to lack of time, several important topics are not covered at all, or just mentioned.

Infra-red divergences, the deep inelastic scattering and the operator product expansion,

connection to critical phenomena and statistical field theory are examples of important

topics currently missing. Phenomenological applications are limited to a minimum, since

they are more systematically considered in the Standard Model course.

The topics marked with a ∗ in the text are optional for students in the Astroparticle

curriculum. The topics marked with ∗∗ are optional for all the students.

These notes are preliminary and surely contain many typos, imprecisions, etc.

We hope that the students will help us in improving the notes and in spotting the

many mistakes in there.

Acknowledgments

I thank Roberto Iengo and Andrea Gambassi for their contribution in the elaboration of

part of these lecture notes. I thank Roberto Iengo, Andrea Gambassi and Joan Elias-

Miró for their precious collaboration over the years in giving this course. I thank Matteo

Bertolini, Marcello D. Caio, Lorenzo Di Pietro, Matthijs Hogervorst, Marco Letizia, Hi-

manshu Raj, Andrea Romanino, Giacomo Sberverglieri for useful comments and help in

debugging these notes. I am particularly grateful to Marco Gorghetto for having found so

many typos!

6



Chapter 2

General Properties of QFT

Quantum field theory aims at describing the processes which occur as a result of the

interaction between elementary particles, mediated by a certain number of force carriers.

The very same requirement of Lorentz covariance (i.e., compatibility with the theory of

special relativity) is a fundamental ingredient of the theory and actually motivated the

introduction of concepts such as antiparticles which were later on detected experimentally.

Most of our knowledge of the interaction between elementary particles comes from the

prototypical scattering experiment in which incoming particles are well-separated in space

before getting close to each other in such a way to interact and scatter. After scattering

has occurred, the particles resulting from the process typically separate again in space in

such a way that their interaction is negligible and their properties as isolated particles,

e.g., mass, can be determined via suitable detectors. In this chapter we discuss QFT

keeping in mind the framework of scattering experiments in order to define the concept

of asymptotic states and assign a specific meaning to the mass of particles from their

dynamical properties (e.g., the propagator). Then we discuss some important properties

of QFT which derive from the existence of a unitary mapping (the S-matrix) between the

incoming and outgoing particle states, such as the optical theorem, and we discuss how

scattering amplitude and decay rates can be inferred from the correlation function of the

fields naturally described by QFT.

2.1 The Källén-Lehmann Spectral Representation

2.1.1 Asymptotic Theory: a Brief Reminder

In a nutshell, quantum field theory can be thought of as based on the following elements:

(a) the possible (quantum) states of the theory are generated from a (unique) vacuum
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state |0⟩ by the action of free fields φin(x), which generates the Fock space of states (and

which we assume to be a real scalar); (b) physical observables — such as the interacting

field φ(x) can be all expressed in terms of φin(x). The basic idea behind this setting is that

φ(x) as well as all the other observables can be actually obtained from the free fields φin(x)

by switching adiabatically on and off the interaction as |x0| → ∞. This construction is

clearly relevant to scattering processes which originate from particles (wavepackets) well-

separated in space. Starting from φ(x0, x⃗) one should recover φin(x0, x⃗) as x0 → −∞, but

this generally occurs up to the wave-function renormalization constant Z1/2
in :

φ(x0 → −∞, x⃗)→ Z1/2
in φin(x0, x⃗). (2.1.1)

Analogously, φ(x0 → +∞, x⃗) → Z1/2
outφout(x0, x⃗), where φout is a free field. The fields

φin/out satisfy the free Klein-Gordon equation

(✷+m2)φin/out(x) = 0 , (2.1.2)

while the interacting field does not, (✷ + m2)φ(x) ≠ 0. In and out free fields can be

expressed in terms of the corresponding creation and annihilation operators as

φin/out(x) =

∫
d3p⃗√

(2π)32ωp⃗

(
a(p⃗)in/oute

−ipx + a†(p⃗)in/oute
ipx
)
, (2.1.3)

where px = ωp⃗x0 − p⃗ · x⃗, p0 = ωp⃗ =
√

p⃗2 +m2. The canonical quantization condition

[
φ̇in/out(x⃗, t),φin/out(y⃗, t)

]
= iδ(3)(x⃗− y⃗) , (2.1.4)

where the dot stands for a time derivative, implies the commutation relations

[a(p⃗)in/out, a
†(q⃗)in/out] = δ3(p⃗− q⃗) . (2.1.5)

Inverting eq.(2.1.3), we can express the annihilation and creation operators in terms of φ

and φ̇:

a(p⃗)in/out = i

∫
d3x⃗

eipx√
(2π)32ωp⃗︸ ︷︷ ︸
hp⃗(x)

↔
∂0 φin(out)(x) , (2.1.6)

where
↔
∂0≡

→
∂0 −

←
∂0. The hermitian conjugate of the right-hand side of eq.(2.1.6) clearly

gives a†(p⃗)in/out. Notice that the time-dependence of this expression is only apparent. In

general, for any function h(x) satisfying the free Klein-Gordon equation (✷+m2)h(x) = 0,

∫
d3x⃗ h(x)

↔
∂0 φin(out)(x) (2.1.7)
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is time-independent. This is easily shown by taking a time derivative of this expression,

the use of the Klein-Gordon equation and an integration by parts. The same result applies

if we substitute φin(out)(x) by some other solution of the free Klein-Gordon equation.

The incoming multiparticle states are generated from the corresponding vacuum state

|0⟩in by the action of the creation operators a†(p⃗)in of the free theory, e.g., |p⃗⟩in =

a†(p⃗)in|0⟩in for the single-particle state with three-momentum p⃗.1 Analogous construc-

tion can be done for the outgoing states, starting from the corresponding vacuum |0⟩out:
|p⃗⟩out = a†(p⃗)out|0⟩out. Given that both the incoming and outgoing particle states are

nothing but different representations of the free theories, there should be an unitary iso-

morphism between them, the so-called S-matrix: S|i⟩out = |i⟩in. We will discuss the

consequences of the general properties of the S-matrix in secs. 2.3 and 2.4. Accordingly,

the transition amplitude from an initial state i (|i⟩in) to a final state f (|f⟩out) can be

expressed only in terms of incoming states as

out⟨f |i⟩in = in⟨f |S|i⟩in. (2.1.8)

The stability of the vacuum requires that |0⟩in = |0⟩out ≡ |0⟩ while the kinematic stability

of the massive one-particle state implies, in addition, |p⃗⟩in = |p⃗⟩out ≡ |p⃗⟩. The isomorphism

induced by S implies that, at the level of field operators, φin(x) = Sφout(x)S−1. The S-

matrix can be used in order to express all the states in terms of the incoming ones, which

we always refer to in what follows, unless specified differently.

Despite the interacting field does not satisfy the free Klein-Gordon equation, the am-

plitude ⟨0|φ(x)|p⃗⟩ does. Indeed, invariance under translations implies

φ(x) = eip̂xφ(0)e−ip̂x, (2.1.9)

where p̂ is the four-momentum operator, and thus

⟨0|φ(x)|p⃗⟩ = ⟨0|φ(0)|p⃗⟩e−ipx . (2.1.10)

It then follows that

(✷+m2)⟨0|φ(x)|p⃗⟩ = 0 , (2.1.11)

even if (✷+m2)φ(x) ≠ 0. By using eq.(2.1.7) we notice that

∫
d3x⃗ hp⃗(x)

↔
∂0 ⟨0|φ(x)|p⃗⟩ (2.1.12)

1Note that the normalizations of the creation/annihilation operators and of the single- and multi-particle

states introduced here differ from the corresponding ones of ref. [1].
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is time-independent. Equation (2.1.3) fixes the analogue amplitude for in and out fields

to be

⟨0|φin(x)|p⃗⟩ =
e−ipx√
(2π)32ωp⃗

. (2.1.13)

Taking the limit x0 → ±∞ of eq.(2.1.12) and using eq.(2.1.13) we get

Zin = Zout ≡ Z , (2.1.14)

and hence

⟨0|φ(x)|p⃗⟩ = Z1/2 e−ipx√
(2π)32ωp⃗

. (2.1.15)

Note that φin(x)|0⟩ generates only the one-particle state, whereas φ(x)|0⟩ generates,

in addition, multiparticle states because of the interaction. As a result, one expects

|⟨p⃗|φ(x)|0⟩|2 ≤ |⟨p⃗|φin(x)|0⟩|2 and therefore |Z| ≤ 1 and, in particular, |Z| can be inter-

preted as the probability of generating the one-particle state when applying the interacting

field φ(x) to the vacuum state |0⟩. We will determine Z in sec. 2.1.2.

The limit in eq. (2.1.1) has to be understood in a weak sense because at best it

can hold at the level of matrix elements between fields well separated in space (in the

form of suitable wavepackets), while it cannot hold for operators. Indeed, both the in-

teracting and free fields φ have to satisfy the equal-time canonical commutation relations

[φ̇(x0, x⃗),φ(x0, x⃗′)] = −iδ3(x⃗− x⃗′) which would imply Z = 1 by taking the limit x0 → −∞.

2.1.2 Spectral Representation

Important properties of an interacting quantum field theory emerge from the so-called

spectral representation of vacuum expectation values of suitable quantities. Here we con-

sider both the commutator ⟨0|[φ(x),φ(x′)]|0⟩ and the time-ordered product ⟨0|Tφ(x)φ(x′)|0⟩
of the fields, i.e., the propagator of the theory, where the time-ordering is defined by

Tφ(x)φ(x′) = θ(x0 − x′0)φ(x)φ(x
′) + θ(x′0 − x0)φ(x′)φ(x), being θ(x0 > 0) = 1 and 0

otherwise (note that in case of Fermionic fields, the exchange of their order introduces an

additional − sign). Both these quantities can be expressed in terms of

⟨0|φ(x)φ(x′)|0⟩ =
∑

n

⟨0|φ(x)|n⟩⟨n|φ(x′)|0⟩ =
∑

n

e−ipn(x−x
′)|⟨0|φ(0)|n⟩|2,

=

∫
d4q e−iq(x−x

′)
∑

n

|⟨0|φ(0)|n⟩|2δ4(q − pn)

=

∫
d4q

(2π)3
e−iq(x−x

′)ρ(q)

(2.1.16)

where in the first line we introduced the completeness relation I =
∑

n |n⟩⟨n| in terms of

the multi-particle states |n⟩ with definite (total) momentum pn (such that p̂|n⟩ = pn|n⟩)
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and we used eq. (2.1.9);
∑

n stands both for the sum over the particles number and by the

integral on the corresponding phase space. In the second line we introduced the identity

1 =
∫
d4q δ4(q − pn) and, in the last, the so-called spectral density

ρ(q) ≡ (2π)3
∑

n

|⟨0|φ(0)|n⟩|2δ4(q − pn), (2.1.17)

which is a Lorentz-invariant, positive scalar and therefore is actually a function of q2. In ad-

dition, pn =
∑n

i=1 pn,i where pn,i is the momentum of the i-th particle within the n-particle

state |n⟩ and therefore (pn,i)0 > 0 with p2n,i > 0; this implies that (pn)0 > 0 and p2n > 0

and, in turn, that ρ(q) vanishes in the backward light cone: ρ(q) -→ ρ(q2)θ(q0) with ρ(q2 <

0) = 0. In eq. (2.1.17), it is convenient to isolate the contribution of the one-particle state

n = 1, which can be readily calculated by taking into account the normalization (2.1.15):
∑

n=1 |⟨0|φ(0)|n⟩|2δ4(q−pn) =
∫
d3p⃗ |⟨0|φ(0)|p⃗⟩|2δ4(q−p) = Zθ(q0)δ(q2−m2)/(2π)3. The

resulting expression for ρ is

ρ(q2)θ(q0) = Zδ(q2 −m2)θ(q0) + (2π)3
∑

n>1

|⟨0|φ(0)|n⟩|2δ4(q − pn), (2.1.18)

which reveals its generic structure: it consists of an isolated δ corresponding to the mass

of the asymptotic field (including the self-interaction) and of a continuum starting from

the threshold m2
th for the production of multi-particle states. In addition, there might be

some bound states in the gap, as depicted in fig. 2.1(a).

In terms of the spectral density, ⟨0|[φ(x),φ(0)]|0⟩ can be written as

⟨0|[φ(x),φ(0)]|0⟩ =
∫

d4q

(2π)3
ρ(q2)θ(q0)

[
e−iqx − eiqx

]

=

∫ ∞

0
dσ ρ(σ)

∫
d4q

(2π)3
δ(q2 − σ)θ(q0)

[
e−iqx − eiqx

]

︸ ︷︷ ︸
i∆0

c(x;σ)

,
(2.1.19)

where we introduced the identity in the form 1 =
∫∞
0 dσ δ(q2−σ). In the previous equation

one recognizes the expression of ⟨0|[φ0(x),φ0(0)]|0⟩ ≡ i∆0
c(x;m

2) for a free scalar field

φ0(x) of mass m. The analogous expression for ⟨0|Tφ(x)φ(0)|0⟩ is

⟨0|Tφ(x)φ(0)|0⟩ =
∫

d4q

(2π)3
ρ(q2)θ(q0)

[
θ(x0)e

−iqx + θ(−x0)eiqx
]
,

=

∫ ∞

0
dσ ρ(σ)

∫
d4q

(2π)3
δ(q2 − σ)θ(q0)

[
θ(x0)e

−iqx + θ(−x0)eiqx
]

︸ ︷︷ ︸
i∆0

F (x;σ)

,

(2.1.20)
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Figure 2.1: Sketches (a) of the spectral density ρ(q2) as a function of q2, which highlights

the presence of a δ corresponding to the physical mass, of possible additional peaks related

to bound states (dashed) and of a continuum associated to multi-particle states. (b)

Analytic structure of the propagator G(2)(q) of a scalar field, as a function of q2 ∈ C which

highlights the presence of an isolated pole corresponding to the physical mass, possible

additional poles due to bound states and a branch cut related to multi-particle states.

and involves, instead, the Feynman propagator i∆0
F (x;m

2) ≡ ⟨0|Tφ0(x)φ0(0)|0⟩ of the
same field. Taking into account eq. (2.1.18) one finds

⟨0|[φ(x),φ(0)]|0⟩ = Zi∆0
c(x;m

2) +

∫ ∞

m2
th

dσ ρ(σ) i∆0
c(x;σ), (2.1.21)

⟨0|Tφ(x)φ(0)|0⟩ = Zi∆0
F (x;m

2) +

∫ ∞

m2
th

dσ ρ(σ) i∆0
F (x;σ) , (2.1.22)

which provide the Källén-Lehmann spectral representation of the commutator and the

propagator, respectively. Occasionally, it might be useful to introduce renormalized fields

φR(x) ≡ Z−1/2φ(x) and the renormalized spectral density ρR via ρ = ZρR. The conse-

quences of these relations can be easily worked out: for example, by taking the derivative

∂0 = ∂/∂x0 of the l.h.s. of eq. (2.1.21) and by eventually setting x0 = 0 one recovers

the canonical commutation relation for the field φ; the same relation for the free field φ0

implies that ∂0i∆0
c(x;m

2)|x0=0 = −iδ3(x⃗), which appears on the r.h.s. of eq. (2.1.21) and

implies

1 = Z

[

1 +

∫ ∞

m2
th

dσ ρR(σ)

]

. (2.1.23)

This expression shows that Z ≤ 1 (ρR ≥ 0) and allows one to calculate Z from the

spectral density. Consider now the Fourier transform of the renormalized propagator
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G(2)
R (x) = ⟨0|TφR(x)φR(0)|0⟩ = G(2)(x)/Z. Recalling that for the free theory

∆0
F (x,m

2) =

∫
d4q

(2π)4
e−iqx

q2 −m2 + iϵ
, (2.1.24)

one finds

G(2)
R (q2) =

i

q2 −m2 + iϵ
+

∫ ∞

m2
th

dσ ρR(σ)
i

q2 − σ + iϵ
, (2.1.25)

As a function of q2 ∈ C, G(2)
R (q2) is characterized by an isolated pole for q2 = m2, with

residue i and by a branch cut on the positive real axis starting from q2 = m2
th and controlled

by the spectral density, with possible additional poles due to bound states, as depicted in

fig. 2.1(b). Note in particular that G(2)
R (z) is analytic in the complex plane away from the

real axis. The iϵ prescription in the propagator tells us that the physical sheet lies above

the branch-cut. In sec. 2.4 we provide a physical interpretation of the discontinuity which

arises in G(2)
R (q) upon crossing the branch cut. Another relevant relation between the

propagator of the theory and the spectral density can be found from eq. (2.1.25), taking

into account that
1

x+ iϵ
= P

1

x
− iπδ(x) for ϵ→ 0+ (2.1.26)

(in the sense of distributions, being P the principal part) and therefore

Im iG(2)
R (q2) = πρR(q

2). (2.1.27)

2.1.3 Spectral Representation for Fermions∗∗

Here we briefly outline how to construct the spectral representation for Fermions. The

asymptotic theory discussed in sec. 2.1.1 carries over to this case, with the following

normalizations [to be compared with eq. (2.1.15)]:

⟨0|ψ(x)|p⃗, s⟩ = Z1/2
2 us(p⃗)

e−ipx√
(2π)32ωp⃗

, ⟨0|ψ̄(x)|p⃗, s, c⟩ = Z1/2
2 v̄s(p⃗)

e−ipx√
(2π)32ωp⃗

, (2.1.28)

with p = (ωp⃗, p⃗), ωp⃗ =
√

p⃗2 +m2, and where the single-particle state carries also an

additional spin index s and c indicates the charge conjugate. In view of the canonical

(anti)comutation relations, in this case one focuses on ⟨0|{ψα(x), ψ̄β(0)}|0⟩ (where α and

β are spinor indices) and on ⟨0|Tψα(x)ψ̄b(0)|0⟩ (remember that T carries a − sign). As in

the case of the scalar field one derives for ⟨0|ψα(x)ψ̄β(x′)|0⟩ the analogous expression of

eq. (2.1.16) with a spectral density

ραβ(q) ≡ (2π)3
∑

n

⟨0|ψα(0)|n⟩⟨n|ψ̄β(0)|0⟩δ4(q − pn), (2.1.29)
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which is a 4 matrix in the spinor space. Accordingly, it can be expanded in the natural

basis provided by (a) the identity I (scalar component), (b) the 4 gamma matrices γµ

(vector), (c) the 6 matrices σµν = i[γµ, γν ]/2 (tensor), (d) the matrix γ5 associated to

parity (pseudoscalar) and (e) the 4 matrices γ5γµ (pseudovector):

ρ(q) = ρS(q)I + ρµV (q)γµ + ρµνT (q)σµν + ρPS(q)γ5 + ρµPV (q)γ5γµ. (2.1.30)

Note that, while the spectral density of the scalar field was a Lorentz scalar, in the present

case one can verify that ρ transforms under a boost Λ as ρ(Λq) = S(Λ)ρ(q)S−1(Λ), where

S(Λ) = e−iσµνω
µν/4, being ωµν the parameters of the boost. The last requirement of

covariance implies that the coefficients of the expansion in eq. (2.1.30) are, respectively,

scalar, vectors, tensors, pseudoscalar, and pseudovectors under Lorentz transformations

and being only functions of a single vector qµ can be written as

ρS,PS(q) = fS,PS(q
2), ρµV,PV (q) = qµfV,PV (q

2), ρµνT (q) = qµqνfT (q
2), (2.1.31)

and therefore

ρ(q) = fS(q
2) I + fV (q

2) /q + fPS(q
2) γ5 + fPV (q

2) γ5 /q. (2.1.32)

As in the case of the scalar, one readily conclude on the basis of kinematics that the

support of the various coefficients is in the forward light-cone and therefore, generically

fi(q2 < 0) = 0 and fi(q2) → fi(q2)θ(q0). Depending on possible additional symmetries

of the theory, one can further constrain the coefficients of the expansion in eq. (2.1.32).

For example, if parity is a symmetry of the theory (as we assume below), then one can

formally prove fPS = fPV ≡ 0 and therefore

⟨0|ψα(x)ψ̄β(0)|0⟩ =
∫

d4q

(2π)3
[fV (q

2)i/∂ + fS(q
2)]αβ e

−iq(x−x′). (2.1.33)

In order to proceed to the spectral representation of the propagator and anticommutator,

it is necessary to represent also ⟨0|ψ̄β(x′)ψα(x)|0⟩ because, due to the Lorentz structure,

this is not trivially related to ⟨0|ψα(x)ψ̄β(x′)|0⟩ by a coordinate exchange, as it was the case

for the scalar field. However, these two quantities can be related by using the fundamental

symmetry CPT: involving a charge conjugation it changes ψ into ψ†, which is what one

needs in order to connect the two expressions. This symmetry is implemented in terms of

an antiunitary operator θ, such that: θψα(x)θ−1 = i(γ5)αβψ
†
β(−x). Using the invariance

of the vacuum under θ, one can conclude (after a bit of algebra to be done carefully) that

⟨0|ψ̄β(x′)ψα(x)|0⟩ = −(γ5⟨0|ψ(−x)ψ̄(−x′)|0⟩γ5)αe
¯
ta and therefore it has the same spectral
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representation as the one in eq. (2.1.33) but with an overall minus sign. As a result

⟨0|{ψα(x), ψ̄β(0)}|0⟩ =
∫

d4q

(2π)3
[
fV (q

2)i/∂ + fS(q
2)
]
αβ (e

−iqx − eiqx), (2.1.34)

⟨0|Tψα(x)ψ̄β(0)|0⟩ =
∫

d4q

(2π)3
[
fV (q

2)i/∂ + fS(q
2)
]
αβ

[
θ(x0)e

−iqx − θ(−x0)eiqx
]
,(2.1.35)

to be compared with eqs. (2.1.19) and (2.1.20) and the rest of the discussion proceeds as

in the case of the scalar field, taking into account that, for free fields,

⟨0|{ψ0,α(x), ψ̄0,β(0)}|0⟩ = (i/∂ +m)αβi∆
0
c(x;m

2) ≡ iS0
αβ(x,m), (2.1.36)

whereas the propagator is given by

⟨0|ψ0,α(x)ψ̄0,β(0)|0⟩ = (i/∂ +m)αβi∆
0
F (x;m

2), (2.1.37)

where i∆0
c and i∆0

F are the same as for the scalar. For example, by introducing the

additional constraint as in eq. (2.1.19) (with, for convenience σ -→ µ2), one finds

⟨0|{ψα(x), ψ̄β(0)}|0⟩ =
∫ ∞

0
dµ2

[
fV (µ

2)i/∂ + fS(µ
2)
]
αβ

i∆0
c(x;µ

2) (2.1.38)

=

∫ ∞

0
dµ2

{
fV (µ

2)iS0
αβ(x;µ) +

[
fS(µ

2)− µfV (µ
2)
]
δαβi∆

0
c(x;µ

2)
}
;

the canonical anticommutation relation {ψα(x), ψ̄β(x′)}|x0=x′
0
= γ0αβδ

3(x⃗− x⃗′) (which ap-

plies both to the free and interacting field) implies
∫ ∞

0
dµ2 fV (µ

2) = 1. (2.1.39)

As in the case of the scalar field, one can isolate from the spectral density ρ the contri-

bution of the one-particle state and introduce the renormalized density (and therefore the

renormalized fV,S), with the result that

1 = Z2

[

1 +

∫ ∞

m2
th

dµ2fV,R(µ
2)

]

. (2.1.40)

In order to conclude that 0 < Z2 < 1 — as we expect from an interpretation of Z2

analogous to the one given for scalar fields — one need to prove that: (a) fV,S are real,

(b) fV ≥ 0, and (c) µfV (µ2) − fS(µ2) ≥ 0. These conclusions can actually be drawn

with a bit of algebra, by using the fact that ρ∗αβ = [γ0ργ0]βα implies (a), Tr [γ0ρ] ≥ 0

implies (b) and that, after having formed the modulus square of (i/∂−µ)ψ, one infers that

Tr [γ0(/q − µ)ρ(q)(/q − µ)] ≥ 0 implies (c).

By repeating the analysis for the propagator of the field, one can conclude that

G(2)(q) = Z2i
/q +m

q2 −m2 + iϵ
+

∫ ∞

m2
th

dµ2 iZ2
fV,R(µ2)/q + fS,R(µ2)

q2 − µ2 + iϵ
(2.1.41)

to be compared with eq. (2.1.25).
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2.2 The Cluster Decomposition Principle and the Connected S-Matrix

In the previous section we briefly mentioned that the the transition amplitudes from an

initial state |i⟩ to a final state |f⟩ can be calculated as a matrix element of the S-matrix, as

in eq. (2.1.8).2 Let us denote by Sm→n a generic S-matrix element for the transition from

an m-particle incoming state to an n-particle outgoing state. A fundamental principle in

physics states that two spatially separated events should have no correlation among each

other.3 In the context of S-matrix, this principle is called cluster decomposition. If the

initial and final m and n particles are grouped in sets {m1, . . . mN}, {n1, . . . , nN} and the

process m → n consists of a set of N different sub-processes mi → ni (i = 1, . . . , N),

occurring all far away from each other, then we should demand that

Sm→n =
N∏

i=1

Smi→ni . (2.2.1)

We can rephrase eq.(2.2.1) in another way by defining the connected part of the S-matrix,

SC . In perturbation theory, SC is defined in terms of connected Feynman diagrams,

namely SC
m→n is given, order by order in perturbation theory, by the diagrams where all

m and n particles are connected with each other. A non-perturbative definition for SC
m→m

can be given iteratively starting from the 1→ 1 process for which

Sp→p′ = SC
p→p′ = δ(p − p′) , (2.2.2)

where δ(p−p′) ≡ δ(p⃗− p⃗′)δs,s′δn,n′ includes Kronecker or Dirac delta’s in momentum, spin

and particle species. The 2→ 2 connected matrix element SC
p1,p2→p′1,p

′
2
is given as

Sp1,p2→p′1,p
′
2
= SC

p1,p2→p′1,p
′
2
+ SC

p1→p′1
SC
p2→p′2

± SC
p1→p′2

SC
p2→p′1

= SC
p1,p2→p′1,p

′
2
+ δ(p1 − p′1)δ(p3 − p′3)± δ(p1 − p′2)δ(p2 − p′1) ,

(2.2.3)

2The analysis in this section closely follows section 4.3 of ref. [2].
3Strictly speaking this statement is not correct, since quantum entanglement among states provide

correlations that do not decrease as the distance increases (this was at the base of the so called Einstein-

Podolski-Rosen paradox claiming possible violations of causality in quantum mechanics). Such states are

however fragile and short-lived, since decoherence effects given by arbitrarily small external perturbations

will destroy the entanglement among the states asymptotically. A more precise statement would be that

stable long-lived states should satisfy cluster decomposition. In general, cluster decomposition applies

when the vacuum is a pure state, and it fails when it is a mixed state. The phenomenon of spontaneous

symmetry breaking is also related to cluster decomposition, see section 8.1.
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where ± refers to an even or odd exchange of fermion particles. Similarly, the 3 → 3

connected matrix element SC
p1,p2,p3→p′1,p

′
2,p

′
3
is given as

Sp1,p2,p3→p1,p2,p3 = SC
p1,p2,p3→p′1,p

′
2,p

′
3
+ (SC

p1,p2→p′1,p
′
2
δ(p3 − p′3)± 8 perms.)

+ (δ(p1 − p′1)δ(p2 − p′2)δ(p3 − p′3)± 5 perms.) ,
(2.2.4)

where perms. refer to all other possible ways to combine the in-coming and the out-coming

particles. By further iterating, we can define all higher connected matrix elements SC
m→m

with m > 3. Similarly, we could define the “off-diagonal” connected elements SC
m→n with

m ≠ n. In terms of SC , cluster decomposition implies that

SC
m→n = 0 , (2.2.5)

if any among the m + n particles is far away from the remaining ones. For instance,

suppose that a 3→ 3 scattering consists of an actual 2→ 2 scattering involving particles

1 and 2, with particle 3 far away from the interaction place. In this case, we would expect

from eq.(2.2.2)

S3→3 = S2→2S1→1 = Sp1,p2→p′1,p
′
2
δ(p3 − p′3) , (2.2.6)

with Sp1,p2→p′1,p
′
2
given by eq.(2.2.3). When we impose eq.(2.2.5), namely we demand that

all connected S matrix elements where particle 3 enters together with particles 1 and 2

vanish, leaves only three terms in eq.(2.2.4), that indeed recombine in the right-hand-side

of eq.(2.2.6).

Since cluster decomposition is formulated in configuration space, we can define a con-

figuration space connected S-matrix SC
x,x′ by taking the Fourier transform of SC

m→n:

SC
m→n(x1, . . . xm, x′1, . . . x

′
n) ≡

∫ m∏

i=1

d3pi

n∏

j=1

d3p′j e
ip⃗i·x⃗i−ip⃗j ′·x⃗j

′

SC
m→n(p1, . . . pm, p′1, . . . p

′
n).

(2.2.7)

Invariance under space-time translations imply that SC
m→n(x, x

′) cannot vary if we shift

by a constant four-vector all coordinates. Correspondingly the connected S-matrix should

be proportional to a delta function imposing energy-momentum conservation:

SC
m→n(p1, . . . pm, p′1, . . . p

′
n) = (2π)4δ(4)(

∑

i

pi −
∑

j

p′j)A
C(p1, . . . pm, p′1, . . . p

′
n) , (2.2.8)

with AC encoding the remaining part of the scattering process. Cluster decomposition

implies that

SC
m→n(x1, . . . xm, x′1, . . . x

′
n)→ 0 (2.2.9)
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if we move apart the in-coming particles |x⃗i − x⃗j |→∞, i = 1, 2, . . . ,m1, j = 1, 2, . . . m−
m1, and their associated out-going particles |x⃗k ′ − x⃗l

′| → ∞, k = 1, 2, . . . , n1(m1), l =

1, 2, . . . n− n1(m1), for any choice of m1.

No other delta functions imposing further constraints on the initial and outgoing mo-

menta can enter in AC . If such a constraint would exist, we could move all the particles

subject to the constraint away from the others without affecting eq.(2.2.7), violating the

cluster decomposition property (2.2.9). In contrast, the disconnected element of the full

S-matrix can and do have multiple delta functions. This shows that the connected and

disconnected elements of the S-matrix cannot interfere among each other. We will mostly

focus in what follows to the connected part of the S-matrix, but it should be emphasized

that disconnected S-matrix elements are not negligible, since in actual experiments the

scattering process is often of this type.

2.3 The Reduction Formula for Connected S-Matrix Elements

Scattering experiments are determined by the S-matrix. However, quantum field theory

naturally provides access to time-ordered products of fields and operators and therefore

it is important to understand how to extract from the latter the S-matrix elements. This

connection is provided by the so-called Lehmann-Symanzik-Zimmermann (LSZ) reduction

formulas [4, 5] which we discuss here for the case of a neutral scalar field.

Consider a generic S-matrix element for the transition from the m-particle incoming

state |p⃗1, . . . p⃗m⟩in to the n-particle outgoing state |q⃗1, . . . q⃗n⟩out:

Sm→n = out⟨q⃗1, . . . q⃗n|p⃗1, . . . p⃗m⟩in = in⟨q⃗1, . . . q⃗n|S|p⃗1, . . . p⃗m⟩in, (2.3.1)

where |p⃗1, . . . p⃗m⟩in = a†(p⃗1)in|p⃗2, . . . p⃗m⟩in (see sec. 2.1.1). In turn, a(p⃗)in(out) (and

a†(p⃗)in(out)) can be expressed in terms of the incoming (outgoing) free field φin(out) as

in eq.(2.1.6). We now write a†p⃗,in = (a†p⃗,in − a†p⃗,out) + a†p⃗,out and therefore

Sm→n = out⟨q⃗1, . . . q⃗n|(a†(p⃗1)in−a†(p⃗1)out)|p⃗2, . . . p⃗m⟩in+out⟨q⃗1, . . . q⃗n|a†(p⃗1)out|p⃗2, . . . p⃗m⟩in,
(2.3.2)

where the second term on the r.h.s. does not vanish only if p⃗1 ∈ {q⃗1, . . . q⃗n}, i.e., if it

coincides with one of the outgoing momenta. This contribution represents a process in

which one of the incoming particles does not participate in the scattering and can be

neglected if we are only interested in connected S-matrix elements. In the first contribu-

tion, instead, one can use eq. (2.1.6) in order to express a†(p⃗1)in and a†(p⃗1)out in terms

of φin(x) and φout(x), respectively, and the latter, in turn, as limx0→−∞Z−1/2φ(x) and
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limx0→+∞Z−1/2φ(x) [see eq. (2.1.1)]:

SC
m→n = −iZ−1/2

∫
d3x⃗

(
lim

x0→−∞
− lim

x0→+∞

)
out⟨q⃗1, . . . q⃗n|h∗p⃗1(x)

↔
∂0 φ(x)|p⃗2, . . . p⃗m⟩in.

(2.3.3)

The difference between the limits can be obtained as −
∫ +∞
−∞ dx0 ∂0 which renders an

integration over space-time
∫
d4x, while ∂0[h∗p⃗1(x)

↔
∂0 φ(x)] = h∗p⃗1(x)(✷x + m2)φ(x) and

therefore

SC
m→n = iZ−1/2

∫
d4xh∗p⃗1(x)(✷x +m2)out⟨q⃗1, . . . q⃗n|φ(x)|p⃗2, . . . p⃗m⟩in, (2.3.4)

which has been now reduced to the matrix element of the field φ(x) with one less particle

in the incoming state. An analogous reduction can be done for the outgoing state by

expressing out⟨q⃗1, . . . q⃗n| as out⟨q⃗2, . . . q⃗n|a(q⃗1)out and by using the fact that a(q⃗1)outφ(x) =

[a(q⃗1)outφ(x) − φ(x)a(q⃗1)in] + φ(x)a(q⃗1)in; as before, when inserted in eq. (2.3.4), the

second term on the r.h.s. of this identity corresponds to a disconnected amplitude and can

be neglected. The first, instead, can be simplified by expressing a(q⃗1)out/in via eq. (2.1.6)

and then by introducing the suitable (weak) limits in order to replace φ by φin/out

a(q⃗1)outφ(x)− φ(x)a(q⃗1)in

= iZ−1/2
∫

d3y⃗

[
lim

y0→+∞
hq⃗1(y)

↔
∂y0 φ(y)φ(x)− lim

y0→−∞
hq⃗1(y)

↔
∂y0 φ(x)φ(y)

]
;

(2.3.5)

due to the presence of the limits, both φ(y)φ(x) and φ(x)φ(y) can be replaced by their time-

ordered product Tφ(x)φ(y) and therefore the difference between the limits, as before, can

be expressed as
∫ +∞
−∞ dy0 ∂y0 , while ∂y0 [hq⃗1(y)

↔
∂y0 Tφ(x)φ(y)] = hq⃗1(y)(✷y+m2)Tφ(x)φ(y),

with the result

out⟨q⃗1, . . . q⃗n|φ(x)|p⃗2, . . . p⃗m⟩in =

= iZ−1/2
∫

d4y hq⃗1(y)(✷y +m2)out⟨q⃗2, . . . q⃗n|Tφ(x)φ(y)|p⃗2, . . . p⃗m⟩in,
(2.3.6)

in which the number of particles in the outgoing state has been reduced by one. Together

with eq. (2.3.4) one finds

SC
m→n = (iZ−1/2)2

∫
d4xd4y h∗p⃗1(x)hq⃗1(y)(✷x +m2)(✷y +m2)

× out⟨q⃗2, . . . q⃗n|Tφ(x)φ(y)|p⃗2, . . . p⃗m⟩in,
(2.3.7)

in which the procedure outlined above can be iteratively repeated till all the particles in

the incoming and outgoing states are reduced to zero and one is left with the vacuum state

19



|0⟩in = |0⟩out = |0⟩:

SC
m→n = (iZ−1/2)m+n

∫ m∏

i=1

d4xi h
∗
p⃗i(xi)(✷xi +m2)

n∏

j=1

d4yj hq⃗j (yj)(✷yj +m2)

× ⟨0|Tφ(x1) · · ·φ(xm)φ(y1) · · · φ(yn)|0⟩,

(2.3.8)

which is the LSZ reduction formula.4

In order to connect the r.h.s. of this equation to the N -point correlation function

⟨0|Tφ(x1) · · · φ(xN )|0⟩ of the fields which is usually calculated in quantum field theory, we

focus on its Fourier transform

G(N)(p1, . . . , pN ) =

∫ N∏

k=1

d4xk e−ipkxk⟨0|Tφ(x1) · · · φ(xN )|0⟩; (2.3.9)

Due to the space-time translational invariance of the theory, the correlation function on

the r.h.s. depends only on the difference of the coordinates and therefore one can always

factor out (2π)4δ4(
∑N

k=1 pk) and actually indicate by G(N) the remaining factor. Tak-

ing into account the definition of hp⃗(x) in eq. (2.1.6) one easily recognizes in eq. (2.3.8)

(2π)4δ4(
∑m

i=1 pi−
∑n

j=1 qj)G
(n+m)(p1, . . . , pm,−q1, . . . ,−qn), while ✷xi and ✷yj turn into

−p2i and −q2j when acting to the left on h∗p⃗i(xi) and hq⃗j(yj), respectively. Note, however,

that according to eq. (2.1.6) p2i = q2j = m2, being the incoming and outgoing particles

on-shell, and therefore the factors ✷xi/yj + m2 vanish; it is then convenient to think of

them as limits:

SC
m→n = (2π)4δ4(

m∑

i=1

pi −
n∑

j=1

qj)
m∏

i=1

1√
(2π)32ωp⃗i

n∏

j=1

1√
(2π)32ωq⃗j

×
m∏

i=1

lim
p2i→m2

p2i −m2

iZ1/2

n∏

j=1

lim
q2j→m2

q2j −m2

iZ1/2
G(n+m)(p1, . . . , pm,−q1, . . . ,−qn).

(2.3.10)

This equation clearly shows that connected S-matrix elements are basically given by the

residues of the poles of the Fourier transform of the T -product of fields (i.e., of their

Green functions) as the incoming and outgoing particles go on-shell. As we discussed

in sec. 2.1.2, G(2)(p2 → m2) = iZ/(p2 − m2), which allows one to identify the factors

limp2→m2(p2−m2)/(iZ1/2) in eq. (2.3.10) as
√
Z[G(2)(p2 → m2)]−1. In view of this fact it

is convenient to introduce the notion of amputated Green function G(N)
amp, which in terms

of Feynman diagrams, is obtained by stripping the diagram corresponding to G(N) of the

4Note that in some textbooks, e.g., ref. [1] the factors hp⃗ are actually absorbed in the definition of the

multiparticle states and therefore they are absent in the formula above.
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external propagators (the latter being the cause of the presence of the poles mentioned

above):

G(N)(p1, . . . , pN ) =

[
N∏

i=1

G(2)(pi)

]

G(N)
amp(p1, . . . , pN ). (2.3.11)

Accordingly, eq. (2.3.10) becomes

SC
m→n = (2π)4δ4(

m∑

i=1

pi −
n∑

j=1

qj)
m∏

i=1

1√
(2π)32ωp⃗i

n∏

j=1

1√
(2π)32ωq⃗j

× Z(n+m)/2G(n+m)
amp (p1, . . . , pm,−q1, . . . ,−qn)|p2i=q2j=m2 .

(2.3.12)

Quantum field theory provides access (e.g., perturbatively) to G(N)
amp on the r.h.s. and

therefore, via this relation, to SC
m→n which has to be supplemented by appropriate phase

space (i.e., kinematic) factors in order to calculate cross sections.

An important consequence of eq. (2.3.12) is the crossing symmetry : in fact, incoming

particles are distinguished from the outgoing ones only by the sign of the four-momentum

as the argument of G(n+m)
amp . When the theory involves also antiparticles, the construction

can be straightforwardly generalized in order to conclude that an incoming antiparticle

with momentum p⃗ [and four-momentum p = (−ωp⃗, p⃗)] is equivalent to an outgoing particle

with momentum −p⃗ [i.e., with four momentum (ωp⃗,−p⃗) = −p].

2.4 The Optical Theorem

The S-matrix is a unitary mapping between the space of the incoming asymptotic states

and the one of the outgoing states. As such, it satisfies S†S = SS† = 1. This unitarity

has important consequences, which we investigate here.

In order to factor out from the S-matrix the contribution corresponding to the absence

of interaction between the incoming and the outgoing particles, one usually introduces the

T -matrix:

S = 1 + iT, (2.4.1)

in terms of which, the condition of unitarity becomes

T − T † = iT †T. (2.4.2)

Consider now a scattering process from an initial state |i⟩ to a final state |f⟩: the previous
relation implies that

Tf,i − T †
f,i = i

∑

n

T †
f,nTn,i (2.4.3)
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for the T -matrix element Tf,i ≡ ⟨f |T |i⟩ between these states, where the sum runs over

all possible intermediate states with definite momentum. Note that the conservation of

energy and momentum requires generically

Ta,b = ⟨a|T |b⟩ = (2π)4δ4(pa − pb)Aa,b (2.4.4)

where pa and pb are the momenta of states |a⟩ and |b⟩, respectively, and Aa,b is the

remaining factor usually calculated via Feynman diagrams. In terms of Aa,b, eq. (2.4.3)

becomes

Af,i −A∗i,f = i
∑

n

(2π)4δ4(pn − pf(i))A
∗
n,fAn,i. (2.4.5)

This relation has a very simple interpretation for f = i, i.e., when focussing on the forward

scattering amplitude because in this case the l.h.s. is 2i ImAi,i, while the r.h.s. involves

|An,i|2:
2 ImAi,i =

∑

n

(2π)4δ4(pn − pi)|An,i|2. (2.4.6)

Consider the case in which the initial state |i⟩ = |⃗k1, k⃗2⟩ is a two-particle state: the r.h.s of

eq. (2.4.6) is then the sum over all possible final states of the probability to obtain these

states from the scattering of the two initial particles. This is related to the total cross

section σT . In our conventions, we have5

σT =
(2π)62E12E2√
(p1 · p2)2 −m2

1m
2
2

∑

n

n∏

i=1

∫
d3p′i(2π)

4δ(p1 + p2 −
∑

i

p′i)|Ai,n|2 . (2.4.7)

In the center of mass frame of the two particles we get

4|⃗kcm|
(2π)6Ecm

σT =
∑

n

(2π)4δ4(p1 + p2 − p′n)|An,i|2, (2.4.8)

where we have rewritten more compactly the phase space integral as
∑

n. Accordingly,

the optical theorem implies that

2 ImAi,i =
4|⃗kcm|

(2π)6Ecm
σT . (2.4.9)

Further below we shall check explicitly this relation. On this specific case of a two-particle

initial state we can discuss a general property of the amplitude Ai,i as a function of the

Mandelstam variable s = E2
cm which we let be a complex number. First of all we note that

the diagrams which contribute to Ai,i in a perturbative expansion are generically real as

5This expression differ from the one presented, e.g., in eq. (4.79) of ref. [1] because of the different

conventions for the normalization of the states.
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long as one can forget about the Feynman prescription of adding +iϵ at the denominators

of the propagators of the particles involved (think, for example, of scalars). This is the

case if none of the intermediate virtual particles involved in the diagram goes on-shell: in

fact, being the denominator of the corresponding propagator always non-vanishing, one

can safely take ϵ → 0, which makes the imaginary part of the corresponding diagram

vanish. Accordingly, the amplitude Ai,i(s) is a real function of s for real s < m2
th, where

m2
th is the energy threshold for the production of on-shell multiparticle states:

A∗i,i(s) = Ai,i(s
∗) . (2.4.10)

Since Ai,i is real on the real axis for s < m2
th, its continuation satisfies eq. (2.4.10), i.e.,

⎧
⎨

⎩
ReAi,i(s) = ReAi,i(s∗),

ImAi,i(s) = −ImAi,i(s∗).
(2.4.11)

As a consequence of the continuation outside the real axis, Ai,i(s) acquires an imaginary

part: upon approaching the real axis s ∈ R from above with s + iϵ and ϵ = 0+ or

from below with s − iϵ, eq. (2.4.11) implies that Ai,i(s) has opposite imaginary parts

ImAi,i(s + iϵ) = −ImAi,i(s − iϵ) and therefore, upon crossing the real axis, there is a

discontinuity

DiscAi,i(s) = Ai,i(s+ iϵ)−Ai,i(s− iϵ) = 2i ImAi,i(s+ iϵ), (2.4.12)

which vanishes along the real axis with s < m2
th. Accordingly, the imaginary part of

the amplitude Ai,i is alternatively given by its discontinuity upon crossing the real axis,

which might be easier to determine in actual calculations. Note that the presence of this

discontinuity signals the presence of a branch cut running along the real axis for s > m2
th,

which is analogous to the one highlighted in fig. 2.1.

2.4.1 Perturbative Unitarity

The results obtained so far are exact, in the sense that they do not rely on a perturbative

expansion. Exact results in QFT are however quite rare (at least in d = 4 space-time

dimensions). In practice we often demand perturbative unitarity, namely we expand in

some small coupling constant both the left and right hand side of eq.(2.4.9) (or more

generally of eq.(2.4.6)) and demand the equality of both terms at each order in perturbation

theory. In order to calculate directly the discontinuity of an amplitude across the cut, one

can take advantage of the so-called Cutkosky (or cutting) rules:
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k/2− q

k/2 + q
k1

k2

(a)

=

2

(b)

Figure 2.2: (a) Lowest-order correction to the two-particle scattering amplitude Ai,i in

a λφ4 theory. (b) Schematic representation of the optical theorem (2.4.6) applied to the

diagram in panel (a): the imaginary part of the amplitude in panel (a) can be obtained

via the cutting rules by cutting the diagram as indicated in (b) by the dashed line.

1. consider all possible ways of cutting the internal propagators of a diagram in such

a way that the diagram is cut into two disconnected parts and that the particles

whose propagators have been cut can go simultaneously on-shell;

2. in each cut propagator with momentum p substitute the factor 1/(p2−m2+ iϵ) with

−2πiδ(p2 −m2) and calculate the resulting diagram;

3. sum over all possible cuts the contributions obtained above.

As an illustrative example, consider the scattering amplitude iA2,2(k2) for 2−2 particles
with a λφ4 interaction. At the lowest (tree) non-trivial order in perturbation theory, the

amplitude is proportional to the coupling λ and is manifestly always real. This is in

agreement with eq.(2.4.9), since an imaginary part of order λ would not match with the

right hand side which is of order λ2. An imaginary part in the amplitude should then arise

starting from one-loop. The relevant diagram contribution iD(k2) is depicted in fig. 2.2(a).

According to the LSZ formula (2.3.12), iA2,2(k2) = iD(k2)/[(2π)6k2] (with k = k1 + k2),

where

iD(k2) =
(iλ)2

2

∫
d4q

(2π)4
i

(k2 − q)2 −m2 + iϵ

i

(k2 + q)2 −m2 + iϵ
. (2.4.13)

One can easily realize that among the three possible scattering channels s, t, and u only

in the channel s it is possible to exceed the threshold for particle production such that

the corresponding amplitude acquires an imaginary part. We shall focus on this case. By
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Lorentz invariance A2,2 can be calculated in the center-of-mass frame with k = (k0, 0⃗)

and it is convenient for the present purposes to perform first the integration over q0 using

Cauchy’s theorem, closing the contour at infinity. The integrand is characterized by 4

simple poles at

k0
2

+ ωq⃗ − iϵ , −k0
2

+ ωq⃗ − iϵ , −k0
2
− ωq⃗ + iϵ ,

k0
2
− ωq⃗ + iϵ . (2.4.14)

After the integration one finds

D(k2) =
λ2

2

∫
d3q⃗

(2π)3
1

4k0ωq⃗

(
1

ωq⃗ − k0
2 − iϵ

− 1

ωq⃗ +
k0
2 − iϵ

)

, (2.4.15)

Using eq.(2.1.26), an imaginary part can arise only when one of the denominators vanishes.

It is evident that only the first of the two terms on the r.h.s. can possibly vanish (we take

k0 > 0) when ωq⃗ = k0/2 for some values of |q⃗|. This is possible only if k0 ≥ 2m ≡ mth, as

expected on kinematic reasons. We then get

ImD(k2) =
λ2

16π2k0

∫ ∞

m
dωq⃗

√
ω2
q⃗ −m2 × πδ

(
ωq⃗ −

k0
2

)

=
λ2

16πk0

√
(k0/2)2 −m2 θ(k0 − 2m).

(2.4.16)

where we used the fact that d3q⃗ = 4πq2dq = 4π
√
ω2
q⃗ −m2 ωq⃗ dωq⃗. Note also that for

k0 < 2m the location of the poles (2.4.14) allows us to perform a Wick’s rotation q0 = iqE.

The two propagators are now complex conjugates of each other and the amplitude A2,2 is

manifestly real, in agreement with eq.(2.4.10).

The same result can be obtained by using Cutvosky rules. In this case we have

DiscD(k2) =
λ2

2i

∫
d4q

(2π)4
(−2πi)2δ((k/2 − q)2 −m2)δ((k/2 + q)2 −m2), (2.4.17)

where, as before, it is convenient to integrate first on q0 in the center-of-mass frame. Using

the fact that we can express the second δ above as

δ((k0/2 + q0)
2 − ω2

q⃗) =
δ(q0 + k0/2− ωq⃗)

2ωq⃗
+
δ(q0 + k0/2 + ωq⃗)

2ωq⃗
, (2.4.18)

one immediately sees that the product of the first δ on the r.h.s. of eq. (2.4.17) with the

second term above can never vanish, while the product with the first term, after integration

on q0, is equivalent to δ(k0(k0−2ωq⃗)) = δ(ωq⃗−k0/2)/(2k0), such that eq. (2.4.17) becomes

DiscD(k2) = i
λ2

8πk0

∫ ∞

m
dωq⃗

√
ω2
q⃗ −m2 δ(ωq⃗ − k0/2)

= 2i ImD(k2),

(2.4.19)
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where on the second line we have taken into account the first line of eq. (2.4.16). This

example shows the effectiveness of the rules mentioned above for the calculation of the

imaginary part of an amplitude or, alternatively, of its discontinuity across the cut.

As a final check, let us consider the total cross section σT for the lowest-order scat-

tering process of these two particles, which is characterized by the amplitude iD0 = −iλ.
According to the optical theorem (2.4.9) and to (2.4.12), the imaginary part of the diagram

in fig. 2.2(a) — which can be calculated (up to an i) by cutting the diagram as indicated

by the dashed line fig. 2.2(b) — is equal to the modulus square of the tree-level scattering

amplitude (up to the corresponding phase-space), as schematically indicated by fig. 2.2(b).

By using the standard expression for the differential cross-section in a two-body scattering

(see, e.g., eq. (4.99) in ref. [1]), one has

(
dσ

dΩ

)

cm

=
|λ|2

64π2E2
cm
× 1

2
, (2.4.20)

where the factor 1/2 accounts for the fact that the particles are assumed indistinguishable

and which gives σT = λ2/(32πE2
cm) for the total cross section. By forming the combination

(with Ecm = k0)
4|⃗kcm|

(2π)6Ecm
σT =

1

(2π)6k20
× λ2

8πk0

√
(k0/2)2 −m2 (2.4.21)

and by comparing with eq. (2.4.16), one recognizes 2 ImD(k20)/[(2π)
6k20 ] = 2 ImA2,2 on

the r.h.s., in agreement with the optical theorem (2.4.9). Alternatively, one can verify

the validity of the optical theorem written in the form of eq. (2.4.6) by comparing the

expression of its l.h.s. in eq. (2.4.16) with the one obtained by specializing its r.h.s. to

the case in which G(4)
R = iλ (and therefore A2,i = λ/[(2π)3k0

√
(2π)3ωp⃗1

√
(2π)3ωp⃗1 ] from

eq. (2.3.12)) and by taking into account that the two-particle invariant phase space is given

by
∫ d3p⃗1

(2π)32ωp⃗1

d3p⃗2
(2π)32ωp⃗2

(2π)4δ4(pn − k) = |⃗kcm|/(4πk0) (see, e.g., eq. (A.58) of ref. [1]).

2.5 Unstable Particles

The formalism above is also useful in understanding how unstable particles should be

considered in QFT. These particles cannot appear as asymptotic states in the Hilbert

space and hence their treatment is a bit trickier.6 We can distinguish between two kinds

of unstable particles. Those that turn into stable asymptotic states when interactions

are switched off: this is the typical instance of weakly coupled unstable states, that turn

6Clearly, the distinction is dictated by the time scale of the process. Particles with a time decay much

longer than the interacting time of a process are effectively stable and can be effectively described by

asymptotic states.

26



into free stable states in the limit, and correspond to all unstable elementary particles

we know. It also applies to bound states, when their instability is not governed by the

same interactions that are at the basis of their formation. For instance the pion mesons in

QCD are stable in the limit in which we switch off the electroweak interactions. A more

complicated situation occurs with bound states that decay due to the same interactions

responsible for their formation. In this case there is not a simple limit where we can

consider them as stable. This is for instance the case of the positronium, a bound state

composed of an electron and a positron in QED. Let us consider the former simpler case

of unstable states admitting a limit in which they are stable. In this case we expect on

general grounds that the particle develops a propagator with a Breit-Wigner form. For

p2 ∼ m2 we have

G(2)
R (p2) ∼ i

p2 −m2 + Σ(p2)
, (2.5.1)

where m is the mass of the stable particle when interactions are switched off. In presence

of interactions Σ develops an imaginary part. In the particle rest frame eq.(2.5.1) implies

an “effective mass”

M ≃ m− i ImΣ(m2)/(2m) , (2.5.2)

where we have neglected ReΣ and assumed ImΣ(m2) ≪ m. The wave function Ψ of the

particle evolves as Ψ(t) = e−iMtΨ(0), such that the probability |Ψ(t)|2 ∝ e−Γt decreases

exponentially in time with a decay rate

Γ =
ImΣ(p2 = m2)

m
. (2.5.3)

In the rest frame of the decaying particle the total decay width equals

Γ = (2π)3
∑

n

(2π)4δ4(pn − p)|An,1|2, (2.5.4)

where A1,n are the amplitudes for the decay in n particles: 1 → n. Despite it does not

make sense to talk of S-matrix elements for a single-particle state, the link between ImΣ

and Γ can be formally seen as a consequence of eq.(2.4.6), with |i⟩ is a single particle state.

When the interactions responsible for the decay are switched off, G(2)
R has a simple

isolated pole, as expected from the representation (2.1.25), and the operator φ(x) associ-

ated to this particle has vanishing matrix elements with the decaying product particles.

When interactions are switched on, the operator φ(x) has non-vanishing matrix elements

with the decaying particles. As a consequence the threshold mass in eq.(2.1.25), which is

given by the lowest energy to produce multi-particle states, decreases and the previously

isolated pole falls within the branch-cut singularity associated to the production of the
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decaying particles. Moreover, the simple pole moves away from the real axis and for small

Σ lies close to the branch-cut singularity. We see from eqs.(2.5.1) and (2.5.3) that the

pole sits approximately at p2 ∼ m2 − imΓ and moves in the lower complex half-plane.

At first sight, this result is in contradiction with the analyticity properties derived from

the Källén-Lehmann spectral representation (2.1.25), according to which G(2)
R can have

no singularity away from the real axis. Indeed, this complex pole does not appear as a

pole of G(2)
R but shows up in its analytic continuation below the branch-cut singularity. In

other words, the pole is not on the physical Riemann sheet, but in the second (or higher)

Riemann sheet. This is understood by recalling that the physical momenta sit above the

cut. Since the pole lies instead below the cut, in moving around the cut ImΣ picks up

a phase. With such phase the propagator has no longer a pole. In order to not get any

phase we have to cross through the cut, which unavoidably leads us to another Riemann

sheet. A concrete example of this phenomenon is described in section 2.7.

2.6 Causality and Analyticity

In subsection 2.1.2 we have briefly discussed the behaviour of the exact propagator G(2)
R (q2)

for complex values of q2 and have seen that it can be analytically continued for complex

values of q2. A similar analytic continuation was assumed in section 2.4 where we briefly

discussed the elastic 2-particle scattering. More in general, one could ask whether and

in which sense S-matrix elements or the Green functions G(N)(pi) can be analytically

continued for unphysical values of the momenta. We will see that there is a fundamental

connection between causality and analyticity, which points towards a positive answer to

this question.

The key points are best understood from classical considerations. Let Ainc(z, t) be a

wave packet traveling along the z direction:

Ainc(z, t) =

∫ +∞

−∞
dω ainc(ω)e

iω(z−t) , (2.6.1)

and scattered by a particle at rest at z = 0. The asymptotic forward scattered wave packet

will be of the form

Ascatt(z, t)|z|→∞ ≈
1

z

∫ +∞

−∞
dω ascatt(ω)e

iω(z−t) , (2.6.2)

where ascatt(ω) = ainc(ω)f(ω), with f(ω) the forward scattering amplitude. Suppose that

this packet represents a signal which vanishes for t < z, so in particular Ainc(0, t) = 0 for

t < 0. By taking the inverse Fourier transform of eq.(2.6.1), we get

ainc(ω) =
1

2π

∫ +∞

−∞
dtAinc(0, t)e

iωt . (2.6.3)
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Figure 2.3: Thanks to the analyticity of f(ω′), the contour of integration Cz can be blown

up in a large semi-circle approaching the real line from above and going at infinity (C∞)

in the upper half-plane.

The function ainc(ω) can be analytically continued for complex ω in the upper half-plane.

Indeed, for t > 0, the phase factor is exponentially suppressed, while for t < 0, where

we would have an exponentially increasing factor, the wave packet vanishes. We can

then consider eq.(2.6.1) in the complex ω-plane. If we assume that ainc(ω) does not grow

too much at infinity, so as to compensate the exponential suppression given by eiω(z−t),

we can close the contour at infinity. This is automatically satisfied if we demand that

ainc(ω) grows at most as a polynomial in ω. Such condition is often denoted as polynomial

boundedness and is typically assumed for QFT amplitudes. For t < 0, we get
∮

C
dω ainc(ω)e

iω(z−t) = 0 , (2.6.4)

implying that ainc(ω) should be an analytic function in the upper ω half-plane.

The causality principle requires that the scattered wave should also vanish for t < z,

since no wave can be ahead of the incident wave packet:

Ascatt(z, t) = 0, for t < z . (2.6.5)

We can now take the inverse Fourier transform of eq.(2.6.2) and repeat the argument

above to conclude that the causality condition (2.6.5) implies the analyticity of ascatt(ω)
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— and hence of f(ω) — in the upper half-plane.7

Let us see some implications coming from such analyticity properties. Given a point

z in the upper half-plane we can use Cauchy theorem to write

f(z) =
1

2iπ

∫

Cz

dω′f(ω′)

ω′ − z
, (2.6.6)

where Cz is a small circle around the point z. Since f is analytic over the whole upper

ω′ half-plane, we can blow the contour Cz until it approaches the real axis and closes at

infinity, like in fig.2.3. When z approaches the real line from above, z = ω + iϵ, we have

f(ω) ≡ lim
ϵ→0

f(ω + iϵ) = lim
ϵ→0

1

2iπ

∫ +∞

−∞

dω′f(ω′)

ω′ − ω − iϵ
+

1

2
f∞

=
1

2iπ
P

∫ +∞

−∞

dω′f(ω′)

ω′ − ω
+

1

2
f(ω) +

1

2
f∞ .

(2.6.7)

In the last relation we have used eq.(2.1.26), P stands for the principal part of the integral

and f∞/2 denotes the contribution to the integral coming from C∞. If we assume for the

moment that f(ω)→ 0 at infinity, so that f∞ = 0, eq.(2.6.7) gives

f(ω) =
1

iπ
P

∫ +∞

−∞

dω′f(ω′)

ω′ − ω . (2.6.8)

The real and imaginary parts of eq.(2.6.8) give

Ref(ω) =
1

π
P

∫ +∞

−∞

dω′Imf(ω′)

ω′ − ω , Imf(ω) = − 1

π
P

∫ +∞

−∞

dω′Ref(ω′)

ω′ − ω . (2.6.9)

Another commonly used rewriting of these equations is

f(ω) = lim
ϵ→0

1

π

∫ +∞

−∞

dω′Imf(ω′)

ω′ − ω − iϵ
, (2.6.10)

whose real part coincides with the first relation in eq.(2.6.9). We see that, by knowing

the imaginary part of the forward scattering amplitude, we can reconstruct the whole

amplitude. The original derivation of eq.(2.6.10) dates back to Kramers and Kronig that

applied it in classical optics with f(ω) being the index of refraction. A frequency depen-

dence of the index of refraction leads to the dispersion of light (like in a rainbow) and

hence eq.(2.6.10) (and their quantum generalizations) is called a dispersion relation. An

imaginary component of the refractive index leads to dissipation, so the dispersion rela-

tions allow us to compute the refractive index of a material (i.e. Re f) from its dissipation

7Unless ainc(ω) has zeros that induce poles in f(ω), but these are avoidable by simply changing the

(quite arbitrary) incident wave packet.
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properties (Im f). The latter is also related, through a classical optical theorem, to the

total absorption cross section.

If f(ω) does not vanish at infinity, as we assumed, but rather

f(ω)|ω|→∞ ∝ |ω|N−1 (2.6.11)

for some N ≥ 0, we can divide f(ω) by a given polynomial Pn(ω) of degree n = [N ] and

apply Cauchy theorem to f/Pn. By construction, the contribution at infinity vanishes,

but we have to be careful because the zeros of Pn give rise to poles whose contribution

should be considered. Choosing for definiteness Pn = ωn and repeating the same steps as

before, we get

f(ω) = ωn lim
ϵ→0

1

π

∫ +∞

−∞

dω′Imf(ω′)

(ω′ − ω − iϵ)(ω′)n
+Qn(ω) . (2.6.12)

In eq.(2.6.12), the residues due to the poles of Pn are encoded in the factor Qn, which is

a polynomial of degree n in ω with coefficients determined in terms of the values of f(ω)

and its first (n− 1)-derivatives at ω = 0 (more generally, at the specific values of ω where

Pn = 0 ). The function f is thus no longer determined by Im f only, but requires also

the knowledge of such “boundary” data. This is the price we have to pay in order to have

a sufficiently well-behaved function at infinity. Eq.(2.6.12) is called a dispersion relation

with n subtractions, or n-subtracted dispersion relation.

The classical causality condition (2.6.5) in QFT is replaced by the microcausality

condition [6]

[O1(x),O2(y)] = 0, for (x− y)2 < 0 , (2.6.13)

where O1 and O2 are arbitrary bosonic local operators in the QFT. Using eq.(2.6.13)

and the LSZ reduction formulae, the analyticity properties of certain amplitudes can be

proved axiomatically, i.e. at the non-perturbative level and using first principles only,

such as unitarity and Lorentz invariance (in addition to microcausality itself, of course).

Unfortunately, an axiomatic proof for general Green functions in QFT is still not available.

In these cases one has to rely on perturbation theory, where analytic properties can be

directly checked looking at the non-analyticities of Feynman diagrams. All these studies

seem compatible with the conjecture that Green functions are the real-boundary values of

analytic functions. For concreteness, let us consider the elastic scattering of two identical

particles of mass m, that we assume to be the lightest particles present in the theory. The

scalar amplitude M is a function of the four particle momenta pi (i = 1, 2, 3, 4). Particles

1 and 2 are in-going, particles 3 and 4 are out-going. Momentum conservation and the

on-shell conditions fix pµ1 + pµ2 = pµ3 + pµ4 , p
2
i = m2. Lorentz invariance requires that the
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scalar quantity M can only depend on Lorentz invariant combinations of the momenta.

A useful parametrization is given by the Mandelstam variables

s = (p1 + p2)
2 , t = (p1 − p3)

2 , u = (p1 − p4)
2 . (2.6.14)

It is immediate to verify that s + t + u = 4m2, so that the amplitude is effectively a

function of two independent variables, that we can take to be s and t: M = M(s, t).

Going to the center of mass frame of the two particles, it is straightforward to see that

the kinematically allowed range of the Mandelstam variables is

s ≥ 4m2 , t ≤ 0 u ≤ 0 , (1 + 2→ 3 + 4) . (2.6.15)

Studying the analyticity properties of a function of two variables is a difficult task, so let

us take t fixed and consider M as a function of s. Some analytic properties of M can

be deduced from perturbation theory. We can have simple poles at s = µ2, where µ is

the mass of the possible particle exchanged in the 1-2 interaction, and then a branch-cut

singularity starting from the 2-particle threshold production, i.e. s ≥ 4m2. Using crossing

symmetry, the same amplitude M also describes the scattering process 1+ 3̄→ 2̄ + 4 and

1 + 4̄ → 2̄ + 3. In terms of the variables (2.6.14), the allowed range of s, t and u in the

different channels is

t ≥ 4m2 , s ≤ 0 u ≤ 0 , (1 + 3̄→ 2̄ + 4) ,

u ≥ 4m2 , s ≤ 0 t ≤ 0 , (1 + 4̄→ 2̄ + 3) .
(2.6.16)

This implies that, at fixed t, if there is a pole in M(s) at s = µ2 in the 1 + 2 → 3 + 4

scattering process (s-channel), a pole should also occur at s = 4m2 − µ2 − t, which

corresponds to the same pole µ2 occurring at 4m2 − s − t = u = µ2 in the 1 + 4̄→ 2̄ + 3

process (u-channel).8 Similarly, the branch-cut at u ≥ 4m2 in the 1 + 4̄ → 2̄ + 3 process

implies a branch-cut at s = −t in M(s). The analyticity assumption based on causality

as described above assume that all the singularities of M(s) are associated to physical

processes and, as such, they all lie on the real s-axis. In particular, we might have other

poles at s = µ2
1, µ

2
2, . . . associated to the exchange of other particles (bound states in

general), or branch-cut singularities due to the opening of other multi-particle processes.

For example, another branch-cut is expected to occur for s ≥ 9m2 in association to the

production of three-particles (if allowed by the symmetries of the system, of course). These

other branch-cuts will occur on top of the first one that starts at s ≥ 4m2 (and s ≤ −t).
The expected analyticity domain of M(s), at fixed t, is depicted in fig.2.4. The physical

8If the same particle can be exchanged in the process, we have µ = m, but this is not necessary.
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μ2 4m2-μ2-t

s

Figure 2.4: The expected singularity structure of the 2 → 2 scattering amplitude M(s)

at fixed t in the complex s-plane. The black points indicate the simple poles associated

to the particles (bound states) exchanged in the s-channel (µ2) and in the u-channel

(4m2 − µ2 − t). The crosses indicate the branch-cut singularities, starting at s = 4m2 in

the s-channel and at s = −t in the u-channel. Poles associated to the possible presence of

other bound states have not been indicated.

region in the s channel for s ≥ 4m2 lies above the cut. This can be easily seen from the iϵ

prescription that amounts to a shift m2 → m2 − iϵ. Since s + t + u = 4m2, the physical

region in the u-channel sits below the cut s < −t in fig.2.4.

As we said, the above picture can be axiomatically proved only in certain cases, but

being associated to a fundamental principle such as causality, it is often taken for granted.

Once we know the analyticity domain of M(s, t), dispersion relations like eq.(2.6.10) can

be written down. Among other things, these allow us to relate M to the total cross section,

that through the optical theorem can be expressed in terms of ImM.

The analytical properties of Green functions received great attention starting from the

late 50’s until about the early 70’s, in an attempt to describe the strong interactions from

first principles, without relying on a weakly coupled Lagrangian description (S-matrix

bootstrap). This activity quickly faded away after the discovery of Quantum CromoDy-

namics (QCD) as the theory of strong interactions, but left us with several important

results. In the impossibility to review here all such results, let us just mention a general

bound on the cross-section (Froissart-Martin bound), an understanding of certain high

energy scattering limits in strongly coupled gauge theories in terms of so called Regge

trajectories, and the birth of what we now call string theory. More recently, among other

developments, arguments based on the analyticity of amplitudes have allowed us to put

constraint on effective field theories [7] and played an essential role in proving an im-

portant property satisfied by the renormalization group flow of QFTs in four space-time
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dimensions (the so called a-theorem) [8].

A proper understanding of the analytic structure of amplitudes in QFT would also

be important to rigorously establish important properties of amplitudes, such as crossing

symmetry, that are at the moment assumed.9 It is not excluded that a fresh look at some

of the old problems left open in the S-matrix bootstrap (together with the vastly increased

numerical power we have today with respect to half-century ago) would lead to a revival

and further progress in this direction.

2.7 Bound States and Resonances∗∗

We have seen in the previous sections that simple poles of the two-point function or of

the scattering amplitude (S-matrix) are a signal of one-particle states. These can arise

also in correspondence of bound states. We have also seen at the end of section 2.4 that

unstable states, resonances, correspond to simple poles with a non-vanishing imaginary

component, i.e. complex poles. In this section we will show that

• bound states correspond to simple poles of the scattering amplitude

• resonances give rise to poles hidden below the branch-cut.

In order to keep the analysis as simple as possible, we will just work out a simple example

in quantum mechanics (relativistic bound states are a notoriously difficult subject).

The system we consider is a one-dimensional quantum system in a potential well, see

fig.2.5. The Schrödinger equation is
(−1
2m

d2

dx2
+ V (x))ψn(x)

)
= Enψn(x) , (2.7.1)

where ψn and En are the eigenfunctions and eigenvalues of the system, respectively. The

system is invariant under the Z2 parity transformation x → −x, so we can separately

consider even and odd eigenstates. Let us first discuss the bound states, i.e. the states

with energy −V0 < En < 0, where V0 > 0 is the depth of the well. For the different regions

in fig.2.5 we have, for the parity even states,

ψI(x) = Cekx ,

ψII(x) = A cos(px) , (2.7.2)

ψIII(x) = Ce−kx ,

9We briefly discussed crossing symmetry as a “simple” consequence of the LSZ formula (2.3.12) below

that equation. In fact, this property is far from trivial because the crossed amplitudes are functions

defined in disconnected regions in the Mandelstam variables with respect to the original amplitude function.

Proving crossing symmetry is equivalent to prove that the crossed amplitude is the analytic continuation

in the crossed region of the original amplitude.
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Figure 2.5: One-dimensional potential well.

where

k =
√
−2mE , p =

√
2m(E + V0) , (2.7.3)

and A and C are undetermined constants so far. Demanding the continuity of the wave

function and its first derivative at x = a/2 gives the equation that the even eigenfunctions

should satisfy:

k = p tan
pa

2
, (even) . (2.7.4)

Analogously, the equation for the odd eigenfunctions is

k = −p cot pa
2

, (odd) . (2.7.5)

For illustration, we plot in fig.2.6 the solutions of eqs.(2.7.4) and (2.7.5) for some values of

m, a, and V0. At fixed m and a, the number of bound states depends on V0 and increases

with V0, as expected. The deepest bound state (i.e. with the largest negative energy)

is always parity even. For small enough V0 there are no odd bound states and only one

even. Its energy can be computed analytically by expanding eq.(2.7.4). For small V0, the

argument of the tangent is small, tan x ≈ x. Taking the square of that equation, we see

that E ∼ O(V 2
0 ) and hence at leading order we get the bound state energy

E ≈ −ma2V 2
0

2
. (2.7.6)

Let us now consider the states with E > 0. The spectrum is a continuum of waves

and we look for solutions with an incident wave coming from x → −∞. In the different
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Figure 2.6: Solutions of the bound states equations (2.7.4) and (2.7.5) for even and odd

parity, respectively. We plot in red the function k and in blue p tan(pa/2) (even) and

−p cot(pa/2) (odd). We have taken m = a = 1 and V0 = 100.

regions we have

ψI(x) = eiqx +Re−iqx ,

ψII(x) = B1e
ipx +B2e

−ipx , (2.7.7)

ψIII(x) = Teiq(x−a) ,

where q =
√
2mE. The coefficients B1,2, R and T are to be determined, with the latter two

being identified with the reflection and transmission coefficients of the wave, respectively.

Demanding the continuity of the wave function and its first derivative at x = ±a/2 allows

us, after some algebra, to determine these coefficients. In particular, we are interested

here to the transmission coefficient that reads

T (E) =

[
cos(pa)− i

2

(q
p
+

p

q

)
sin(pa)

]−1
, (2.7.8)

which is the one-dimensional analogue of a scattering amplitude. Having the luxury of

an explicit expression, the analytic properties of T (E) in the complex E-plane are easily

determined. The transmission coefficient is analytic over the whole complex plane except

a branch-cut at E = 0 given by the variable q10 and possible poles whenever

cos pa =
i

2

(q
p
+

p

q

)
sin pa . (2.7.9)

When properly normalized, poles in T (E) corresponds to a transmitted wave without

10Note that the possible branch-cut singularities around p = 0 (E = −V0) eventually cancel between

each other, so that T (E) is single-valued around p = 0.
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Resonances

Bound states

E

Figure 2.7: Analytic structure of the transmission coefficient in the complex E-plane. The

black dots for E < 0 represents the stable bound states of the system, while the red points

are the resonances, that appear as poles in the second Riemann sheet when crossing the

branch-cut.

the corresponding incident wave, that is bound states. Dividing by cos(pa) and using the

trigonometric relation tan 2x = 2(cot x− tan x)−1, we can recast eq.(2.7.9) in the form

cot
pa

2
− tan

pa

2
= i
(q
p
+

p

q

)
, (2.7.10)

which has two possible set of solutions:

cot
pa

2
= i

p

q
, cot

pa

2
= i

q

p
. (2.7.11)

Let us now write

E = |E|eiφ (2.7.12)

and take the branch of the square root where

√
E =

√
|E|eiφ/2 . (2.7.13)

In this branch, negative real values of E correspond to φ = π, and thus

q =
√
2mE → i

√
2m|E| = ik , (2.7.14)

with k as in eq.(2.7.3). It is now immediate to see that eqs.(2.7.11) turn into the bound

state equations (2.7.4) and (2.7.5), confirming the expectations that simple poles of the

scattering amplitude are associated to stable bound states in the system.

Let us finally discuss unstable resonances. The analogue of the S-matrix is given by

S(E) ≡ |T |2 =
(
1 +

sin2 pa

4
(
E
V0

)(
1 + E

V0

)
)−1

. (2.7.15)
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Resonances occur when S is maximal, in this case at

sin pa = 0 , with E > 0 , (2.7.16)

corresponding to

a
√

2m(E + V0) = nπ → En =
π2n2

2a2m
− V0 > 0, . (2.7.17)

for all positive integer values of n for which the last relation in eq(2.7.17) holds. For such

values of En the reflection coefficient vanishes and the the wave is totally transmitted.

The transmission coefficient can be written as

T (E) =
1

cos pa

(
1− i

2
f(E)

)−1
, (2.7.18)

where f(E) = (q/p+ p/q) tan pa. Expanding around En, we have

f(E) = 0 +
df

dE

∣∣∣∣
En

(E − En) +O(E − En)
2 , cos pa = 1 +O(E − En)

2 , (2.7.19)

where
df

dE

∣∣∣∣
En

=
(q
p
+

p

q

) dp

dE

∣∣∣∣
En

≡ 4

Γn
, (2.7.20)

is real and positive. Plugging in T (E), we finally have, for E ≈ En,

T (E) ≈ 1

1− i
2
4
Γn

(E − En)
=

iΓ/2

(E − En) + iΓn/2
, (2.7.21)

which reproduces the expected Breit-Wigner form of a resonance, with Γn its decay width.

For Γn ≪ En, eq.(2.7.21) would indicate that T (E) has simple poles at

E = En −
i

2
Γn , (2.7.22)

i.e. in the complex plane just below the branch-cut, see fig.2.7. However, a closer inspection

shows that these poles are not associated to the original function T (E), but to its analytic

continuation below the cut, namely they sit at the second Riemann sheet of the function.

Indeed, the pole equation for T is given by eq.(2.7.9). Expanding around En, where

sin pna = 0, we get

1 +O(E − En)
2 =

i

2

(q
p
+

p

q

) dp

dE

∣∣∣∣
En

(E − En) +O(E − En)
2 . (2.7.23)

With the choice (2.7.13), a pole in the first Riemann sheet just below the positive real

axis is reached by taking φ = 2π, which would give in eq.(2.7.23) q → −q. In this way,

using eqs.(2.7.20) and (2.7.22), the r.h.s. of eq.(2.7.23) would give −1 instead of +1. The

equation is instead satisfied if we make a clock-wise rotation with φ small and negative,

crossing in this way the branch-cut at E > 0. In conclusion, the complex poles associated

to resonances occur in the second (more in general higher) Riemann sheet of scattering

amplitude functions.
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Chapter 3

Renormalization Theory

Loop amplitudes in quantum field theories are generally divergent. There are at least

three kinds of divergences in QFT: infra-red, collinear and ultra-violet divergences. Here

we only deal with the last kind, the ultra-violet (UV) divergences. They occur when the

momenta of the virtual particles running in the loops go to infinity (hence the name UV).

In order to make sense of these otherwise ill-defined amplitudes, we have to “renormalize”

the theory. Schematically, this process requires two steps. First, we change the theory so

that the amplitudes become finite (regularization) and then we redefine the parameters of

the Lagrangian in order to “hide” the divergences in unphysical quantities. All this process

is called renormalization of the theory. Before discussing the details of this procedure, it

is useful to first classify which amplitudes are potentially divergent.1 In this chapter we

will consider a generic QFT, with an arbitrary number of scalar, fermion and gauge fields.

The latter are taken in the unbroken phase, when they are massless.2

3.1 Superficial Degree of Divergence

Consider a generic graph G contributing to a given connected one-particle irreducible (1PI)

amplitude. Our aim will be to compute the superficial degree of divergence of δ(G).3 δ is

defined as the degree of divergence of the graph when all virtual momenta go to infinity at

the same time. Denoting by qi all the virtual momenta running and by G(qi) the integrand
1The analysis in this chapter closely follows chapter 12 of ref. [2], with a straightforward generalization

to space-time dimensions different than 4.
2The renormalization of spontaneously broken gauge theories will not be discussed in detail. However,

see the end of section 8.4 for a brief comment.
3This is called D in ref. [2]. We call it δ, because we will denote with the symbol D the number of

space-time dimensions in what follows.
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of the L-loop graph, we can define δ as

lim
λ→∞

λ4LG(λqi) ∝ λδ(G) . (3.1.1)

Notice that the rescaling qi → λqi has to be performed also to the loop integrals, and this

explains the λ4L factor in eq. (3.1.1). For instance, a one-loop graph of the form
∫

d4q

(2π)4
i

(p + q)2 −m2

i

q2 −m2
(3.1.2)

gives

lim
λ→∞

λ4
i

(p + λq)2 −m2

i

λ2q2 −m2
∝ λ0 (3.1.3)

and hence δ = 0. A graph is superficially divergent if δ ≥ 0 and superficially convergent if

δ < 0. In particular, δ = 0 corresponds to a logarithmic divergence, while δ > 0 gives rise

to a power-like divergence. The superficial degree of divergence of a graph depends clearly

on the structure of the graph, number of internal propagators, vertices, etc. In order to

be as general as possible, let us introduce some notation. We label with i = 1, . . . , nV the

nV different interactions present in the Lagrangian of the theory, and by di the number

of derivatives present in each interaction vertex i. We also denote by f = e, γ, . . . the

different fields present in the theory and by nif the number of fields of type f present in

the interaction vertex i. Any graph G is then characterized by the following quantities:

If ≡ number of propagators of type f

Ef ≡ number of external lines of type f

Ni ≡ number of interaction vertices i

(3.1.4)

The momentum space propagator behaves as

∆f (p) ∝ p2sf−2 (3.1.5)

where sf is the spin of the particle type f . This formula is correct for scalars (sf = 0)

and spin 1/2 fermions (sf = 1/2). For gauge fields with sf = 1, eq. (3.1.5) would give

∆f (p) ∼ constant, which is in fact the correct result for a massive vector, but it is not

the correct one, due to gauge invariance, for massless gauge fields, where one has sf = 0.

In the following we will use eq. (3.1.5), with the understanding that sf = 0 for massless

gauge fields. The powers of virtual momenta entering G is easily determined. We have

δ(G) =
∑

f

If (2sf − 2) +
∑

i

diNi + 4
(∑

f

If −
∑

i

Ni + 1
)
. (3.1.6)

The first, second and third terms in the right-hand side of eq. (3.1.6) represent the propa-

gator, the vertex and the loop contributions, respectively. The loop contribution has been
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written by considering each internal propagator with an independent virtual momentum

and imposing momentum conservation at each vertex. The +1 takes into account the

overall momentum conservation of the external lines. We can rewrite eq. (3.1.6) as

δ(G) =
∑

f

If (2sf + 2) +
∑

i

Ni(di − 4) + 4 . (3.1.7)

Since each internal (propagator) and external line has to end to a vertex, the internal to

both ends, the external to one end only, the following identities must hold, for any field

type f :

2If + Ef =
∑

i

Ni nif . (3.1.8)

We can use eq. (3.1.8) to solve for If and plug the result in eq. (3.1.7). In so doing we get

δ(G) = 4−
∑

f

Ef (sf + 1)−
∑

i

Ni

[
4− di −

∑

f

nif (sf + 1)
]
. (3.1.9)

We now show that the expression in square brackets in the second term of the right-hand

side of eq. (3.1.9) coincides with the dimensionality of the coupling constant, call it gi,

multiplying the vertex i in the Lagrangian. The latter, indeed, has, by definition, the

schematic form

L ⊃ gi∂
di
∏

f

φ
nif

f , (3.1.10)

omitting unnecessary details, such as the Lorentz indices and how the derivatives act on

the various fields. Since

[φf ] = sf + 1 , (3.1.11)

we immediately get

[gi] ≡ ∆i = 4− di −
∑

f

nif (sf + 1) . (3.1.12)

Using eq. (3.1.12) we finally arrive to the desired expression for the superficial degree of

divergence of a graph:

δ(G) = 4−
∑

f

Ef (sf + 1)−
∑

i

Ni∆i . (3.1.13)

Remarkably, the key factors determining δ are the dimensionality of the coupling constants

∆i. Notice that we are here computing the degree of divergence of single graphs. A given

connected 1PI Green function ΓEf is uniquely determined by Ef . In perturbation theory,

ΓEf =
∑

G, where the sum runs over all graphs with Ef external lines. A Green function

Γ(Ef ) is superficially finite only if all the graphs G entering this sum have δ(G) < 0. We

immediately learn from eq. (3.1.13) that increasing the number of external lines tends to

decrease δ. We classify all QFT’s as follows:
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• If ∆i ≥ 0 for all i = 1, . . . , nV , only a finite number of Green functions ΓEf , those

for which at most 4 −
∑

f Ef (sf + 1) ≥ 0, is divergent. We call such theories

renormalizable.

• If at least one ∆i < 0, an infinite number of Green functions Γ(Ef ) is divergent. We

call such theories non-renormalizable.

Among the renormalizable theories, a further distinction is possible: if ∆i > 0 for all

i = 1, . . . , nV , only a finite number of individual graphs diverges. We call such theories

super-renormalizable. When this distinction occurs, a renormalizable theory is defined as

one in which at least one coupling is dimensionless. The terminology “renormalizable”

and “non-renormalizable” applies also to individual operators or couplings. We denote a

coupling constant as renormalizable if its dimension is positive and non-renormalizable if

it is strictly negative. Similarly, an operator is denoted renormalizable if its dimension is

less or equal to four and non-renormalizable if it is higher than four.

Let us list the possible renormalizable couplings. In a QFT with scalars only, we can

have φ3 and φ4 interactions only. No renormalizable derivative interactions are allowed,

compatibly with Lorentz invariance. In a QFT with scalars and fermions, the only possible

renormalizable interactions are the Yukawa-like of the form φψ̄ψ or φψ̄γ5ψ. Again, no

Lorentz invariant renormalizable derivative interactions are allowed. When gauge fields

are included, we have ψ̄γµψAµ, ψ̄γµγ5ψAµ, (φ†∂µφ − φ∂µφ†)Aµ and φ2AµAµ. Other

possibly renormalizable interactions like (AµAµ)2 or (φ†∂µφ+ φ∂µφ†)Aµ are forbidden by

gauge invariance.

Multi-loop graphs can be divergent, despite being superficially convergent. This hap-

pens when the divergence arises from a sub-set of all virtual momenta becoming large,

keeping fixed the others. As an example, consider the two two-loop contributions to the

Compton scattering in QED in figure 3.1. In QED we have f = e, γ and no index i is

needed, since we have one interaction only, with ∆ = 0 (the theory is renormalizable).

Applying eq. (3.1.13) to these graphs, we get

δ(Ga) = δ(Gb) = 4− 2× 1− 2× 3

2
= −1 . (3.1.14)

Both graphs are superficially convergent, but while graph (a) is actually convergent, graph

(b) is divergent. This is seen by keeping fixed the virtual momentum running over the

big external loop while letting the virtual momenta in the small loop go to infinity. In

this situation, the small loop behaves as a sub-graph with effectively Ee = 2 and Eγ = 0,

that has δ = 1. Let us see this in some further detail. Neglecting unnecessary factors, the
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(a) (b)

Figure 3.1: Two superficially convergent graphs contributing at two-loop level to the

Compton scattering. Graph (a) is absolutely convergent, graph (b) is divergent, due to

the subintegration associated to the sub-graph enclosed in the dashed red rectangle.

amplitude associated to the graphs (a) and (b) in fig. 3.1 is schematically given by

Ma ∼
∫

d4q1d
4q2

1
/p1 + /q1

1

q21

1
/p1 + /q1 + /q2

1

q22

1
/p1 + /p2 + /q1 + /q2

1
/p4 + /q1 + /q2

1
/p4 + /q1

,

Mb ∼
∫

d4q1d
4q2

1
/p1 + /q1

1

q21

1

(/p1 + /p2 + /q1)2
1

q22

1
/p1 + /p2 + /q1 + /q2

1
/p4 + /q1

.
(3.1.15)

We have denoted by q1 and q2 the virtual momenta of the big and small photon loops,

respectively, by p1 and p4 the electron momenta and by p2 and p3 the photon momenta,

and used momentum conservation to write eq. (3.1.15) in terms of p1, p2 and p4. By

rescaling q1,2 → λq1,2 in eq. (3.1.15) one immediately recovers δ = −1 for both graphs.

However, if one keeps q1 fixed, Mb is still finite when integrating in q2, while Ma diverges,

with an effective degree of divergence of one, in agreement with the analysis above.

In general, a graph is convergent if δ < 0 not only when all the virtual momenta are

taken large, but also when any combination of virtual momenta is taken large, with the

remaining ones kept fixed. When this is the case, we say that the graph is absolutely

convergent.

It is straightforward to generalize to an arbitrary number of space-time dimensions the

computation of the superficial degree of divergence of a graph. Equation (3.1.6) is still

valid provided we replace the factor of 4 with D. In so doing we get

δ(G) = D −
∑

f

Ef
(
sf − 1 +

D

2

)
−
∑

i

Ni

(
D − di −

∑

f

nif
(
sf − 1 +

D

2

))
. (3.1.16)

In D space-time dimensions

[φf ] = sf − 1 +
D

2
(3.1.17)
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and consequently the interactions (3.1.10) have dimensions

[gi] ≡ ∆i = D − di −
∑

f

nif

(
sf − 1 +

D

2

)
. (3.1.18)

and eq. (3.1.13) becomes

δ(G) = D −
∑

f

Ef

(
sf − 1 +

D

2

)
−
∑

i

Ni∆i . (3.1.19)

The renormalizability of a theory in D dimensions is still characterized by the dimensions

of their couplings ∆i. If all ∆i ≥ 0 the theory is renormalizable, otherwise it is non-

renormalizable. We notice that whenD > 4 most four-dimensional renormalizable theories

turn into non-renormalizable ones, because the dimension of the couplings ∆i decreases

when D increases. For instance, in D = 5 dimensions, the gauge couplings constants have

dimension ∆ = −1/2. All gauge theories are non-renormalizable for D > 4. The only

renormalizable interaction up to D = 6 is the trilinear φ3 vertex. For D > 6 there are no

renormalizable vertices. On the contrary, when D < 4, non-renormalizable interactions in

D = 4 turn into renormalizable ones. For instance, φ6 in D = 3. Gauge theories become

super-renormalizable for D < 4.

3.2 Cancellation of divergences and Local Counterterms

Any graph G with Ef external lines is a function of the momenta of the external particles.

If G is divergent, one might naively argue that this function is ill-defined and does not

make sense. On the contrary, there is a way to disentangle the divergent part from the

rest, which remains finite and calculable. In order to understand how divergences can be

disentangled, it is enough to consider one-dimensional divergent integrals, toy versions of

the more involved integrals appearing in real amplitudes. Take for instance

I(q) =

∫ ∞

0

dk

q + k
. (3.2.1)

The function I(q) is divergent, with δ = 0. Differentiating with respect to the “external

momentum” q gives a finite integral, with δ = −1:4

I ′(q) = −
∫ ∞

0

dk

(q + k)2
= −1

q
. (3.2.2)

Integrating back, we get

I(q) = − log q + c (3.2.3)

4It is understood here and in the following that these integrals have been “regularized” (i.e. made

finite). In this way derivatives commute with the integration and can act directly on the integrand.
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Evidently, from eq. (3.2.3), the divergence of I(q) is all encoded in the constant c, while

the log q term is finite and calculable. Consider another example, with δ = 1:

Î(q) =

∫ ∞

0

kdk

q + k
. (3.2.4)

We now need to differentiate twice with respect to q to get a finite result. Integrating

back twice gives

Î(q) = q log q + aq + b . (3.2.5)

As before all the divergences are encoded in the two coefficients a and b, while the non-

polynomial q log q term is perfectly finite. The generalization of these results is obvious.

A graph with δ > 0 can be made convergent by taking δ + 1 derivatives with respect to

the external momenta and all the divergences are encoded in the coefficients of a polyno-

mial of degree δ in the external momenta. Notice that in general the graph will be only

superficially, and not absolutely, convergent. We will ignore for the moment this problem,

postponing its solution for later. Terms polynomial in momenta can be written, in configu-

ration space, as derivatives of a local Lagrangian density. In other words, divergences only

affect terms that can be written as local interactions5 in a Lagrangian. The divergences of

a graph with degree of divergence δ can be reabsorbed by adding to the Lagrangian δ +1

vertices with nif = Ef , of the form

L ⊃ a0
∏

f

φ
Ef

f + a1∂
∏

f

φ
Ef

f + . . .+ aδ∂
δ
∏

f

φ
Ef

f . (3.2.6)

If the theory already contains such interactions, the divergences simply amount to a re-

definitions of the corresponding couplings, or to a redefinition of the field themselves for

2-point functions. If they were not present, they are induced by quantum effects. In a

non-renormalizable theory, where Green functions eventually diverge for any Ef , cancel-

lation of the divergences imposes to us to add to the Lagrangian all possible terms of the

form (3.2.6). Of course, not every possible term is generated, but only those compatible

with the possible global symmetries of the Lagrangian. In a renormalizable theory, the

number of terms in eq. (3.2.6) is finite. Moreover, the dimension of the couplings ai in

eq. (3.2.6) induced by the divergences is

[an] = 4−
∑

f

Ef (sf + 1)− n , n = 0, . . . , δ . (3.2.7)

For a renormalizable theory, we have δ ≤ 4−
∑

f Ef (sf + 1) and hence

[an] ≥ δ − n ≥ 0 , n = 0, . . . , δ . (3.2.8)

5By interactions we here mean also terms quadratic in the fields.
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The couplings induced by quantum effects in a renormalizable theory are themselves renor-

malizable. These theories are self-consistent at the quantum level, provided we write down

all the couplings with ∆i ≥ 0 allowed by symmetries. In renormalizable theories the finite

number of local counter-terms an is enough to remove all divergences and make the theory

finite. Since these terms were already present in the original Lagrangian, we see that all

the divergences can be buried into a redefinition of the interactions, masses and fields.

3.3 Regularization and Renormalization: QED Case

Dealing with divergent Green functions can lead to subtleties and misleading results. For

this reason it is highly desirable to modify the original theory so that divergences no longer

appear. This process is called regularization. There are various ways to do that and we

will not list all of them. The regularization process should be done in a way such that the

modified Lagrangian has all the symmetries present in the original one.6

We only mention two relevant types of regularization, that will be used throughout

the course: cut-off regularization and dimensional regularization. The first is certainly

the simplest and most physical way of regularizing a theory. It amounts of truncating

the integration over the virtual momenta, in principle running up to infinity, to a limiting

value Λ. In this way all UV divergences are clearly removed and Green functions become

Λ-dependent. divergences will now appear as power-like or logarithmic terms in Λ in an

expansion for Λ → ∞. The physical and very reasonable assumption underlying cut-

off regularization is that at short distances L ∼ 1/Λ our theory is no longer valid, and

we parametrize our ignorance by cutting the momenta at that scale. The regularized

theory differs from the original one only in the UV, while their IR behaviours are similar,

a welcome feature. Cut-off regularization has however a serious drawback: it does not

respect gauge invariance.

Dimensional regularization (DR) is a bit more exotic: it amounts in changing the

space-time dimensions from 4 to 4− ϵ, with ϵ≪ 1. We make sense of the notion of a non-

integer number of dimensions by analytic continuation. In the dimensionally regulated

Lagrangian UV divergences no longer appear. In an expansion for small ϵ they are given

by poles in 1/ϵn, with n ≥ 1. Dimensional regularization respects gauge invariance and

is practically one of the simplest regulators to use. Most of the computations in the

literature, mainly when dealing with gauge theories, are performed using DR. In addition,

6As we will see, there are symmetries that are not respected by any regulator. When this happens,

the symmetry is called anomalous, since it is no longer there at the quantum level. Anomalies will be the

subject of chapter 9.
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DR has the great virtue of respecting dimensional analysis and is hence the most suitable

regularization in the context of effective field theories. More on this point in section 7.7.

Dimensional regularization has a (minor) drawback: it modifies the theory to all scales,

not only in the UV, and for this reason it has to be used with some care, when mass

scales are present. More on this point in section 5.6. Further technical details on how

to use DR are discussed in subsection 3.4. Of course, introducing a regulator is not the

whole story to deal with divergences, since divergences strike back when we recover the

original theory! However, in the regularized theory we can meaningfully manipulate the

Green functions, now finite. As we have seen in section 3.2, divergences only appear in

local terms in Green functions and can be removed by redefining the fields, couplings and

masses of the original Lagrangian. This process is called renormalization. It is clear that

such a redefinition implies that the masses and coupling constants appearing in the initial

Largangian (sometimes called bare parameters) cannot be the physical ones. We have

seen that the Källen-Lehmann representation for the exact propagators in an interacting

theory provides us with a definition of physical mass and properly normalized quantum

field. There is not a generic and unique procedure for defining the coupling constants,

that depends on the specific theory we are dealing with. As we will see in great detail

in the rest of these lectures, coupling constants are commonly defined by demanding that

the 1PI Green functions associated to them have a specific value (determined from the

experiment) in a given point in momentum space.

Let us consider as an example the renormalization of QED, namely one charged massive

fermion (electron) interacting with a photon. First of all, let us use eq. (3.1.13) to classify

the possible divergent Green functions. We have only one dimensionless coupling constant

and f = e, γ, so

δ = 4− 3

2
Ee − Eγ . (3.3.1)

The divergent Green functions contain graphs with δ ≥ 0. Given eq. (3.3.1), they are

(Ee = 0, Eγ = 0, 1, 2, 3, 4), (Ee = 1, Eγ = 0, 1, 2), (Ee = 2, Eγ = 0, 1). Lorentz invariance

forbids Green functions with an odd number of electron lines, while charge conjugation

implies that (Ee = 0, Eγ = 1, 3) vanishes. We neglect the quartically divergent vacuum

amplitude (E0 = Eγ = 0) since it is irrelevant in a QFT where gravity is not dynamical.

In total, we are left with four cases: (Ee = 0, Eγ = 2, 4), (Ee = 2, Eγ = 0, 1).

Ee = 2,Eγ = 1 We denote this Green function by Γab
µ (p, p′), where a, b are spinor indices

and p and p′ are the momenta of the electron lines. It corresponds to the basic QED

interaction given by minimal coupling. Since δ(Γµ) = 0, the divergence can only appear in

a constant term, independent of p and p′. Given the Lorentz structure of Γµ, we necessarily
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have (omitting spinor indices from now on)

iΓµ(p, p
′) = ieLγµ + iΓfinite

µ (p, p′) , (3.3.2)

where L is a divergent constant, possibly reabsorbed in the definition of the electric charge.

Ee = 2,Eγ = 0 We denote this Green function by Σ(p). It corresponds to the electron

propagator. We have δ(Σ) = 1, so divergences proportional to a constant and to a term

linear in momentum can appear. The Lorentz structure implies

iΣ(p) = iA+ iB /p+ iΣfinite(p) , (3.3.3)

where A and B are divergent constants. Gauge invariance imposes the identity B = L to

all orders in perturbation theory.

Ee = 0,Eγ = 2 We denote this Green function by Πµν(q). It corresponds to the photon

propagator. We have δ(Π) = 2, so divergences up to terms quadratic in q might appear.

Lorentz invariance forbids terms linear in q, so we have

iΠµν(q) = iC1ηµν + iC2q
2ηµν + iC3qµqν + iΠfinite

µν (q) . (3.3.4)

Dimensional arguments only would imply the appearance of three independent divergent

constants. However, gauge invariance implies the following identity:7

qµΠµν(q) = qνΠµν(q) = 0 . (3.3.5)

Using eq. (3.3.5) we have

C1 = 0 , C2 = −C3 ≡ C,

Πfinite
µν (q) = (ηµνq

2 − qµqν)Π
finite(q2)

(3.3.6)

and hence

iΠµν(q) = (ηµνq
2 − qµqν)

(
iC + iΠfinite(q2)

)
. (3.3.7)

We notice how symmetries (gauge invariance) are crucial to establish relations among

divergences and to possibly lower the degree of divergence of a Green function from its

power counting value (in our case, from δ = 2 to δ = 0).

7The identity (3.3.5) is proved in section 4.4.3. Its non-abelian generalization is proved in section 6.3.

48



Ee = 0,Eγ = 4 We denote this Green function by Mµνρσ(pi), with pi (i = 1, 2, 3, 4) the

momenta of the external photons. It corresponds to the 2 → 2 photon scattering. We

have δ(M) = 0, implying a possible divergence in the constant factor. Lorentz invariance

and Bose symmetry of the external legs fix the Green function to be

Mµνρσ(pi) = K(ηµνηρσ + ηµρηνσ + ηµσηνρ) +Mfinite
µνρσ (pi) (3.3.8)

with K the divergent constant. Once again, gauge invariance imposes other constraints

and requires that8

pµ1Mµνρσ(pi) = pν2Mµνρσ(pi) = pρ3Mµνρσ(pi) = pσ4Mµνρσ(pi) = 0 . (3.3.9)

The above relation implies that K = 0 and that a relation similar to eq. (3.3.9) applies

with M →Mfinite.9

Summarizing, taking gauge invariance into account, three Green functions diverge in

QED, the photon and electron propagators and the interaction vertex, with a total of three

independent divergences, encoded in the constants L, A and C in eqs. (3.3.2), (3.3.3), and

(3.3.7).

Let us now see how these divergences can be cancelled, to all orders in perturbation

theory, by suitable local counter-terms. The QED Lagrangian reads

LQED = −1

4
FB,µνF

µν
B + ψ̄B

(
i /DB(AB)−mB

)
ψB . (3.3.10)

Here DB,µ(AB) = ∂µ − ieBAB,µ is the covariant derivative and the subscript B reminds

us that the fields, mass and coupling constant are the bare ones. The physical fields are

defined as

ψB =
√

Z2ψ , AB,µ =
√

Z3Aµ , (3.3.11)

We then have

LQED = −1

4
Z3FµνF

µν + Z2ψ̄i/∂ψ −mBZ2ψ̄ψ + eBZ2

√
Z3ψ̄Aµγ

µψ , (3.3.12)

and define renormalized mass and electric charge as

eBZ2

√
Z3 = Z1e , mBZ2 = m+ δm. (3.3.13)

8Identities such as eq. (3.3.9) are shown to hold in section 4.4.2.
9It is easy to understand why gauge invariance forbids the presence of the factor K in eq.(3.3.8) or

C1 in eq.(3.3.4). If present, these divergences would require a counter-term in the Lagrangian of the form

(AµA
µ)2 or AµA

µ respectively, which obviously does not respect gauge invariance.
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= ieγµ(Z1 − 1)

p
= i(Z2 − 1) /p − iδm

= −i(Z3 − 1)(ηµνq2 − qµqν)
q

Figure 3.2: Feynman rules for the QED counter-terms defined in eq. (3.3.14).

In terms of the physical fields and parameters, the QED Lagrangian (3.3.10) can be rewrit-

ten as

LQED =− 1

4
FµνF

µν + ψ̄
(
i /D(A)−m

)
ψ

− 1

4
(Z3 − 1)FµνF

µν + (Z2 − 1)ψ̄i /∂ψ − δmψ̄ψ + e(Z1 − 1)ψ̄Aµγ
µψ .

(3.3.14)

The first line in eq. (3.3.14) is the QED Lagrangian written now in terms of the physi-

cal field and parameters, and the second line contains the counter-terms. The latter are

unphysical local terms which are there just to cancel the divergences appearing in the

loop diagrams. They also include terms quadratic in the fields. However, contrary to

the canonical kinetic terms in the first line, they should be considered as new effective

vertices. This is clear by noticing that for e = 0 (free theory), no divergences occur and all

counter-terms vanish. For e ≪ 1, all the counter-terms can be Taylor expanded and are

given by positive powers of e. As such, they should be considered as interaction terms. In

evaluating Feynman diagrams, we should take into account the new contributions given

by the counter-terms. The Feynman rules associated to these interactions is straightfor-

wardly derived and reported in fig. 3.2. The four counter-terms Z1, Z2, Z3 and δm in the

Lagrangian (3.3.14) are not all independent. In particular, gauge invariance requires

Z1 = Z2 , (3.3.15)

which is equivalent to the condition B = Lmentioned before. This will be proved in section

4.4.3. Order by order in perturbation theory, the values of the counter-terms Z1 = Z2,

Z3 and δm is suitably chosen to cancel the divergences appearing in L = B, C and A,

respectively. For instance, at one-loop level, we have L = 1+e2L(1)+ . . ., C = e2C(1)+ . . .,
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A = e2A(1) + . . .. Adding the counter-term contributions, the tree-level + one-loop Green

functions read

Γµ(p, p
′) = eγµ(1 + e2L(1) + Z1 − 1) + Γfinite

µ (p, p′) ,

Σ(p) = (1 + e2L1 + Z2 − 1)/p −m+ e2A(1) − δm+Σfinite(p) ,

Πµν(q) = (ηµνq
2 − qµqν)

(
e2C(1) − Z3 + 1 +Πfinite(q2)

)
.

(3.3.16)

from which we get the values of the counter-terms up to order e2:

Z1 − 1 = −e2L(1) , Z2 = Z1 , Z3 = 1 + e2C(1) , δm = e2A(1) . (3.3.17)

It is now time to come back to a problem we encountered in section 3.2, related to the fact

that in general taking derivatives with respect to external momentum does not necessarily

make the graph absolutely convergent. An example of a graph of this sort is given by

the two-loop graph (b) in fig. 3.1. If we take derivatives with respect to the external

momenta of Mb in eq. (3.1.15), say p1 or p4, we see that when the derivative acts on the

q2-independent propagators we do not improve the convergence of the q2-loop integration,

that in fact remains divergent. This problem is easily solved by noticing that, together

with the graph (b) of fig. 3.1, we should also consider the graph in which the one-loop

enclosed in the red rectangle is replaced by the fermion propagator counter-term. The

divergence in the small loop is cancelled when summing the two diagrams. This example

makes clear that counter-terms have to be considered in evaluating Feynman diagrams

like ordinary interaction vertices and should be inserted in graphs consistently to the

order in perturbation theory one is considering. In this way divergences are removed even

in the more tricky situation of divergent sub-graphs that share a common line, the so

called overlapping divergences. An example of this sort in QED is given by the two-loop

correction to the photon propagator shown in fig. 3.3. In order to remove all divergences

from this graph, one has to consider the one-loop graphs where one vertex is replaced by

a counter-term, up to order e2. Then a remaining local divergence is finally cancelled by

considering the photon propagator counter-term at order e4.

The considerations made here apply of course to any local QFT and are not restricted

to the QED case, that we have taken as an example. The proof that all divergences are

cancelled by the counter-terms is not trivial at all and is known as the BPHZ theorem,

from the authors Bogoliubov, Parasiuk, Hepp and Zimmermann that at different stages

have proved this statement.

Renormalizability puts stringent constraints on the possible interactions appearing

in the Lagrangian. However, upon including all possible interactions, all theories become

renormalizable, in the sense that we can get rid of all possible infinities. The key difference
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+ +
e2 e2

+
e4

Figure 3.3: Two-loop graph contributing to the photon propagator and its additional

graphs including counter-terms canceling all the divergences. The e2 and e4 factors denote

the order in which the counter-terms Z2 and Z3 enter the various graphs.

between renormalizable and non-renormalizable theories is in their predictivity. There is

nothing wrong with non-renormalizable theories. If we have a coupling constant g with

scaling dimension ∆ < 0, we can always write it as

g =
1

M |∆| . (3.3.18)

In scattering amplitudes, by dimensional analysis, the coupling g will always appear as

(E/M)|∆|, where E is the energy scale of the process under consideration. For E ≪ M ,

the coupling g is irrelevant (in fact, non-renormalizable couplings are also called irrelevant

couplings, see section 5.1). Despite the fact that the theory is formally non-renormalizable

and requires an infinite number of counter-terms, in practice at sufficiently low energies

most of these interactions are negligible and make the non-renormalizable theory useful

and predictive enough. A relevant example of non-renormalizable theory is gravity. Seen

as a QFT, gravity is among the most non-renormalizable theories. The mass scale entering

the non-renormalizable couplings like in eq. (3.3.18) is MP l ∼ 1018 GeV. We do not know

which is the quantum theory of gravity (although we have some candidates, most notably

string theory). Unfortunately (or fortunately, depending on the point of view), in all

practical cases, MP l is so large that gravity effects are always negligible in high energy

physics. Non-renormalizable theories might also appear from renormalizable ones when

some massive fields are integrated out. A relevant case is the four-fermion electroweak

interaction, approximation of the Standard Model when one integrates out the W and Z

bosons. At sufficiently low energies E ≪MW ,MZ , the Fermi theory provides an excellent

description of the physics.

In the modern approach to QFT we consider all theories except, maybe, the possible

ultimate theory of nature (string theory?) as effective field theories, namely theories valid

up to some energy scales. More on effective field theories in chapter 7.
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3.4 Dimensional Regularization

Dimensional regularization can be formally introduced via a set of axioms, as explained,

e.g., in ref. [9]. Here we briefly discuss its practical aspects, starting from the simple

example of the (Euclidean) integral (tadpole of φ4 theory)

Td ≡
∫

ddp

(2π)d
1

p2 +m2
= md−2Γ(1− d/2)

(4π)d/2
, (3.4.1)

(where m is the mass of the scalar) which converges in the IR as long as m2 ≠ 0 and

in the UV only for d < 2. In this case, the r.h.s. is easily calculated by recalling that

1/A =
∫∞
0 dt e−tA, which turns Td into a Gaussian integral in d-dimensions that, once

calculated, allows to express Td in terms of Γ(x) =
∫∞
0 dt tx−1e−t, which converges for

x > 0. Note that, while in the intermediate steps of the calculation d has been treated as

an integer number, the r.h.s. of eq. (3.4.1) is well defined (via the analytic continuation

of the Γ function10) for any complex d which is not an even integer. This simple obser-

vation constitutes, in practice, a regularization of the integral Td because it now assumes

a finite value (given by the r.h.s. of eq. (3.4.1)) for (almost) all d, analogously to what

happens when the regularization is done by other techniques, such as the introduction of

a large-momentum cutoff Λ. However, a reminder of the divergent nature of the original

integral is in the fact that the r.h.s. itself diverges if d approaches even integer values ≥ 2.

An important and general property of this regularization method is that the regularized

integral (3.4.1) in the massless case m→ 0 vanishes for d > 2, leading to the relation

∫
ddp

(2π)d
1

p2
= 0. (3.4.2)

This is due to the fact that, because of the absence of a mass scale, the IR and UV

behaviors of the original integral are the same and therefore there is no value of d for which

the integral converges in the absence of suitable cutoffs. In general, DR sets consistently to

0 all the integrals of this kind, i.e., those which are homogeneous functions of the momenta

and therefore lack a mass scale.

As stated above, dimensionally regularized integrals are characterized by dimensional

poles. In order to understand their meaning consider Td in d = 4 with a cutoff regu-

larization: power counting (or a direct analysis) suggests that T (Λ)
4 (Λ ≫ m) = a2Λ2 +

a0m2 ln(Λ/m) + finite, where Λ is the cutoff. In DR, instead, Td shows (among other

terms) a dimensional pole ∼ 1/ϵ for d = 4− ϵ→ 4. Interestingly enough, on the basis of

10As we discuss below, the analytic continuation of integrals such as eq. (3.4.1) can be done without

invoking Γ functions and their properties.
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the approach discussed further below one can show that the residue at this pole is a0m2,

i.e., the coefficient of ln(Λ/m) in T (Λ)
4 . In this sense, dimensional poles appear in an inte-

gral in DR if and only if the same integral regularized with a cutoff shows a logarithmic

term ∼ ln(Λ/m), either as a leading or subleading dependence on Λ ≫ m. This is the

reason why Td has also a dimensional pole in d = 2: in fact, one can easily see that T (Λ)
2

has a leading dependence on ln(Λ/m), the coefficient of which is given by the residue of Td

for d→ 2. This is also the reason why an integral such as the one in eq. (3.4.2) vanishes:

if calculated with a cutoff one has
∫
ddp 1/p2 ∝ Λd−2 which, for generic dimensionality

d, shows no logarithmic dependence on Λ and therefore the corresponding dimensionally

regularized integral has no poles. The absence of poles (plus additional requirements of

boundedness) is heuristically the reason why the corresponding dimensionally regularized

integral can be taken vanishing.

Dimensional regularization without Γ functions—Here we discuss a practical way of

determining the leading dimensional pole of a generic loop integral without expressing it

in terms of the Γ functions which are typically associated with DR (see, e.g., ref. [1]). In

order to be concrete, consider again Td in eq. (3.4.1) which can be expressed in terms of

the Γ function, as briefly discussed above. Being Γ(x) an analytic function with isolated

simple poles for x = 0, −1, −2, . . . , one concludes that Td develops a dimensional pole

≃ 2m2/(4π)2 × 1/ϵ for ϵ = 4 − d → 0. This conclusion can actually be drawn without

invoking the properties of Γ(x), as we explain below. Additional details can be found in

ref. [9].

The main point of DR is to assign a mathematical meaning to integrals performed in

a non-integer (or even complex) number of dimensions d, i.e., to quantities like

Id ≡
∫

ddpf(|p⃗|), (3.4.3)

where f is a sufficiently smooth function. For integer d = 1, 2, . . . , the integral can be

done in spherical coordinates and therefore

Id = Ωd

∫ ∞

0
dp pd−1f(p), (3.4.4)

where

Ωd =
2πd/2

Γ(d/2)
(3.4.5)

is the solid angle in d-dimensions.11 The r.h.s. of eq. (3.4.4) is actually well-defined also

for complex values of d ∈ C, as long as the remaining integral converges. In fact, Ωd in

11Ωd can be determined by calculating Id in eq. (3.4.3) with f(|p⃗|) = exp{−
∑d

i=1 p
2
i } both in cartesian

and in spherical coordinates (see eq. (3.4.4)), which give Id = πd/2 and Id = ΩdΓ(d/2)/2, respectively, and

therefore eq. (3.4.5).
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eq. (3.4.5) is also well-defined for d ∈ C, due to the properties of the Γ function. Upon

increasing the value of Re d, however, the “radial” integral

Rd ≡
∫ ∞

0
dp pd−1f(p) (3.4.6)

might not converge for p→∞. In order to be concrete assume, for example, that

f(p→∞) = a−1p
−1 + a−2p

−2 + . . . with finite f(0). (3.4.7)

Accordingly, Rd converges within the strip S1 in the complex plane with 0 < Re d < 1.

For larger values of Re d, one can simply define Rd via its analytic continuation, which

can be determined by observing that the following identity

Rd =

∫ A

0
dp pd−1f(p) +

∫ ∞

A
dp pd−1

[
f(p)− a−1p

−1]− a−1
d− 1

Ad−1 (3.4.8)

holds for arbitrary A > 0 and d ∈ S1, the latter being a necessary condition for the last

integral to converge. In fact, the last term above is nothing but
∫∞
A dp pd−1×a−1p−1, sub-

tracted from the preceding term. The original integration
∫∞
0 has been split as

∫ A
0 +

∫∞
A

because, otherwise, the subtraction from f(p) of the leading term a−1p−1 of its expansion

for large p would have spoiled the convergence of the integral for p→ 0. Now we note that

the first integral on the r.h.s. of eq. (3.4.8) is finite as long as Re d > 0, while the integrand

of the second integral behaves as ∼ a−2p−2 for large p and therefore it converges as long as

d is within the strip S2 with 0 < Re d < 2, which extends up to Re d = 2. The third term,

instead, is characterized by an isolated pole (on the real axis) for d = 1, with a residue

−a−1 independent of the value of A. Overall, Rd written as in eq. (3.4.8) converges within

the strip S2, which is larger than the original one S1. As a consequence of this extension

a dimensional pole at d = 1 with residue −a−1 emerges within S2, at the boundary of

S1. The procedure outlined above can be repeated: in fact, the domain of convergence of

the integral of f(p) − a−1p−1 in eq. (3.4.8) can be further extended by subtracting (and

adding) the leading behavior of the integrand for p→∞, i.e., a−2p−2. As a result, within

the strip S2, Rd in eq. (3.4.8) can also be written as

Rd =

∫ A

0
dp pd−1f(p)+

∫ ∞

A
dp pd−1

[
f(p)− a−1p

−1 − a−2p
−2]− a−1

d− 1
Ad−1− a−2

d− 2
Ad−2,

(3.4.9)

which actually converges within the larger strip S3 extending up to Re d = 3. As in the

previous case, this further extension leaves behind a dimensional pole at d = 2, with a

residue −a−2 that is independent of A. Proceeding further one can analytically continue

Rd in eq. (3.4.6) to arbitrarily large values of Re d, leaving behind a set of poles for d equal
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to the opposite powers of p which appear in the large-p expansion of f(p) (see eq. (3.4.7));

the residue at each of these poles is the opposite of the corresponding coefficient of this

expansion. Given that Id = ΩdRd (compare eqs. (3.4.4) and (3.4.6)), the same applies to

Id, the residues of which carry the additional factor Ωd. These are actually the dimensional

poles that are encoded in the Γ functions in terms of which, very often, one is able to cast

the integral of the form (3.4.3) which are encountered in field-theoretical calculations.

As a simple application of the procedure discussed above, consider the integral in

eq. (3.4.1): by expanding the integrand for p2 ≫ m2, one has

1

p2 +m2
=

1

p2
− m2

p4
+

m4

p6
+O(p−8) (3.4.10)

and therefore the integral has dimensional poles for d = 2, 4, 6, . . . , with residues

−Ω2/(2π)2, m2Ω4/(2π)4, −m4Ω6/(2π)6, . . . . Taking into account the expression of Ωd

in eq. (3.4.5), one readily verifies that these are the same poles as those of the Γ function

on the r.h.s. of eq. (3.4.1).

As a less trivial example, consider the integral that one encounters in the calcula-

tion of the one-loop vacuum polarization in QED. After having introduced the Feynman

parameterization and done the Wick’s rotation, it takes the form
∫

ddp

(2π)d
Ap2 +B

(p2 +∆)2
with

Ap2 +B

(p2 +∆)2
=

A

p2
+

B − 2A∆

p4
+O(p−6). (3.4.11)

According to the discussion above, the dimensional pole for d = 4− ϵ is simply given by

1

−ϵ ×
Ω4

(2π)4
× (−1)(B − 2A∆), (3.4.12)

without the need of invoking Γ functions. Similarly, when calculating the renormalization

of the QED vertex at one loop, one encounters the integral
∫

d4k

(2π)4
−i
k2
γνi

/q + /k +m

(q + k)2 −m2
γµi

/p+ /k +m

(p + k)2 −m2
γν . (3.4.13)

In order to determine the dimensional pole for d → 4, we need to know the coefficient of

the term ∼ 1/k4 in the large-k expansion of the integrand, which, in this case, coincides

with its leading term:
−i
k2
γνi

/k

k2
γµi

/k

k2
γν
∫
= iγµ

k2

(k2)3
, (3.4.14)

where we used the algebra of γ matrices and the fact that kµkν
∫
= (k2/4)ηµν . After a

Wick’s rotation, the dimensional pole for ϵ = 4−d→ 0 of the integral (3.4.13) is therefore

given by

i× iγµ ×
1

−ϵ ×
Ω4

(2π)4
× (−1) = −γµ

1

ϵ

1

2π2
. (3.4.15)
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Chapter 4

External Fields and Generating

Functionals

It is often useful to study the properties of QFT’s coupled with external sources. Consider

a set of classical sources Jr(x) coupled to some fields φr(x). The fields φr can be scalars,

fermions or vectors, and will correspondingly couple to scalar, fermion or vector currents

Jr. In general φr can also be composite fields, although we take them elementary for

simplicity. We can define the J-dependent vacuum functional

⟨0|0⟩J ≡ Z[J ] =

∫
Dφr eiS(φ)+i

∫
d4xJr(x)φr(x) . (4.0.1)

All correlation functions of the theory will be given by functional derivatives of Z[J ] with

respect to Jr, evaluated at Jr = 0:

1

Z

δnZ[J ]

δJr1(x1) . . . δJrn(xn)

∣∣∣∣
Jr=0

= in⟨0|T
[
φr1(x1) . . . φrn(xn)

]
|0⟩ . (4.0.2)

The functional Z[J ] is the generator of all amplitudes, connected and disconnected. We

can define a similar functional generating connected amplitudes only, W [J ]. This is simply

given by

W [J ] = −i logZ[J ] . (4.0.3)

Connected Green functions are defined similarly to eq.(4.0.2):

δnW [J ]

δJr1(x1) . . . δJrn(xn)

∣∣∣∣
Jr=0

= in−1⟨0|T
[
φr1(x1) . . . φrn(xn)

]
|0⟩c . (4.0.4)

For instance, for a single field φ, we have

δW [J ]

δJ(x)

∣∣∣∣
J=0

= (−i) 1
Z

δZ

δJ(x)

∣∣∣∣
J=0

= ⟨0|φ(x)|0⟩ , (4.0.5)
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and hence

⟨0|φ(x)|0⟩c = ⟨0|φ(x)|0⟩ . (4.0.6)

Taking one further functional derivative gives

δ2W [J ]

δJ(x)δJ(y)

∣∣∣∣
J=0

=(−i)
(
1

Z

δ2Z

δJ(x)δJ(y)
− 1

Z2

δZ

δJ(x)

δZ

δJ(y)

) ∣∣∣∣
J=0

=i
(
⟨0|T [φ(x)φ(y)]|0⟩ − ⟨0|φ(x)|0⟩ ⟨0|φ(y)|0⟩

)
,

(4.0.7)

from which we find the connected time-ordered two-point function

⟨0|T [φ(x)φ(y)]|0⟩c = ⟨0|T [φ(x)φ(y)]|0⟩ − ⟨0|φ(x)|0⟩ ⟨0|φ(y)|0⟩ . (4.0.8)

Continuing in this way iteratively allows us to find all connected higher point functions.

4.1 The 1PI Effective Action

We can proceed further and define a functional Γ[Φ] that generates 1-particle irreducible

amplitudes only.1 The source Φ(x) is defined as (omitting for simplicity the index r from

now on)

Φ(x) ≡ δW [J ]

δJ(x)
(4.1.1)

and is then a (in general very complicated) functional of the external sources J .2 The 1PI

generator is defined as

Γ[Φ] = W [J ]−
∫

d4xΦ(x)J(x) . (4.1.2)

It is the Legendre transform of W [J ], very much like the Lagrangian is the Legendre trans-

form of the Hamiltonian. In eq. (4.1.2) it is understood that we have inverted eq. (4.1.1)

so that J = J [Φ]. We have

δΓ

δΦ(x)
=

∫
d4y
( δW

δJ(y)
− Φ(y)

) δJ(y)
δΦ(x)

− J(x) = −J(x) . (4.1.3)

When J = 0, eq. (4.1.3) can be seen as an equation of motion of Φ with action Γ. Γ is in

fact the quantum generalization of the action and is also denoted the quantum effective

action. It is an effective action in the sense that all loop amplitudes can be calculated as

sum of connected tree diagrams obtained using Γ[Φ] instead of S[φ].3 Thus, all loop effects

1Recall that a 1PI amplitude is defined as the amplitude whose defining graphs cannot be divided in

two by cutting one internal line.
2The analysis in this section closely follows section 16.1 of ref. [2].
3It is important to keep in mind that Γ, contrary to S, is not in general a local functional of the fields:

Γ[Φ] ̸=
∫

d4xLeff (Φ(x)), see eq.(4.1.11).
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are encoded in Γ[Φ]. In order to see this, let us define the functional generator WΓ[J ] as

the generator of connected amplitudes obtained starting from an action given by Γ:

eiWΓ[J,g] =

∫
Dφ exp

( i
g

(
Γ[φ] +

∫
d4xJ(x)φ(x)

))
. (4.1.4)

In (4.1.4) we have introduced a parameter g, that plays the role of ! and is a loop-counting

parameter. For connected graphs the number of loops L is given by

L = I − V + 1 , (4.1.5)

where I is the total number of propagators and V is the total number of vertices in the

graph. Indeed, this coincides with the number of independent virtual momenta entering

the graph, the +1 coming from the conservation of the overall external momenta. We

have already used this relation in eq. (3.1.6). We see from eq. (4.1.4) that the propagator

of each field is proportional to g (inverse of the action), while any vertex goes like 1/g.

Thus the L-loop contribution to WΓ, W
(L)
Γ , goes like gI−V = gL−1. In a loop expansion

we can write

WΓ[J, g] =
∞∑

L=0

gL−1W (L)
Γ [J ] . (4.1.6)

Consider now in eq. (4.1.4) the tree-level contribution only, which can be selected by taking

the limit g → 0. By using a saddle point approximation we have

lim
g→0

eiWΓ[J,g] = e
i
gW

(0)
Γ [J ] = exp

( i
g

(
Γ[Φ] +

∫
d4xJ(x)Φ(x)

))
, (4.1.7)

where Φ(x) extremizes the exponential, namely

δΓ

δφ(x)

∣∣∣∣
φ=Φ

+ J(x) = 0 . (4.1.8)

Comparing eq. (4.1.2) with eq. (4.1.7) and eq. (4.1.3) with (4.1.8), we conclude that

W (0)
Γ [J ] = W [J ] . (4.1.9)

Stated differently, we can write

iW [J ] =

∫

Connected
tree graphs

Dφ eiΓ(φ)+i
∫
Jφ . (4.1.10)

Since any connected graph is a tree with 1PI vertices, we conclude that Γ(φ) generates all

1PI amplitudes:

Γ(φ) =
∞∑

n=0

1

n!

∫
d4x1 . . .

∫
d4xn Γ

(n)(x1, . . . , xn)φ(x1) . . . φ(xn) . (4.1.11)
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The quantum effective action Γ can also be computed directly starting from the action S,

without passing through W [J ]. One has

eiΓ(φ0) =

∫

1PI
Dφ eiS(φ0+φ) , (4.1.12)

where 1PI means that we should only consider 1PI graphs in evaluating the path integral

and φ0 is an arbitrary field configuration. This formula is a direct consequence of the fact

that Γ is the quantum version of S. Given a classical configuration φ0, the quantum action

of φ0 is given by integrating out quantum fluctuations φ around the classical configuration

φ0. We invite the reader to check the validity (and the usefulness) of eq. (4.1.12) by

formally computing Γ(φ) at one-loop level using eq. (4.1.12) and directly from the definition

(4.1.2).

4.2 The Coleman-Weinberg Effective Potential

The effective potential Veff is defined as the quantum action Γ, evaluated for constant

field configurations φ0:4

Γ(φ = φ0) = −V4Veff (φ0) , (4.2.1)

where V4 is the volume of space-time, coming from
∫
d4x. It is the quantum analogue of

the classical potential V0 defined as S(φ = φ0) = −V4V0(φ0). Let us explicitly compute

Veff at one-loop level for the simple scalar theory

L(φ) = 1

2
(∂µφB)(∂

µφB)−
1

2
m2

Bφ
2
B −

λB
4!
φ4B . (4.2.2)

First of all, we express the Lagrangian in terms of the physical parameters and fields:

φB =
√
Zφ , m2

BZ = m2 + δm2 , λBZ
2 = Zλλ , (4.2.3)

so that

L(φ) = 1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2 − λ

4!
φ4 + Lc.t.(φ) , (4.2.4)

where the counter-term Lagrangian reads

Lc.t.(φ) =
1

2
(Z − 1)(∂µφ)(∂

µφ)− 1

2
δm2φ2 − λ

4!
(Zλ − 1)φ4 . (4.2.5)

We compute the effective potential starting from eq. (4.1.12) with φ0 constant. We get

L(φ0 + φ) =− 1

2
m2φ20 −

λ

4!
φ40 + φ(−m2φ0 −

λ

6
φ30)

+
1

2
(∂µφ)(∂

µφ)− 1

2
φ2(m2 +

λ

2
φ20)−

λ

6
φ0φ

3 − λ

4!
φ4 + Lc.t.(φ0 + φ) .

(4.2.6)

4The analysis in this section closely follows section 16.2 of ref. [2].
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We have ordered the terms according to the powers of quantum fluctuations φ. The first

three terms in the first row of eq. (4.2.6) reproduce the initial tree-level potential. Terms

cubic or quartic in φ cannot contribute at one-loop level and start contributing at two-

loops. The term linear in φ can be neglected altogether: it can only enter one-particle

reducible graphs and never 1PI amplitudes. The counter-terms are non-vanishing only at

loop order, so at one-loop level we should only keep Lc.t.(φ0). The relevant terms of the

Lagrangian (4.2.6) are then

L(φ0 + φ) ⊃ −1

2
m2φ20 −

λ

4!
φ40 +

1

2
(∂µφ)(∂

µφ)− 1

2
µ2(φ0)φ

2 + Lc.t.(φ0) , (4.2.7)

where we have defined the φ0-dependent mass

µ2(φ0) ≡ m2 +
λ

2
φ20 . (4.2.8)

Up to one-loop level we have

Veff (φ0) = V0(φ0) + V1(φ0) + Vc.t.(φ0) , (4.2.9)

with

Vc.t.(φ0) =
1

2
δm2φ20 +

λ

4!
(Zλ − 1)φ40 (4.2.10)

and

e−iV4V1(φ0) =

∫
Dφ e

i
∫
d4x

(
1
2 (∂µφ)(∂

µφ)− 1
2µ

2(φ0)φ2
)

=Ndet−
1
2

(
✷+ µ2(φ0)

)
= N e

− 1
2Tr log

(
✷+µ2(φ0)

)

.

(4.2.11)

The determinant or the trace of the differential operator ✷+µ2(φ0) is easily computed in

momentum space, where the operator is diagonal. We have

log
(
✷+ µ2(φ0)

)
(p, q) = δ(p − q) log

(
− p2 + µ2(φ0)

)
(4.2.12)

and hence

− iV4V1(φ0) = −
1

2
δ(4)(0)

∫
d4p log

(
− p2 + µ2(φ0)

)
. (4.2.13)

The δ(4)(0) accounts for the space-time volume, δ(4)(0) → V4/(2π)4. Wick rotating p0 =

ip4, we finally get

V1(φ0) =
1

2

∫
d4pE
(2π)4

log
(
p2E + µ2(φ0)

)
, (4.2.14)

where p2E = p21 + p22 + p23 + p24. The integral in eq. (4.2.14) is highly divergent. In terms of

the degree of divergence defined in section 3.1 it has δ = 4. We can lower this divergence
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by taking derivative with respect to µ2(φ0). Since each derivative lowers δ by two, we have

to derive three times to get a finite result:

d3V1(φ0)

(dµ2)3
=

∫
d4pE
(2π)4

1

(p2E + µ2(φ0))3
=

∫ ∞

0

dpE
8π2

p3E
(p2E + µ2(φ0))3

=
1

32π2
1

µ2(φ0)
. (4.2.15)

Integrating back three times gives, modulo an irrelevant constant factor,

V1(φ0) =
1

64π2
µ4(φ0) log µ

2(φ0) +Aµ2(φ0) +Bµ4(φ0) . (4.2.16)

In analogy to the case of loop amplitudes considered in section 3.2, the effective potential

is the sum of a non-analytic (in φ0) and finite piece, the first term in eq.(4.2.16), plus

local divergent terms. The divergences hidden in the constants A and B are cancelled by

a proper choice of the counter-terms δm2 and Zλ in eq.(4.2.10). Putting all together, we

finally get the total tree+one-loop level potential:

Veff (φ0) =
1

2
m2φ20 +

λ

4!
φ40 +

1

64π2
µ4(φ0) log µ

2(φ0) . (4.2.17)

When the mass vanishes, the potential (4.2.17) becomes5

Veff (φ0) =
λ

4!
φ40 +

λ2

256π2
φ40 log φ

2
0 . (4.2.18)

The effective potential, often also denoted by Coleman-Weinberg (CW) potential, from

the authors that first discussed it [10], is a useful tool in QFT. It is in particular crucial

to determine the correct vacuum of a theory when the tree level potential does not fix it.

We will come back to the CW potential in section 5.10 and in the final chapter 11.

4.3 A Subtlety about Effective Potentials∗∗

In this section we will discuss a subtlety regarding effective potentials. In eq.(4.1.2) we

have defined the 1PI action Γ[Φ] as the Legendre transform of W [J ]. It can be shown

that the effective potential, defined as in eq.(4.2.1) with Γ[Φ] above, must necessarily be

a convex function [11, 12]. This is however puzzling, since the classical potential might

clearly be non-convex to start with. If the system is parametrically weakly coupled, it is

hard to imagine that quantum corrections could significantly modify the classical potential.

The resolution of the puzzle is a bit tricky and is related to the fact that in general the 1PI

5Strictly speaking, the coupling constant λ appearing in eq. (4.2.18) is not the same as that appearing

in eq. (4.2.17) because of a shift induced by the one-loop term. We neglect these finite corrections, possibly

relevant when a careful definition of the coupling λ is provided. We postpone to chapter 5 a more careful

discussion of the definition of coupling constants.
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action defined in eq.(4.1.2) does not correspond to that defined in eq.(4.1.12). In particular,

the effective potential V1PI coming from eq.(4.1.12) is the natural extension of the classical

potential V0 and can in general be non-convex, while the effective potential Veff defined as

the constant field configurations of eq.(4.1.2) is the one that must necessarily be convex.

Starting from eq.(4.1.12), we can define W [J ] as the Legendre transform of Γ[Φ]1PI, which

is the Γ appearing on the left-hand-side of eq.(4.1.12). Taking now the Legendre transform

of the so derived W [J ] we get Γ[Φ]eff . We then see that Veff is the double Legendre

transform of V1PI, also called its convex envelope. Only for convex functions we are

ensured that Veff = V1PI. Physically, Veff (φ0) represents the expectation value of the

energy density in the state |Ψ⟩ that minimizes ⟨Ψ|H|Ψ⟩ and such that ⟨Ψ|φ(x)|Ψ⟩ = φ0.

This quantity is always real and, as we said, must be convex everywhere. The key point on

how Veff (φ0) is convex starting form a non-convex classical potential is understood from a

purely classical analysis, where ⟨Ψ|φ(x)|Ψ⟩ represents the spatial average of the field φ(x⃗).

Consider a classical potential Vc like that depicted in the left panel of fig.4.1, with two

minima at φ(x⃗) = ±σ. For |φ0| ≥ σ, the field configuration minimizing the energy is given

by φ(x⃗) = φ0 over the whole space, and Veff (φ0) = Vc(φ0). For |φ0| < σ the mininum

energy is given by an inhomogeneous state where φ(x⃗) = σ in a fraction (σ + φ0)/2σ of

space, and φ(x⃗) = −σ in the remaining (σ − φ0)/2σ fraction of space, so that the spatial

average of the field is

σ × σ + φ0
2σ

+ (−σ)× σ − φ0
2σ

= φ0 , (4.3.1)

as it should be. The energy density in such inhomogeneous state is all concentrated in

the regions between the two phases. In the infinite volume limit the boundary energy

contribution becomes negligible, and hence Veff (φ0) = 0 for |φ0| < σ. The potential Veff ,

depicted in the right panel of fig.4.1 is then everywhere convex.

In the quantum case, the inhomogeneous state is replaced by a linear combination of

the two vacua at ±σ, call them |±⟩. For |φ0| < σ the mininum energy is given by a state

of the form α|+⟩ + β|−⟩, with |α|2 + |β|2 = 1, and |α|2 − |β|2 = φ0. The ending result

is the same, giving rise to a flat effective potential Veff for |φ0| < σ. As we will see in

more detail in chapter 8 in the context of spontaneous symmetry breaking, inhomogeneous

states of the form α|+⟩+β|−⟩ violate cluster decomposition and should not be considered

viable vacua for a QFT. If the vacua are degenerate, like in fig.4.1, the system will be

unstable under any external small perturbation and will fall in either the vacuum |+⟩ or
|−⟩, depending on the perturbation. In this case the relevant effective potential is given

by V1PI, in agreement with our naive intuition.
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Figure 4.1: Classical (left) and effective (right) potentials Vc and Veff .

4.4 Functional Relations

The formalism based on the generating functions introduced and discussed above is par-

ticularly useful for practical applications because it can make the derivation of important

relationships rather straightforward. This is particularly true if one proceeds heuristi-

cally, as we will do, without taking into account the effects of renormalization. In other

words, we will effectively be dealing in this section with bare quantities, without intro-

ducing counterterms. This is justified by the fact that eventually the same results apply

for the renormalized expressions, but in a much simpler way! See e.g. ref.[9] for a proper

derivation where renormalization is taken into account.

4.4.1 Schwinger-Dyson Equation

The Schwinger-Dyson equations are the quantum mechanical analogue of the classical

equations of motion. They are derived from the observation (based on the extension of

the concept of ordinary differentiation and integration to the case of functional differen-

tiation and integration) that the functional integral of a functional derivative vanishes if

one can neglect boundary terms, which is always assumed here. Accordingly, taking the

exponential in eq. (4.0.1) as the function to be differentiated, one concludes that

0 =

∫
Dφ δ

δφ(x)
eiS(φ)+i

∫
d4x′J(x′)φ(x′) =

∫
Dφ

[
i
δS(φ)

δφ(x)
+ iJ(x)

]
eiS(φ)+i

∫
d4x′J(x′)φ(x′).

(4.4.1)

Setting J = 0 in eq.(4.4.1) gives

⟨ δS

δφ(x)
⟩ = 0 , (4.4.2)

which is the strict quantum-mechanical analogue of the classical equations of motion.

Applying n functional derivatives with respect to the source J to eq.(4.4.1), and then

64



setting J = 0, gives the Schwinger-Dyson equations

i⟨ δS

δφ(x)
φ(x1) . . . φ(xn)⟩ = −

n∑

i=1

δ(4)(x− xi)⟨φ(x1) . . . φ̂(xi) . . . φ(xn)⟩ , (4.4.3)

where the hat means that that operator should be omitted from the correlator. We see

that at the quantum level the equations of motion turn into an infinite set of relations

among different Green functions. We will make use of eqs.(4.4.3) later on in these lectures.

4.4.2 Symmetries and Ward-Takahashi Identities

Symmetries are important in QFT because they constrain the form of amplitudes, corre-

lation functions, and establish relationships among them. This can be rather easily seen

within the functional formalism, as we discuss below in generality. It is important to

realize, however, that the formal manipulations presented here assume that it is possible

to regularize the theory — therefore providing a meaning to the functional integral — in

such a way that the original symmetry of the theory is preserved.

Let us consider a local field theory characterized by a Lagrangian L. An infinitesimal

transformation

φ(x) -→ φ′(x) = φ(x) + ϵ∆φ(x) (4.4.4)

parameterized by a parameter ϵ is a symmetry of the theory if, correspondingly, the action

S =
∫
d4xL(φ, ∂µφ) associated with L does not change. In order to be so, the variation

of the Lagrangian induced by eq. (4.4.4) has to take the form of a total derivative. This

requirement can be translated in requiring that there exists some “current” J µ such that

L(φ′, ∂µφ′) = L(φ, ∂µφ) + ϵ∂µJ µ +O(ϵ2). (4.4.5)

(Note that J µ can also be a Lorentz tensor, as in the specific case discussed in sec. 9.7.) A

direct calculation of the variation of the Lagrangian induced by the transformation shows

that

∂µJ µ =
δL
δφ

∆φ+
δL
δ∂µφ

∂µ∆φ. (4.4.6)

By rewriting the second term on the r.h.s. as ∂µ[∆φδL/δ∂µφ] −∆φ∂µδL/δ∂µφ one finds

that

∂µj
µ = −∆φ

[
δL
δφ
− ∂µ

δL
δ∂µφ

]
, (4.4.7)

where we introduced the current

jµ(x) ≡ δL
δ∂µφ

∆φ− J µ. (4.4.8)
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The r.h.s. of eq. (4.4.7) vanishes on the field configuration which minimizes the action (i.e.,

without quantum fluctuations) and which satisfies Euler-Lagrange equation: accordingly

jµ is nothing but the classical Noether’s current associated with the symmetry (4.4.4)

and jµ is the corresponding conserved current from which one can derive the conserved

charge. In the case of QFT, where quantum fluctuations are inevitably present, relations

such as eq. (4.4.7) have to be properly interpreted and acquire a definite meaning only

when inserted in correlation functions. For the purpose of understanding the consequence

of the symmetry (4.4.4) on the generating functions, it is convenient to consider how

the Lagrangian density changes when the parameter ϵ in eq. (4.4.4) is assumed to be

space-dependent (and, in general, the local transformation is no longer a symmetry of the

theory): by direct calculation one can verify that

L(φ′, ∂µφ′) = L(φ, ∂µφ) + ϵ(x)∂µJ µ +
δL
δ∂µφ

∆φ∂µϵ(x) +O(ϵ2),

∫
= L(φ, ∂µφ) + jµ(x)∂µϵ(x) +O(ϵ2),

(4.4.9)

where
∫
= indicates that the equality is valid after integration over the space, i.e., at the level

of the action (under the assumption of vanishing boundary terms). Though the discussion

so far is completely general, we shall focus below on the case in which the symmetry is

linearly realized, meaning that ∆φ is an arbitrary linear function of φ. This is the case,

for example of global U(1) or other internal symmetries for multiplets such as

φl(x) -→ φ′l(x) = φl(x) + ϵα(tα)
m
l φm(x), (4.4.10)

where {tα}α are the generators of the symmetry in a suitable representation. Alternatively,

for infinitesimal space-time translations, ϵ∆φ in eq. (4.4.4) is replaced by ϵµ∂µφ. This

case is discussed in detail in sec. 9.7. In order to work out the consequences of the

symmetry, consider again the generating function Z[J ] in eq. (4.0.1) and denote by φ′ the

“integration variable” in the functional integral, with the aim of eventually performing

a change of variable towards the field φ which φ′ is connected to via eq. (4.4.4) with a

space-dependent parameter ϵ = ϵ(x):

Z[J ] =

∫
Dφ′ eiS(φ′)+i

∫
d4xJ(x)φ′(x) =

∫
Dφ′ eiS(φ)+i

∫
d4x jµ∂µϵ(x)+i

∫
d4x J(x)[φ(x)+ϵ∆φ(x)]

=

∫
Dφ
(
1 + i

∫
d4x ϵ(x) [−∂µjµ(x) + J(x)∆φ(x)] +O(ϵ2)

)
eiS(φ)+i

∫
d4xJ(x)φ(x)

= Z[J ] + i

∫
d4x ϵ(x)

(
− ⟨∂µjµ(x)⟩J + J(x)⟨∆φ(x)⟩J

)
+O(ϵ2),

(4.4.11)
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where on the second line we expanded up to first order in ϵ and used the fact that,

being the symmetry realized linearly, the Jacobian of the change of variable φ′ -→ φ in

the functional integration measure is independent of the fields and can be absorbed in

the overall normalization of the measure. The previous equation has to be valid for an

arbitrary choice of ϵ(x) and therefore it implies that

⟨∂µjµ(x)⟩J = J(x)⟨∆φ(x)⟩J . (4.4.12)

This relation is an example of a Ward-Takahashi (WT) identity associated with the sym-

metry (4.4.4) and constitutes the equivalent of the Noether theorem in QFT. By taking

functional derivatives with respect to J , this equation implies an infinite set of relationships

between correlation functions of the fields φ on the r.h.s. and those of the fields with an

insertion of the current operator jµ(x) on the l.h.s. As an explicit example, consider the in-

ternal symmetry (4.4.10), where the associated current is given by jα,µ = (∂µφ)l(tα)ml φm.

By differentiating eq.(4.4.12) with respect to Jn1(x1) and Jn2(x2) and by then setting

J = 0 we get

i∂µ⟨jµα(x)φn1(x1)φn2(x2)⟩ =

= δ(x− x1)(tα)
m
n1
⟨φm(x1)φn2(x2)⟩+ δ(x− x2)(tα)

m
n2
⟨φm(x2)φn1(x1)⟩.

(4.4.13)

We point out that, from the point of view of QFT, the current jµ(x) defined in

eq. (4.4.8) is a so-called composite operator because it involves the product of various

quantum fields taken at the same point in space-time. After the renormalization of the

theory, correlation functions with the insertion of composite fields still show ultraviolet

divergences and need to be additionally renormalized by introducing suitable renormal-

ization constants for these operators. As we shall discuss in more detail in sec. 5.9, the

presence of these non-trivial additional renormalization constants implies that the com-

posite operators acquire an anomalous dimension. However, conserved currents jµ(x)

associated to symmetries of the theory do not need to be renormalized and therefore they

do not acquire an anomalous dimension. This is clear from the example in eq.(4.4.13).

Correlation functions with one insertion of jµ can be expressed in terms of correlation

functions without the current. When the latter are properly renormalized by the intro-

duction of suitable counter-terms and renormalization constants, the former will also be

finite. In other words, a conserved current into a correlation function does not cause

additional divergences to appear.

It is important to point out here that the effective action Γ is not always invariant under

the same field transformations for which the classical action S is. The transformations of

S and Γ coincide only when they act at most linearly on fields. Let us discuss in more
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detail this important point. Consider a transformation of the form

φ(x) -→ φ′(x) = φ(x) + ϵF [φ(x)], (4.4.14)

where F [φ] is a generic functional of the field φ, not necessarily linear. We shall encounter

non-linear transformations in section 6.3 when we will study the BRST symmetries in the

context of non-abelian gauge theories. Assume now that both the action S(φ) and the

integration measure are invariant under the transformation φ→ φ′, such that S(φ) = S(φ′)

and Dφ′ = Dφ. In terms of the generating function Z[J ] one finds

Z[J ] =

∫
Dφ′ eiS(φ′)+i

∫
d4xJ(x)φ′(x) =

∫
Dφ eiS(φ)+i

∫
d4xJ(x){φ(x)+ϵF [φ(x)]}

=

∫
Dφ

{
1 + iϵ

∫
d4xJ(x)F [φ(x)] +O(ϵ2)

}
eiS(φ)+i

∫
d4x J(x)φ(x),

(4.4.15)

which implies ∫
d4x ⟨F [φ(x)]⟩JJ(x) = 0 . (4.4.16)

Using eq.(4.1.3), we can rewrite eq.(4.4.16) as
∫

d4x ⟨F [φ(x)]⟩J(Φ)
δΓ

δΦ(x)
= 0, (4.4.17)

which implies that the 1PI action is invariant for Φ→ Φ+ ϵ⟨F [φ(x)]⟩J(Φ):

Γ(Φ+ ϵ⟨F [φ(x)]⟩J(Φ)) = Γ(Φ) + ϵ

∫
d4x ⟨F [φ(x)]⟩J(Φ)

δΓ

δΦ(x)
= Γ(Φ) . (4.4.18)

Notice that, in general,

⟨F [φ(x)]⟩J(Φ) ≠ F (Φ) . (4.4.19)

They coincide only for transformations that are at most linear in the fields, namely for6

F (φ) = s(x) +

∫
d4y t(x, y)φ(y) . (4.4.20)

In this case, and only in this case, we have

⟨F [φ(x)]⟩J(Φ) = s(x) +

∫
d4y t(x, y)⟨φ(x)⟩J(Φ) = s(x) +

∫
d4y t(x, y)Φ(y) = F (Φ) ,

(4.4.21)

where the second identity is a consequence of the definition of Φ.

The general approach described above can be used in order to derive the consequences

of the global U(1) symmetry of QED on the correlation functions of the field. This will

be the subject of next section.

6The usual purely linear transformations of the fields are obtained from eq.(4.4.20) by taking s(x) = 0

and t(x, y) = tδ(x− y).
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4.4.3 WT Identities in QED

Gauge invariance in QED requires the addition of a gauge-fixing term

Lg.f. = −
1

2ξ
(∂µA

µ)2 , (4.4.22)

where ξ is an arbitrary real parameter.7 The total Lagrangian density is then

L(Aµ,ψ, ψ̄) = LQED(Aµ,ψ, ψ̄) + Lg.f.(Aµ) , (4.4.23)

where LQED is given in eq.(3.3.14) and the functional integration is done both on the

vector field Aµ and the spinors ψ̄ and ψ. The source term at the exponential has a density

of the form

Jµ(x)Aµ(x) + J̄(x)ψ(x) + ψ̄(x)J(x) , (4.4.24)

where J and J̄ are Grassmann-valued (and hence anticommuting) functions. If we make

the infinitesimal change of variable associated to a gauge transformation,

ψ(x)→ ψ(x) + ieϵ(x)ψ(x) , ψ̄(x)→ ψ̄(x)− ieϵ(x)ψ̄(x) , Aµ(x)→ Aµ(x) + ∂µϵ(x),

(4.4.25)

the measure and LQED remain invariant, while Lg.f. and the source term will change:

L(Aµ,ψ, ψ̄)→ L(Aµ,ψ, ψ̄)−
∂µAµ

ξ
✷ϵ .

JµAµ + J̄ψ + ψ̄J → JµAµ + J̄ψ + ψ̄J + Jµ∂µϵ+ ieJ̄ψϵ− ieψ̄Jϵ. (4.4.26)

By bringing down the O(ϵ) terms from the exponential and taking a functional derivative

with respect to ϵ(x), we get the identity

i∂µJ
µ(x)Z = e⟨ψ̄(x)⟩JJ(x)− eJ̄(x)⟨ψ(x)⟩J −

i

ξ
✷∂µ⟨Aµ(x)⟩J . (4.4.27)

We also have8

⟨ψ̄(x)⟩J = i
δZ

δJ(x)
, ⟨ψ(x)⟩J = −i δZ

δJ̄(x)
, ⟨Aµ(x)⟩J = −i δZ

δJµ(x)
(4.4.28)

and thus we can rewrite eq.(4.4.27) in terms of W = −i logZ as

i∂µJ
µ(x) = −e δW

δJ(x)
J(x)− eJ̄(x)

δW

δJ̄ (x)
− i

ξ
✷∂µ

δW

δJµ(x)
. (4.4.29)

7The derivation of Lg.f. from a functional point of view, for both abelian and non-abelian theories, is

discussed in section 6.2.
8Pay attention to the anticommuting nature of the Grassmann fields to get the signs right!
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We can go further and write the WT Identity (4.4.29) in terms of the 1PI generator Γ

defined as

Γ = W −
∫

d4x
(
Aµ(x)J

µ(x) + J̄(x)Ψ(x) + Ψ̄(x)J(x)
)
, (4.4.30)

where

Aµ(x) =
δW

δJµ(x)
, Ψ(x) =

δW

δJ̄(x)
, Ψ̄(x) = − δW

δJ(x)
, (4.4.31)

and correspondingly

Jµ(x) = − δΓ

δAµ(x)
, J(x) = − δΓ

δΨ̄(x)
, J̄(x) =

δΓ

δΨ(x)
. (4.4.32)

In terms of Γ, eq.(4.4.28) reads

i∂µ
δΓ

δAµ(x)
= eΨ̄(x)

δΓ

δΨ̄(x)
+ e

δΓ

δΨ(x)
Ψ(x) +

i

ξ
✷∂µAµ(x) . (4.4.33)

By taking arbitrary functional derivatives of eqs.(4.4.27), (4.4.29) and (4.4.33) with re-

spect to the sources we get an infinite set of WT identities between connected and 1PI

amplitudes, respectively.

Let us see more closely the WT identities that will allow us to prove three assertions

in section 3.3 when studying the renormalizability of this theory:

1. A relation linking the electron two-point function with the vertex, eventually proving

eq.(3.3.15).

2. The transversality of the photon propagator, eq.(3.3.5).

3. Decoupling of unphysical photon polarization states, eq.(3.3.9) (and its generaliza-

tion to any other scattering amplitude involving at least one photon).

Relation 1 is obtained by taking one functional derivative with respect to Ψ and Ψ̄ of

eq.(4.4.33). In this way one has

i∂µ
δ3Γ

δΨ(x1)δΨ̄(x2)δAµ(x)
= eδ(x− x2)

δ2Γ

δΨ(x1)δΨ̄(x)
− eδ(x− x1)

δ2Γ

δΨ(x)δΨ̄(x2)
. (4.4.34)

In momentum space eq.(4.4.34) becomes,

qµΓµ(p, q) = eΓ(2)(q + p)− eΓ(2)(p) (4.4.35)

where Γµ is precisely the function vertex defined in eq.(3.3.2) and Γ(2) = /p−m+ Σ(p) is

the inverse of the electron propagator, with Σ defined in eq.(3.3.3). Using eq.(4.4.35) and
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qµ
∣∣

p1 pm

k1 km

qn

q1

= e
m∑

i=1

p1 pi+q pm

k1 ki km

qn

q1

− e
m∑

i=1

p1 pi pm

k1 ki−q km

qn

q1

Figure 4.2: Diagrammatic representation of the WT identity for QED, which generalizes

eq. (4.4.35) for connected ampltudes involving additional 2m fermionic and an arbitrary

number n of photon external lines. The extra photon line in the diagram in the l.h.s. is

amputated.

the above definitions, it is straightforward to derive the identity (3.3.15). We see that a

similar identity halso holds for the finite parts:

qµΓfinite
µ (p, q) = Σfinite(p+ q)−Σfinite(p) . (4.4.36)

Relation 2 is obtained by setting Ψ = Ψ̄ = 0 and taking one derivative with respect to Aµ

of eq.(4.4.33). This gives, in momentum space

qνΓµν(q) =
1

ξ
q2qµ (4.4.37)

where Γµν is the inverse photon propagator. We decompose Γµν(q) = Γ(0)
µν (q) + Πµν(q)

in terms of its tree-level and quantum corrections, where Πµν(q) is the same entering

eq.(3.3.5). From the classical action we readily get

Γ(0)
µν (q) = ηµνq

2 − qµqν +
1

ξ
qµqν . (4.4.38)

We notice that Γ(0)
µν alone saturates the identity (4.4.37), automatically implying eq.(3.3.5)

to all orders in perturbation theory. The fundamental importance of this conclusion relies

on the fact that it ensures that the photon does not acquire a mass as a consequence

of interactions, being protected by gauge invariance. An analogous conclusion is drawn

in chapter 6 for non-abelian gauge theories, where a relation very similar to eq.(4.4.37),

eq.(6.3.33), will be proved starting from the so called BRST symmetries.
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Let us now consider relation 3. In order to relate the resulting WT identities directly

with S-matrix amplitudes, that are associated to amputated connected Green functions,

it is better to start from eq.(4.4.29). In absence of fermion fields, we can set J = J̄ = 0

and take an arbitrary number n of functional derivatives of eq.(4.4.29) with respect to Jµ.

In this way the l.h.s. and the first two terms in the r.h.s. of eq.(4.4.29) vanish and we

trivially get

q2qµGµα1...αn(q, p1, . . . , pn) = 0 . (4.4.39)

for the n+1 connected amplitudes involving photons only. The factor of q2 in eq.(4.4.39) is

removed when we amputate the amplitude, see below. In this way we get the generalization

of eq.(3.3.9) for any number of external photon fields.

When external fermions are present, the analysis is slightly more complicated. If 2m

external fermion lines are present, we have to take m functional derivatives of eq.(4.4.29)

with respect to J and J̄ (in addition to the ones necessary for the photon ones as above). In

this way we derive WT identities for connected correlation functions involving an arbitrary

number of gauge and fermion fields. The term in the l.h.s. still vanishes, but the first two

terms in the r.h.s. are non-zero now. In momentum space we have

i

ξ
q2qµG(2m,n+1)

µ (pi, ki, qj) = e
m∑

i=1

(
G(2m,n)(pi+q, ki, qj)−G(2m,n)(pi, ki−q, qj)

)
, (4.4.40)

where G(2m,n) schematically represent the connected Green functions for 2m external

fermions and n external photons and we have made explicit in G(2m,n+1) only the Lorentz

index contracted with qµ. As we mentioned, physical S-matrix amplitudes are related to

amputated connected Green functions. Let us start by amputating the Green function

G(2m,n+1) in the l.h.s. of eq.(4.4.40) of its additional photon line. One has

G(2m,n+1)
µ = Gγ

µν(q)G
ν(2m,n+1)
amp , (4.4.41)

where Gγ
µν is the (all-orders) photon propagator Gγ

µνΓνρ = −iδρµ and Gν(2m,n+1)
amp refers to

the amputation of this photon line only. Given eq.(4.4.37), one immediately gets

q2qµGγ
µν(q) = −iξqν . (4.4.42)

Plugging eq.(4.4.42) in eq.(4.4.40) we get

qµG(2m,n+1)
µ,amp (pi, ki, qj) = e

m∑

i=1

(
G(2m,n)(pi + q, ki, qj)−G(2m,n)(pi, ki − q, qj)

)
. (4.4.43)

This relation is diagrammatically represented in fig. 4.2, where n physical photons and 2m

fermions are indicated by wiggly and straight lines, respectively, and qµ denotes the wiggly
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line of the amputated photon with polarization ϵµ(q) = qµ. The grey circle stands for all

possible diagrams which can be constructed with the specified external legs. By using

the LSZ reduction formula, the correlation functions (4.4.43) are directly related to the

physical S-matrix amplitudes. The latter is in particular proportional to the total residue

given by the 2m+n poles in the correlation function (see eq. (2.3.10)), since we still have

to amputate the additional 2m + n external states. However, we now notice that on the

r.h.s. of eq.(4.4.43) one fermion momentum is always shifted from its on-shell value. If

p2i = k2i = m2, generically (pi + q)2, (ki − q)2 ≠ m2. Hence the correlation functions on

the r.h.s. can only have 2m+ n− 1 poles and hence eq. (2.3.10) necessarily vanishes. We

conclude that any physical amplitude involving an arbitrary number of photon and fermion

fields must vanish when any of the external photon polarizations is taken proportional to

the photon momentum:

ϵµ1(p1) . . . pµj . . . ϵµn+1(pn+1)Mµ1...µn+1 = 0 . (4.4.44)

73



Chapter 5

The Renormalization Group

The renormalization group is a key concept in quantum field theory. It essentially tells us

that instead of describing a physical system by some constant parameters in a Lagrangian,

it is more convenient to let the parameters vary and keep only some of them, depending

on the energy scale at which we are looking at the system. Intuitively this is quite obvious

and is at the basis of the usual reductionism used in physics. We do not need the SM

Lagrangian to study the energy levels of the hydrogen atom! The latter are well described

by a much simpler Schrödinger equation, which captures the effective dynamics entering

at the eV scale, namely the Coulomb potential between the electron and the proton. In

general, however, the microscopic short distance behaviour of a system is not completely

negligible. When this is the case, if we are interested in processes occurring at some

energy scale E, we can “integrate out”, rather than simply neglect, all states with higher

frequencies and retain only the effective degrees of freedom of interest. Historically, the

renormalization group was developed by Gell-Mann and Low in ref.[13] as a way to improve

the perturbative expansion in QED. Although, as we will see, in the context of particle

physics the original approach of ref.[13] is essentially still used today, the relation to the

idea of integrating out degrees of freedom and the use of effective theories was pioneered

several years after by K.G. Wilson [14, 15].

5.1 Relevant, Marginal and Irrelevant Couplings

In this section we consider the renormalization group in the spirit of Wilson’s original idea,

focusing on a particular model, the φ4 theory in four space-time dimensions, Wick rotated

in euclidean space.1 Wilson’s approach has the main advantage of being conceptually very

clear. It assumes the presence of a physical cut-off Λ in the theory, above which no mode

1The analysis in this section closely follows section 12.1 of ref. [1].
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can be excited. Imagine we are interested in processes occurring at scales of order bΛ, with

b < 1. We label all modes φ(k) as “heavy” and “light”, depending on their momentum k.

We write

φ(k) = φL(k)θ(bΛ− |k|) + φH(k)θ(|k|− bΛ) , |k| < Λ (5.1.1)

and we correspondingly decompose the action of the φ4 theory as follows:2

S = SL + S0
H + Sint , (5.1.2)

where

SL =

∫
d4x

(
1

2
(∂φL)

2 +
1

2
m2φ2L +

λ

4!
φ4L

)
,

S0
H =

∫
d4x

(
1

2
(∂φH)2 +

1

2
m2φ2H

)
,

Sint =
λ

4!

∫
d4x
(
φ4H + 4φHφ

3
L + 4φ3HφL + 6φ2Hφ

2
L

)
. (5.1.3)

It is clear from eq. (5.1.1) that the quadratic terms of the form φHφL vanish. The modes

φH cannot be excited for processes at scales below or of order bΛ, so at first approximation

they can be ignored, in which case we just recover the φ4 theory SL for the light mode only.

Quantum mechanically, however, the modes φH contribute as virtual particles. Instead

of neglecting them, we should more properly integrate them out, getting in this way an

effective action for the light modes φL:

e−Seff (φL) = e−SL(φL)
∫

DφH(k)e−S
0
H (φH )−Sint(φL,φH) . (5.1.4)

The effective action Seff (φL) takes into account of the effects of the heavy fields at the

full quantum level. In this sense, it resembles the 1PI action Γ(φ) defied in section 4.1,

but only for the heavy fields. This makes a crucial difference: while the functional Γ(φ)

is in general non-local and is expanded as in eq.(4.1.11), the action Seff (φL), admits an

expansion in terms of a local action, though in general containing an infinite number

of terms. In eq. (5.1.4) the modes φL act like external fields. It is not difficult to see

that the tree-level exchange of the φH modes generates effective φL couplings of the form

(λ2/m2)φ6L (from two φHφ3L vertices) plus an infinite set of higher derivative couplings

involving six φL fields. Similar considerations can be made for all other couplings. At

some order in perturbation theory all possible couplings compatible with the symmetries

2Strictly speaking, the actions (5.1.3) should be written in momentum space using eq. (5.1.1) and

recalling the overall bound |k| < Λ. This results in unnecessarily long expressions that are avoided in the

rough, but more brief form (5.1.3).
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will be generated. The effective action Seff (φL) reads as

Seff (φL) =

∫
d4x
(1
2
(1+δZ)(∂φL)

2+
1

2
(m2+δm2)φ2L+

λ+ δλ

4!
φ4L+δZ1φ

6
L+δZ2(∂φL)

4+. . .
)

(5.1.5)

where . . . stands for higher dimensional operators. Recall that φL contains only momenta

k ≤ bΛ. The rescaled momentum k′ = k/b satisfies the same constraint as the original

system, k′ < Λ. Correspondingly we redefine coordinates as x′ = xb. We also have to

redefine the field φ so that it has a canonically normalized kinetic term:

φcanL = b−1
√
1 + δZφL . (5.1.6)

The action Seff reads now (redefining x′ → x and φcanL → φL)

Seff (φL) =

∫
d4x

(1
2
(∂φL)

2 +
1

2
m2(b)φ2L +

λ(b)

4!
φ4L + δZ1(b)φ

6
L + δZ2(b)(∂φL)

4 + . . .
)
,

(5.1.7)

where3

m2(b) =
1

b2
m2 + δm2

1 + δZ
, λ(b) =

1

b0
λ+ δλ

(1 + δZ)2
,

δZ1(b) = b2
δZ1

(1 + δZ)3
, δZ2(b) = b4

δZ2

(1 + δZ)2
. (5.1.8)

The process of integrating out heavy degrees of freedom and rescale the momentum is

called “renormalization group” (RG).

The action (5.1.7) is the proper action for describing processes at scales E ≤ bΛ. It

is straightforward to see that a coupling cO of a generic operator O of dimension ∆ (in

mass) scales as

cO(b) = b∆−4cO . (5.1.9)

At lower and lower energies (smaller and smaller b) among all infinite operators appearing

in eq. (5.1.7), only the finite subset of those with ∆ ≤ 4 do actually matter, all the others

being “irrelevant”. This is a very remarkable result, which dramatically simplifies the

physical description of a system. We define as

• Irrelevant the operators with ∆ > 4

• Relevant the operators with ∆ < 4

• Marginal the operators with ∆ = 4

3The couplings δZ, δm2, etc. appearing in eq. (5.1.5), after the redefinition k → bk, can depend on b,

as we will explicitly see in what follows. However, in order to avoid confusion with the couplings defined

in eqs. (5.1.8), we have omitted to write this b-dependence.
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Correspondingly, we define as

• Irrelevant the couplings with mass dimensions < 0

• Relevant the couplings with mass dimensions > 0

• Marginal the couplings with mass dimensions = 0

Relevant couplings grow in the IR and dominate the physics. In our φ4 example, the

only relevant coupling is the mass term, which is indeed the most important parameter

governing the dynamics of a particle at low energies (in perturbation theory). When all

relevant couplings vanish, the IR theory is controlled by marginal couplings only, in which

case we say that the theory is (classically, see below) scale invariant, namely the form of

the action does not change under the RG flow.

The fate of marginal operators under the renormalization group cannot be deduced

from classical scaling and requires a quantum computation. In the φ4 example, the only

marginal operator is λ and its b-dependence is determined by that of δZ and δλ. It is very

useful to determine λ(b) at the lowest non-trivial order in perturbation theory, which is

one-loop. At one-loop level the exchange of φH fields modifies the φ4L coupling by means

of two φ2Lφ
2
H interactions. No correction arises in δZ at one-loop order, so that we can

neglect it. By denoting the heavy fields with a wavy line, the relevant Feynman graph to

consider is

k

p+ k

+ 2perms. ≡−δλ =
3λ2

2

∫

bΛ≤k≤Λ

d4k

(2π)4
1

k2 +m2

1

(p+ k)2 +m2
,

(5.1.10)

where p is the incoming external momentum and “perms.” refer to two other diagrams

obtained by permuting the external lines. When the external momentum and the mass m

are much smaller than bΛ, δλ is easily computed:

δλ = − 3λ2

32π4

∫

bΛ≤k≤Λ

d4k

k4
= − 3λ2

16π2
log

1

b
. (5.1.11)

The effective quartic interaction between the light modes is then

λ(b) = λ+ δλ = λ+
3λ2

16π2
log b . (5.1.12)

As we can seen from eq. (5.1.12), λ(b) decreases at larger distances (smaller b), so we

say that the coupling λ is marginally irrelevant, meaning in this way that it decreases

in the IR, although not as quickly as a classically irrelevant operator. Similarly, we call
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marginally relevant a classically marginal coupling that increases at larger distance due

to quantum effects. Classically marginal couplings that remain marginal at the quantum

level are called exactly marginal.

At the quantum level, as we have just seen, all the terms δZ, δm2 etc., appearing in

eqs. (5.1.7) and (5.1.8), can depend on b. This implies that the scaling dimension of an

operator in general receives corrections with respect to its classical value determined from

the powers of b appearing in eq. (5.1.7). The difference between the quantum contribution

to the scaling dimension of an operator from its classical value is called the anomalous

dimension of the operator. We will come back to it later on in this chapter.

We started our analysis from the UV action (5.1.2) but it should be now clear that if

we had started already at the UV with the most general (non-renormalizable) action of the

form (5.1.5), under the renormalization group flow we would have always ended up with the

usual φ4 theory, plus an infinite number of irrelevant operators. From the Wilsonian RG

point of view, then, renormalizable theories can be seen as critical surfaces, in parameter

space, where a much larger class of theories flow to. It is important to stress here that our

classification of the operators in relevant, irrelevant and marginal is based on the classical

dimension of fields, valid at parametrically weak coupling in perturbation theory around

free field theories. At strong coupling, it might happen that, say, an operator that is

classically irrelevant becomes marginal due to non-perturbative effects.

The Wilsonian picture of the RG flow is very intuitive and physical but, pragmatically

speaking, it is not the best way to proceed in high energy physics. Distinguishing light and

heavy modes in a single field can give rise to complicated expressions and in Minkowski

space is not a Lorentz invariant notion.4 Cut-off regularization is often unavailable, like in

gauge theories. Moreover, the Wilsonian RG flow requires, as a starting point, some UV-

regulated Lagrangian, while in high energy physics we prefer to hide our ignorance about

the UV physics in the renormalization of the parameters entering into the Lagrangian. For

all these reasons, in the remaining of this chapter we will change perspective and consider

the RG flow from an “high energy physics” point of view. As we will see, in a perturbative

context, it essentially gives us a way of improving the perturbative expansion, in the spirit

of ref.[13].

4On the contrary, when the mass of the field is sufficiently large, all frequency modes, i.e. the whole

field, can and should be integrated out. In this case the Wilsonian picture is the way to go and results in

a simplification of the physical system. More on this in chapter 7.
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5.2 The Sliding Scale and the Summation of Leading Logs

The RG flow technique is very useful in standard four dimensional (weakly interacting)

theories in high energy physics. In particular, it improves the perturbative expansion,

allowing us to sum whole series of higher order effects. An example will clarify the problem

and its resolution.

Consider the 1PI 4-point function at one-loop level in our usual φ4 theory in d = 4

space-time dimensions. Using a cut-off Λ in the momenta, we get

p1

p2

p3

p4

k

p1 + p2 + k

+ perms. =
iλ2

32π2

∫ 1

0
dx
(
log

Λ2

m2 − sx(1− x)
− 1
)

+ (s→ t) + (s→ u) , (5.2.1)

where s, t and u are the Mandelstam variabled defined in eq.(2.6.14). As we already

discussed at length, we need a renormalization condition that fixes the counter-terms

needed to remove the logarithmic divergence in eq. (5.2.1). Let us define the coupling

constant λ as the value of Γ(4)(pi) at the (unphysical) symmetric point s = t = u = 4m2/3:

iΓ(4)(s = t = u = 4m2/3) ≡ −iλ . (5.2.2)

In this way, the finite, renormalized 1PI four-point function reads

Γ(4)(s, t, u) = −λ+
λ2

32π2

∫ 1

0
dx log

m2(1− 4x(1− x)/3)

m2 − sx(1− x)
+ (s→ t) + (s→ u) . (5.2.3)

At high energies, when the absolute values of the Mandelstam variables are much greater

than m, large logs ∼ logm2/E2 appear.5 If E is sufficiently high, it can happen that the

logm2/E2 term is so large to compensate for the one-loop suppression given by∼ λ/(16π2),
breaking down the perturbative expansion. Similarly, at two-loop level, terms of the form

λ3 log2 m2/E2 and λ3 logm2/E2 appear. In general, at l-loop level, all terms of the form

λl+1 logl m2/E2, λl+1 logl−1 m2/E2, . . ., λl+1 logm2/E2 can appear. It is clear that if

λ ≪ 1, but λ logE2/m2 ∼ 1, the terms of the form λ(λl logl m2/E2) are all of the same

order. Logs of this form are called leading logs (LL) for obvious reasons. The terms of

the form λ2(λl logl m2/E2) are denoted next-to-leading logs (NLL) and so on. There is

5Since s+ t+u = 4m2, the Mandelstam variables will necessarily have, at high energies, different signs,

so that the argument of some of the logs in eq. (5.2.3) will be negative with branch cuts singularities. This

is of course expected, since by the optical theorem Γ(4) should have an imaginary part. In order to avoid

branch cut-singularities and imaginary amplitudes, that will not change the discussion that follows, we

consider off-shell amplitudes at euclidean values of the momenta, where s, t and u are all negative.
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actually a simple way to avoid the explicit appearance of large logs in Γ(4). The idea is

based on the fact that we can choose the renormalization condition for the coupling as we

wish. If we define the coupling constant at an energy scale µ ∼ E, replacing eq. (5.2.2) by

iΓ(4)(s = t = u = −µ2) ≡ −iλ(µ) , (5.2.4)

the finite, 1PI four-point function (5.2.3) would now read

Γ(4)(s, t, u) = −λ(µ) + λ2(µ)

32π2

∫ 1

0
dx log

m2 + µ2x(1− x)

m2 − sx(1− x)
+ (s→ t) + (s→ u) , (5.2.5)

and no large log term appears anymore. The arbitrary scale µ is denoted the sliding or

renormalization scale. The coupling λ(µ) is determined by noting that the physics cannot

depend on our arbitrary choice of scale µ. We must require that

µ
dΓ(4)

dµ
=

[
µ
∂

∂µ
+ β

(
λ,

m

µ

) ∂
∂λ

]
Γ(4) = 0 , (5.2.6)

where we have defined the function β as

β
(
λ,

m

µ

)
≡ µ

dλ

dµ
. (5.2.7)

The behaviour of λ as a function of µ, as given by the first-order differential equation

(5.2.7), is called the renormalizaion group (RG) flow of λ. It is straightforward to compute

β given the explicit form (5.2.5) of Γ(4). We get

β
(
λ,

m

µ

)
=

3λ2

16π2

∫ 1

0
dx

µ2x(1− x)

m2 + µ2x(1− x)
+O(λ3) . (5.2.8)

The coupling λ(µ) is determined by the first-order differential equation (5.2.7). In the

extreme high (UV) and low (IR) energy regimes µ ≫ m, µ ≪ m, eq. (5.2.8) simplifies

considerably, giving6

βUV ≃ 3λ2

16π2
,

βIR ≃ λ2

32π2

( µ

m

)2
≃ 0, (5.2.9)

whose solutions are simply

λUV (µ) ≃
λ(µ0)

1− 3λ(µ0)
16π2 log µ

µ0

, µ0, µ≫ m, (5.2.10)

λIR(µ) ≃ constant , µ≪ m. (5.2.11)

6Notice that βUV in eq. (5.2.9) coincides with bdλ(b)/db in eq. (5.1.12), as expected, being the same

thing.
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Strictly speaking, eqs. (5.2.10) and (5.2.11) are valid only in the asymptotic UV and

IR regimes, but as a first crude approximation we can take µ0 = m in eq. (5.2.10) and

λ(µ) ≃ λ(m) for any µ ≤ m in eq. (5.2.11). We will perform a refined approximation

in section 5.3, but for the moment this suffices to understand the main point of the RG

analysis. Let us compare the two equivalent 1PI 4-point functions (5.2.3) and (5.2.5) in

the euclidean UV point s = t = u ≡ −E2 ≫ m2:

Γ(4)(E) ≃ −λ− 3λ2

16π2
log

E

m
+O(λ2) , (no RG) (5.2.12)

Γ(4)(E) ≃ −λ(E) = − λ

1− 3λ
16π2 log

E
m

+O(λ2) , (RG) (5.2.13)

where λ ≃ λ(m). Expanding in λ, we see that eq. (5.2.13) reproduces the one-loop

result in eq. (5.2.12) but, in addition, automatically gives us all the LL logs of the form

λλl logl E/m (this will be proved in section 5.7). This is the key point of the RG evolution

in perturbation theory: a powerful way to improve the perturbative expansion.

Various approximations have been made in comparing eqs. (5.2.3) and (5.2.5), such as

λ(m) ≃ λ(2m/
√
3) and µ0 = m. All these approximations change Γ(E) at O(λ2 log0E/M)

and are hidden in the O(λ2) terms in eqs. (5.2.12) and (5.2.13). When E ≫ m, these

terms can consistently be neglected, being sub-leading with respect to the λ2 logE/M

terms. They are important if we want to go beyond the LL approximation, in which case

they are the first terms in the λ2(λl−1 logl−1E/M) (NLL) series. Resumming these logs

require the knowledge of the λ3 logE/M term, i.e. a two-loop perturbative computation.

The sliding scale µ and the RG evolution of the coupling are also useful in the IR.

For instance, when m = 0, we immediately see that there is an IR singularity in the 1PI

4-point function (5.2.3), singularity which is avoided in eq. (5.2.5), which is well defined

for m = 0.

Going back to eqs. (5.2.10) and (5.2.11), the RG evolution implies that the effective

coupling constant in a QFT (i.e the one which does not give rise to large logs in amplitudes)

depends on the energy scale, namely it is a “running” coupling constant. In particular

eq. (5.2.10) implies that λ(µ1) > λ(µ0) for µ1 > µ0 (in agreement with the results derived

using the Wilsonian RG flow) and predicts a pole at the scale

µL = µ0 e
16π2

3λ(µ0) (5.2.14)

where the coupling diverges (Landau pole).7 The scale µL should not be taken too seri-

ously, since at energies below µL, when the denominator in eq. (5.2.10) starts to signifi-

cantly differ from one, perturbation theory breaks down and higher loop corrections are

7The scale dependence of µL on µ0 is only apparent. One can check that dµL/dµ0 = 0.
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no longer negligible. However, eq. (5.2.14) indicates that, no matter how small λ(µ0) is

in the IR, at energies of order µL perturbation theory breaks down. On the other hand,

perturbativity improves at low energies. When m = 0, and eq. (5.2.10) is valid for any

range of µ0 and µ, we see that λ(µ)→ 0 as µ→ 0. In other words, provided the theory is

in a perturbative regime at some scale µ0, in the far IR it asymptotes a free field theory.

Theories of this sort are denoted IR free. When m ≠ 0, the running instead essentially

stops for µ ! m. This is in agreement with the fact that at low energies no large logs

to be resummed appear, see eq. (5.2.3). This is a manifestation of a much more general

principle, actually a theorem (Appelquist-Carazzone), according to which the effects of

massive particles at low energies should be negligible and go to zero when m→∞.8 This

is a key principle in QFT (and physics in general), allowing to reliably describe physical

processes at some scale without necessarily knowing the “true” (if any) physical theory

underlying all processes. In this sense any QFT should always be seen as an “effective”

theory. We will come back to this point in chapter 7, where we will systematically study

effective field theories.

5.3 Asymptotic Behaviours of β-Functions

The β-function is the crucial object to determine the evolution of a coupling constant.

In general, in a theory with n couplings gi, we have to solve a set of coupled differential

equations of the kind

µ
dgi
dµ

= βi , i = 1, . . . , n , (5.3.1)

where the βi in eq. (5.3.1) depend on all the other couplings and masses of the theory.

We can get rid of the masses by focusing only on the universal UV relevant coefficients,

so that βi = βi(gj). Yet, it is not possible to describe the main properties of the solutions

gi = gi(µ), because the system (5.3.1) is in general too complicated. We can further

simplify the situation by considering a single coupling g. In perturbation theory, β(g)

admits an expansion as follows:

β(g) = β0g
2 + β1g

3 +O(g4) . (5.3.2)

Note that it is always possible, by a proper coupling redefinition, to write the β-function ex-

pansion as in eq. (5.3.2). For instance, in QED β(e) starts at cubic, rather than quadratic,

order in the coupling, but it is enough to consider β = β(e2) rather than β(e) to put the

8There can be exceptions to this theorem when the particle mass arises from a spontaneous breaking

of a symmetry, in which case it is governed by a coupling.
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Figure 5.1: (Left panel) Schematic picture of the β-function of an IR stable fixed point

(Right panel) Schematic picture of the β-function of an UV stable fixed point. In both

cases we have taken g∗ = 3/2. The units in both axes are arbitrary and irrelevant.

β in the form (5.3.2). At leading order, i.e. neglecting β1, eq. (5.3.2) is solved by

g(µ) =
g0

1− g0β0 log(µ/µ0)
, (5.3.3)

where g0 = g(µ0). The fate of g(µ) is entirely governed by the sign of β0. When β0 > 0,

like in the φ4 or QED cases, g(µ) is marginally irrelevant, it increases in the UV and at

some high energy scale the theory is no longer perturbative.

When β0 < 0, on the other hand, the opposite happens. The coupling is marginally

relevant and it decreases in the UV. In the limit of infinite energy, the coupling van-

ishes. Theories with (all) couplings of this kind are called asymptotically free. The low

energy regime of these theories (including the spectrum of particles) is not perturbatively

accessible. The coupling formally diverges at the scale

Λ = µe
1

g(µ)β0 . (5.3.4)

This scale, which is RG invariant, is said to be a dynamically generated scale, since there

is no trace of it in the classical theory. It is a purely quantum effect. The most famous

theory belonging to this class of theories is QCD.

It is useful to consider two other more exotic forms of β-function, that correspond to

a perturbative expansion around a non-trivial value of the coupling (see figs. 5.1). Let us

assume that there exists a critical value of the coupling, g∗, such that β(g∗) = 0. If g is

sufficiently close to g∗, we can expand β as follows:

β(g) = β(g∗) + β∗(g − g∗) +O(g − g∗)2 = β∗(g − g∗) +O(g − g∗)2 . (5.3.5)

The solution of eq. (5.3.1), with β as in eq. (5.3.5), is

g(µ) = g∗ + (g(µ0)− g∗)
( µ

µ0

)β∗

+O(g − g∗)2 . (5.3.6)
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Independently of g(µ0), when β∗ < 0 the coupling approaches g∗ in the UV, while for

β∗ > 0 it approaches g∗ in the IR. In the former case, g∗ is called an ultraviolet stable

fixed point of the RG flow, in the latter an infrared stable fixed point of the RG flow. When

g = g∗ and β vanishes, no running occurs. In this case the theory is invariant under scaling

transformations. More in general, it can be shown that it is invariant also under conformal

transformations. A theory of this sort is called a Conformal Field Theory (CFT). Trivial

CFT’s are free theories of massless particles, for which g = 0 and β vanishes. Non-trivial

CFT’s are generally strongly coupled, because a non-trivial zero of a β-function requires

a cancellation among different orders in the perturbative expansion. But this signals a

break down of perturbation theory, where by definition a term of order n + 1 should

be parametrically smaller than the one of order n. There is however a way to possibly

get weakly coupled CFTs. Suppose that in a theory the coefficient β0 of the one-loop β

function is accidentally small. If so, setting to zero eq.(5.3.2) we get, aside from g = 0,

the non-trivial solution

g⋆ = −β0
β1

. (5.3.7)

This solution (5.3.6) can be trusted only when β0/β1 ≪ 1, our working hypothesis, other-

wise higher order terms would destabilize it and bring g⋆ at a generically strongly coupled

value. The fixed point (5.3.6) is called of the Banks-Zaks kind [16]. In non-abelian gauge

theories with a large gauge group and a large number of matter fields one can tune β0 to

be parametrically small. With a proper number of matter fields, a Banks-Zaks fixed point

can be obtained also in QCD. The clearest example is the one of QCD with 16 fermions,

in which case β0 < 0 and in modulus is the smallest possible. Lattice simulations show

that, contrary to “real world” QCD, at large distances this theory does not confine and

approaches a fixed-point, with a β-function qualitatively as the one depicted in the left

panel of fig.5.1.

We now show that the coefficients β0 and β1 in eq. (5.3.2) do not depend on the

renormalization scheme chosen, while higher order terms are scheme dependent. The

coupling constants in two different schemes, call them schemes g and g̃, are equal at

lowest order, but they start to differ at higher orders in the coupling (see eq. (5.6.12) for a

concrete relation between coupling constants defined in different renormalization schemes).

In general we have

g̃(g) = g + ag2 +O(g3) , (5.3.8)

where a is a constant. Their associated β-functions are related as

β̃(g̃) = µ
dg̃

dµ
= µ

dg

dµ

dg̃

dg
= β(g)

dg̃

dg
. (5.3.9)
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Taking β(g) as in eq. (5.3.2) we have

β̃(g̃) = (β0g
2 + β1g

3 +O(g4))(1 + 2ag +O(g2))

= (β0(g̃ − ag̃2)2 + β1g̃
3 +O(g̃4))(1 + 2ag̃ +O(g̃2))

= β0g̃
2 + β1g̃

3 +O(g̃4) , (5.3.10)

where the O(g̃4) terms are different from the O(g4) terms in β(g). Hence we have proved

the scheme independence of the coefficients β0 and β1.

We will see in the following that even at one- (and two-) loop level the detailed form

of a β-function in a theory depends on the renormalization scheme chosen, although its

UV behaviour is universal and governed by the coefficients β0 and β1 above.

The generalization of eqs. (5.3.2) and (5.3.8) for multiple couplings are

βi(gj) = β(0)ijkgjgk + β(1)ijklgjgkgl +O(g4i ) ,

g̃i(gj) = gi + aijkgjgk +O(g3) .
(5.3.11)

Proceeding as before, we get

β̃(0)ijk = β(0)ijk ,

β̃(1)ijkl = β(1)ijkl +
2

3

(
aislβ

(0)
jks − asklβ

(0)
ijs + 2 perms. in (j, k, l)

)
.

(5.3.12)

The two-loop coefficients of the β-function for multiple couplings are in general scheme-

dependent.

5.4 The Callan-Symanzik RG Equations

We have seen that at the quantum level we are necessarily led to introduce the sliding

scale µ. It is often useful to define (renormalize) at the same scale µ not only the coupling

constant but also the fields themselves. For instance, as we will see in subsection 5.5, in

renormalization schemes that make use of dimensional regularization, the scale µ shows

up in a different way and affects all Green functions. In particular, the mass renormal-

ized in those schemes does not coincide with the physical mass and the wave function

renormalization factor Z is no longer the one appearing in the LSZ reduction formulae.

Changing the definition of Z, now a function of µ, Z = Z(µ), will however make external

legs contribute to physical processes, because the Z entering the LSZ reduction formulae is

the physical µ-independent one. This is quite clear from eq.(2.3.10). Aside from irrelevant

factors, the S-matrix reads

SC
m→n ∼

1

Z
n+m

2

G(n+m)
B (pi,−qj) =

1

Z
n+m

2

Z(µ)
n+m

2 G(n+m)(pi,−qj, µ) , (5.4.1)
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where G(n+m)
B and G(n+m) are the bare and renormalized connected Green functions,

respectively. Since S-matrix elements do not depend on µ, we see that the bare, rather than

the renormalized, Green functions are those that are independent of µ. A similar reasoning

applies of course also to the 1PI amplitudes. Due to the amputation of the external legs,

one has the opposite power of Z’s relating bare and renormalized 1PI amplitudes. Taking

again the λφ4 theory as our working example, we have

Γ(n)
B = Z−

n
2 (µ)Γ(µ) , (5.4.2)

and hence

µ
d
(
Z−

n
2 Γ(n)

)

dµ
= Z−

n
2

[
µ
∂

∂µ
+ β

(
λ,

m

µ

) ∂
∂λ
− nγ

(
λ,

m

µ

)]
Γ(n) = 0 , (5.4.3)

where

γ
(
λ,

m

µ

)
≡ 1

2
µ
d logZ

dµ
(5.4.4)

is the anomalous dimension of the field φ. Eqs.(5.4.3) are called the Callan-Symanzik

(CS) equations.9 For simplicity, in eq.(5.4.3) we have assumed that m is the physical

µ-independent mass, otherwise we would also get a term proportional to the β-function

of the mass. We will consider the RG flow of the mass term, and more in general of

dimensionful couplings, in section 5.9.

The CS equations (5.4.3) can be solved as follows in the UV regime where we can

neglect the m/µ dependence of β and γ. As a first step, we can get rid of the last term in

eq. (5.4.3) by defining a new Green function Γ̂(n):

Γ(n)(pi,λ,m, µ) = e
n
∫ λ
λ0

dλ′ γ(λ
′)

β(λ′) Γ̂(n)(pi,λ,m, µ) (5.4.5)

such that (
µ
∂

∂µ
+ β(λ)

∂

∂λ

)
Γ̂(n)(pi,λ,m, µ) = 0 . (5.4.6)

The above equation is solved by introducing an auxiliary variable t and t-dependent func-

tions µ(t) and λ(t) with

µ(t) = etµ, λ(0) = λ . (5.4.7)

We then demand that λ(t) is such that

d

dt
Γ̂(n)(pi,λ(t),m, µ(t)) = 0 . (5.4.8)

9Actually, the original Callan [17] and Symanzik [18] equations were a bit different. There was no sliding

scale µ, the physical mass playing essentially the role of µ, and the equations were not homogeneous in

Γ(n). The more modern version of the Callan Symanzik equations (5.4.3) in terms of µ were developed

shortly later, see refs.[19] and [20].
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When eq. (5.4.8) is satisfied, Γ̂(n)(pi,λ(t),m, µ(t)) is independent of t. Evaluating it at

t = 0, we see that it coincides with our original Green function Γ̂(n)(pi,λ,m, µ). Using the

chain rule of derivatives, eq. (5.4.8) equals
(
µ
∂

∂µ
+

dλ

dt

∂

∂λ

)
Γ̂(n)(pi,λ(t),m, µ(t)) = 0 . (5.4.9)

Comparing eqs. (5.4.9) and (5.4.6), we see that the following equation should hold:

dλ(t)

dt
= β(λ(t)) . (5.4.10)

For any t, provided that λ(t) satisfies eq. (5.4.10), we have

Γ̂(n)(pi,λ,m, µ) = Γ̂(n)(pi,λ(t),m, etµ) . (5.4.11)

In terms of the original Green functions Γ(n) and changing variable dλ → dt inside the

integral appearing in eq.(5.4.5), eq.(5.4.11) reads

e
−n

∫ 0
t0
γ(t′)dt′

Γ(n)(pi,λ,m, µ) = e
−n

∫ t
t0
γ(t′)dt′

Γ(n)(pi,λ(t),m, etµ) . (5.4.12)

Rescaling p→ etp, eq.(5.4.12) is rewritten as

Γ(n)(etpi,λ,m, µ) = e−n
∫ t
0 γ(t

′)dt′Γ(n)(etpi,λ(t),m, etµ) . (5.4.13)

Recall that the classical dimension of Γ(n) is 4− n, so that

Γ(n)(etpi,λ(t),m, etµ) = et(4−n)Γ(n)(pi,λ(t), e
−tm,µ) . (5.4.14)

Combining eqs.(5.4.13) and (5.4.14) we finally get

Γ(n)(etpi,λ,m, µ) = et(4−n)−n
∫ t
0 γ(t

′)dt′Γ(n)(pi,λ(t), e
−tm,µ) . (5.4.15)

Equation (5.4.15) tells us that a Green function at some energy scale etp, modulo an

overall factor, equals the same Green function evaluated at the energy scale p, provided

we replace the coupling λ with its running counterpart λ(t), solution of eq. (5.4.10). In

the high energy regime t→∞, mass corrections in the Green functions are negligible, in

agreement with our expectations for an (IR) relevant coupling. The anomalous dimension

γ affects the effective scaling dimension of the Green function, as expected.

The UV behaviour of Γ(n) is particularly simple for theories with an UV stable fixed

point λ∗. In this case,
∫
γ[λ(t′)]dt′ ≃

∫
γ(λ∗)dt′ = tγ∗, with γ∗ ≡ γ(λ∗). The UV

behaviour of Γ(n) reduces then to

Γ(n)(etpi,λ,m, µ) ≃ e4t−nt(1+γ
∗)Γ(n)(pi,λ

∗, 0, µ) . (5.4.16)
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Another interesting situation arises for UV free theories (like QCD) where the (one-loop)

running of the coupling is given by eq. (5.3.3) with β0 < 0. Assuming that γ(t) = γ0g, we

have
∫
γ[g(t′)]dt′ =

∫
γ(g)/β(g′)dg′ = γ0/β0 log g(t)/g and thus for large t

Γ(n)(etpi, g,m, µ) ≃ et(4−n)
( g

g(t)

)nγ0
β0 Γ(n)(pi, 0, µ) . (5.4.17)

5.5 Minimal Subtraction

The sliding scale µ does not necessarily appear as the momenta where we renormalize the

Green functions. In particular, in DR, it arises due to the departure from d = 4 space-time

dimensions. Let gB(d) be a dimensionless coupling constant in 4 space-time dimensions.

In d dimensions the coupling will acquire a mass dimension

∆(d) = (4− d)ρ , (5.5.1)

where ρ is a coupling dependent coefficient. Since divergences appear as poles in (d− 4),

a dimensionless renormalized coupling constant can be defined as

gB(d)µ
−∆(d) ≡ g(µ, d) +

∞∑

n=1

(4− d)−nbn(g(µ, d)) . (5.5.2)

Let us now take a derivative with respect to µd/dµ of eq. (5.5.2). We get

− (4− d)ρ
(
g +

∞∑

n=1

(4− d)−nbn(g)
)
= βd(g) +

∞∑

n=1

(4− d)−nβd
∂bn
∂g

, (5.5.3)

where for simplicity g = g(µ, d). Eq. (5.5.3) should apply to any d, and hence we get an

independent relation for any power of d− 4. At O(4− d) we have

βd(g) = −(4− d)ρg + β(g) , (5.5.4)

where β(g) does not vanish for d → 4 and is the actual four-dimensional β-function. At

O(d− 4)0 we have

β(g) = −ρb1 + ρg
∂b1
∂g

. (5.5.5)

We see that the β(g) is determined by looking at the simple poles in eq. (5.5.2). Such

a scheme is denoted Minimal Subtraction (MS). Since d − 4 poles arise typically in the

combination

Γ
(4− d

2

)
(4π)

4−d
2 →d→4

2

4− d
− γE + log 4π , (5.5.6)

where γE ≃ 0.577 is the Euler-Mascheroni constant, sometimes it is convenient to subtract,

together with the pole 1/(d−4), the finite pieces given by γE/2−1/2 log 4π. Such scheme

is called modified Minimal Subtraction and is denoted as MS.
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In contrast to the definition of β given in eq. (5.2.8), the MS or MS β-functions do not

depend on masses but only on coupling constants. A similar results applies to the field

anomalous dimensions. For this reason, such schemes are called mass-independent. We

will explain in next section why and how these two results are not in contradiction with

each other.

5.6 Scheme Dependence

The detailed form of the β-function of couplings and anomalous dimensions γ of fields has

not per se an intrinsic physical meaning, since it depends on the renormalization scheme

chosen. Only physical quantities are scheme-independent, and hence if distinct schemes

give different expressions for physical amplitudes, necessarily the evolution of the couplings

should compensate for the difference. For instance, as we have just seen in section 5.5, in

MS or MS schemes, β and γ are mass-independent, as opposed to momentum subtraction

used in section 5.2 (hereafter denoted by MOM) and more in general to all schemes where

β and γ depend on the masses of the particles. Is it then meaningful to talk about running

coupling? If so, how do we determine the “correct” running? In order to answer these

questions, it is useful to focus on a concrete example and work it out in some detail.

As usual, we take the φ4 theory and compare the 1PI 4-point function (5.2.5), evaluated

using MOM, with the expression one obtains in MS. By denoting d = 4− ϵ, and recalling

eqs. (4.2.3) and (5.5.2), one has

λB(d)µ
−ϵ = λ+

(Zλ
Z2
− 1
)
λ ≡ λ+ δλ . (5.6.1)

We compute

p1

p2

p3

p4

k

p1 + p2 + k

=
(−iλµϵ)2

2

∫
ddk

(2π)d

∫ 1

0
dx

−i
[k2E +m2 − sx(1− x)]2

=
iλ2µ2ϵ

2(4π)d/2
Γ(ϵ/2)

∫ 1

0

dx

[m2 − sx(1− x)]ϵ/2
. (5.6.2)

According to eq. (5.5.6), the MS scheme is defined by adding the counter-term

δλ =
3λ2

32π2

(
2

ϵ
− γE + log 4π

)
. (5.6.3)

The counterterm above is related to the coefficient b1 in eq.(5.5.2), δλ = b1/ϵ. Summing

over the t and u channel contributions, we get the finite, renormalized 4-point function

Γ(4)

MS
(s, t, u) = −λ(µ) + λ2(µ)

32π2

∫ 1

0
dx log

µ2

m2 − sx(1− x)
+ (s→ t) + (s→ u) . (5.6.4)
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Notice how the numerators of the log term in eqs. (5.2.5) and (5.6.4) differ, the latter

being simply µ2. Demanding the µ-independence of the amplitude, as in section 4.1, we

get

βMS =
3λ2

16π2
, (5.6.5)

for any value of µ, independently of m. Of course, the same result would have been

obtained directly using eq. (5.5.5) with ρ = 1 and b1 given by eq. (5.6.3). Thus, βMS in

eq. (5.6.5) differs from βMOM in eq. (5.2.8), although their UV behaviour is identical and

given by eq. (5.2.10). This is a general result: the detailed form of β is scheme-dependent,

its UV behaviour, given by mass-independent coefficients, is scheme-independent, as we

have shown in section 5.3. As far as the LL summation is concerned, both renormalization

schemes are valid. At low energies, however, the two schemes lead to different behaviours:

in MOM, λ essentially stops running below the scale m, in MS the running never stops

and would lead to a free theory when µ → 0! In the IR the physical picture is best

given by MOM. This can be seen by noticing that eq. (5.2.5) is regular when µ→ 0, while

eq. (5.6.4) seems IR divergent. This “fake” IR divergence and the corresponding large logs

associated to it, are easily evaded by noticing that at arbitrarily low energies s, t, u≪ m2,

the large logs are avoided by taking µ2 ≃ m2. In other words, in the MS, the necessity of

avoiding spurious large logs forces us to never use the IR evolution of the coupling, being

µ ≃ m the correct sliding scale in the IR. We thus conclude that the “correct” IR running

behaviour is the one given by the MOM scheme. However, provided that one keeps in

mind that the IR running in mass-independent schemes is fake, the latter can reliably be

used. The best way to automatically get rid of this non-decoupling of heavy particles in

mass-independent schemes is provided by using them in an effective field theory approach

(more on effective field theories in chapter 7), where one integrates out the heavy particle

so that, for µ≪ m, the heavy state is no longer in the spectrum and does not contribute

to the running anymore.

Amplitudes are easier to compute in mass-independent rather than in mass-dependent

schemes. However, physical couplings are typically defined by processes occurring at some

energy scale and are directly related to the more physical mass-dependent schemes. It

is important to understand how to match couplings in mass-independent schemes with

the physical couplings. Again, this is best illustrated with the specific instance of the φ4

theory. First of all, let us find an approximation to the RG evolution of λ in MOM which

is more refined than eqs. (5.2.10) and (5.2.11). We proceed as follows. The solution of

eq. (5.2.7), for µ≫ m, is given by

λ−1(µ) = − 3

16π2
log µ+ c , (5.6.6)
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where c is an integration constant. This is fixed by matching eq. (5.6.6) with the exact

flow implied by eq. (5.2.7):

λ(µ) = λ(µ0) +

∫ µ

µ0

β

µ′
dµ′ . (5.6.7)

Let us take µ0 = 0, λ(0) ≡ λ and µ " m, i.e. slightly larger than µ, so that we can still

neglect m with respect to µ, but small enough that no large log(µ/m) term appears. In

the range [µ0, µ], λ(µ) ≃ λ, and eq. (5.6.7) is well approximated by

λ(µ) ≃ λ+
3λ2

32π2

∫ 1

0
dx log

µ2x(1− x)

m2
= λ+

3λ2

16π2

(
log

µ

m
− 1
)
, (5.6.8)

from which c = λ−1 + 3/(16π2)(1 + logm) and hence

λ−1(µ) = λ−1 − 3

16π2

(
log

µ

m
− 1
)
θ(µ−m) (MOM) . (5.6.9)

Notice that λ(µ) in eq. (5.6.9) is discontinuous in m:

lim
µ→m−

λ−1(µ) = λ−1 ≠ lim
µ→m+

λ−1(µ) = λ−1 + 3/(16π2). (5.6.10)

This discontinuity essentially takes into account the mass term disturbance to the UV

running for µ " m. The constant 3/(16π2) is often called mass threshold effect. It can be

verified that eq. (5.6.9) is an excellent approximation to the exact one-loop running given

by eq. (5.2.7) far away from the threshold region µ ≃ m. The running coupling in the MS

scheme is simply given by

λ−1(µ) = λ−1 − 3

16π2
log

µ

m
θ(µ−m) (MS) , (5.6.11)

where the step function θ(µ−m) is put by hand, for the reasons explained before. Com-

paring eqs. (5.6.9) with (5.6.11), we get, for µ > m,

λ−1MOM(µ) = λ−1
MS

(µ) +
3

16π2
. (5.6.12)

We can finally answer the previous questions: is it meaningful to talk about running

coupling? If so, how do we determine the “correct” running? There is no notion of

“correct” coupling. The running given by any sensible scheme is meaningful, provided

we consistently associate it to expressions computed in that scheme. The simplest mass-

independent schemes and their associated simple running, can reliably be used in the

UV, and then matched, by means of formulae analogous to eq. (5.6.12), to the physically

defined coupling constants. Unless differently specified, in the rest of these lecture notes

we will adopt the MS renormalization scheme.
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5.7 Leading Logs and Callan-Symanzik Equations

In section 5.2 we have seen that the β-function allows us to improve the perturbative

expansion by resumming large logs. However, it was not clear from our derivation that

the resummed expression (5.2.13) captures exactly all higher-loops leading logs. The

Callan-Symanzik equations allow us to fill this gap. Although this result is effectively

encoded in eq.(5.4.15), it is more transparent to work out the explicit form of the solution

(5.4.15) in perturbation theory, which is what we will do in this section. As usual, for

concreteness we consider Γ(4) in the λφ4 theory, though the derivation is more general. At

high energies, neglecting masses and taking s = t = u = −E2 ≫ m2, Γ(4)(E) is a function

of λ and µ/E. In perturbation theory we can then write

Γ(4)(E) = −λ
∞∑

l=0

λlcl(µ/E) , (5.7.1)

where cl are functions to be determined, and c0 = 1. This expression should satisfy the

Callan-Symanzik equation
(
µ
∂

∂µ
+ β

∂

∂λ
− 4γ

)
Γ(4)(E) = 0 . (5.7.2)

In perturbation theory, β = β0λ2 + β1λ3 +O(λ4), γ = γ0λ+ γ1λ2 +O(λ3) and eq.(5.7.2)

should be satisfied order by order. At the first non-trivial order O(λ2) we have, recalling

that γ0 = 0,

µ∂µc1 = −β0 −→ c1 = −β0 log
µ

E
+ C1 , (5.7.3)

where C1 is an integration constant. At O(λ3) we get

µ∂µc2 = −2β0c1−β1+4γ1 = 0 −→ c2 = β20 log
2 µ

E
+(4γ1−β1−2β0C1) log

µ

E
+C2 . (5.7.4)

Proceeding in this way allows us to establish an important result. At loop order l the

Green function is a polynomial of degree l in log µ/E. At high energies the most relevant

terms at loop l are the logl terms (the leading logs). These are entirely determined in

terms of β0:

cl = (−β0)l logl
µ

E
+O

(
logl−1

µ

E

)
. (5.7.5)

Resumming these terms give

Γ(4)
LL(E) = −λ

∞∑

l=0

(−β0λ)l logl(µ/E) =
−λ(µ)

1− β0λ log E
µ

, (5.7.6)

If we take µ = m in eq.(5.7.6) and recall that β0 = 3/(16π2) we precisely recover

eq.(5.2.13). This proves that there are no extra leading logs contributions that are not
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captured by the β-function. More in general, the leading log contributions of a correlation

function also depends on the anomalous dimension coefficient γ0.

This analysis can be repeated to sub-leading orders (next-to leading logs, etc.). For

example, by knowing the two-loop coefficients β1, γ1 and the integration constant C1

allows us to determine the next-to-leading logs, such as the log term in eq.(5.7.4), at any

loop order. More in general, the series of logs of the form logl−n at loop order l can be

determined from the knowledge of β0, . . . ,βn, γ0, . . . , γn, C1, . . . , Cn.

5.8 “Irrelevant” RG Flow of Dimensionful Couplings

Depending on the energy scale, relevant and irrelevant operators parametrically either

dominate the physics or are negligible. For instance, in the IR relevant operators, such

as masses, are the dominant effect, while in the UV irrelevant operators make a theory

ill-defined. We focus here on a perturbative situation in which the (ir)relevant operators

can be seen as a small deformation in the theory. For instance, the effect of a mass term

in the UV or the insertion of an irrelevant operator in the IR.

The concept of sliding scale and running coupling can be extended to relevant or

irrelevant couplings, but care should be paid in this case to the scheme dependence of the

results. Let us first consider irrelevant couplings, assuming that no relevant couplings are

present or that their effect is negligible. In general, in presence of marginal and irrelevant

couplings, the β-function coefficients are scheme-dependent even in the limit where mass

effects are neglected. If we denote by gi and g̃i two coupling constants with classical mass

dimension ∆i in two different schemes, we have

g̃i = gi + aijk(µ)gjgk +O(g3) , (5.8.1)

where by dimensional analysis

aijk(µ) = µ∆i−∆j−∆kcijk , (5.8.2)

and cijk constant coefficients. The perturbative expansion of the β-functions for the gi’s

read

βi = µ
dgi
dµ

= βijk0 (µ)gjgk +O(g3) , (5.8.3)

where

βijk0 (µ) = µ∆i−∆j−∆kbijk0 . (5.8.4)

On the other hand, in the other scheme we have

β̃i = µ
dg̃i
dµ

= β̃ijk0 (µ)g̃j g̃k +O(g̃3) , (5.8.5)
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where

β̃ijk0 (µ) = µ∆i−∆j−∆k b̃ijk0 , b̃ijk0 = bijk0 + cijk(∆i −∆j −∆k) . (5.8.6)

Universal coefficients arise only when ∆i −∆j −∆k = 0. Renormalization schemes where

classical dimensional analysis is preserved at the quantum level (i.e. where no powers of

µ can be generated from quantum corrections), like MS or MS in DR, give automatically

bijk0 = 0 when ∆i − ∆j − ∆k ≠ 0, and only keep the scheme-independent coefficients.

This is related to the property of dimensional regularization of setting to zero all power-

like divergences, keeping only the logarithmic ones. Logarithmic divergences are special,

because they are the only ones not saturated by UV physics, and sample uniformly all

energy scales, up to the IR. Since the IR physics should be insensitive to the details of

the different renormalization schemes, it follows that the associated β-function coefficients

should be scheme-independent.

For illustration and in order to be concrete, consider again the λφ4 theory, but this

time in five space-time dimensions, and let us compute the one-loop RG evolution of λ.

In five dimensions the φ4 theory is non-renormalizable and λ is an irrelevant coupling

of mass dimension −1. In presence of irrelevant couplings, dimensional regularization

can no longer be considered a mass-independent scheme, since by dimensional analysis

the β-functions can have a dependence on masses. If we neglect mass terms, however,

dimensional analysis dictates that the irrelevant coupling with the smallest dimensions, λ

itself in this example, has a vanishing β-functions to all orders in perturbation theory:

β(λ)5d = 0 . (5.8.7)

There is no analogue of the log resummation needed in treating marginal couplings and

hence no need to improve the perturbative expansion.

Let us see what happens in a mass-dependent scheme. It is convenient to introduce a

mass scale M and write the interaction as λ/Mφ4, with λ dimensionless and of O(1). The

scale M is the scale below which this theory makes sense as an effective field theory. We

assume that the size of all dimensionful operators is governed by this scale, that is any

dimensionful coupling of mass dimension −n can be written as a dimensionless coupling

of order one times 1/Mn. Let us focus on the 1PI 4-point function. This is linearly

divergent in a cut-off regularization and can be renormalized by momentum subtraction

using eq. (5.2.4), with λ → λ/M . The finite, 1PI four-point function, the 5d analogue of

eq. (5.2.3), is

Γ(4)
5d (s, t, u) = −

λ(µ)

M
− λ2(µ)

32π2M2

∫ 1

0
dx

(√
m2 − sx(1− x)−

√
m2 + µ2x(1− x)

)

+(s→ t) + (s→ u) . (5.8.8)
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The logs are replaced by square roots in 5d. In order to see that the sliding scale is not

of great help, fix, say, µ = 0 and consider the high energy regime −s ≫ m2. Like the 4d

case (5.2.4), the one-loop term grows and can in principle be comparable to the tree-level

term. This will occur at energies λ
√

|s|/(32π2M) ∼ 1, which implies |s| > M2. But this

is beyond the regime in which the effective field theory makes sense, which is |s| ≪ M2!

There is no energy regime in which the perturbative expansion can be improved by some

RG resummation. The theory is simply weakly coupled for energies below M and becomes

strongly coupled for energies above M . Nevertheless, there is nothing intrinsically wrong

in introducing the sliding scale µ, so we can keep going and compute the β-function for λ

by using the CS equations (5.4.3). In this way we get the 5d analogue of eq. (5.2.8):

β(λ)5d =
3λ2

32π2M

∫ 1

0
dx

µ2x(1− x)√
m2 + µ2x(1− x)

+O(λ3) . (5.8.9)

For µ≫ m this simplifies to

β(λ)5d ≃
3λ2
√

µ2

256πM
, µ≫ m. (5.8.10)

The approximate solution of the RG flow is

λUV (µ) ≃
λ(µ0)

1− 3λ(µ0)
256πM (µ − µ0)

, µ0, µ≫ m, (5.8.11)

λIR(µ) ≃ constant , µ≪ m. (5.8.12)

Let us finally compare the Γ(4)
5d one obtains with and without the use of the RG technique

at high energies (the analogue of eqs. (5.2.12) and (5.2.13)) for s = t = u ≡ −E2 ≫ m2:

Γ(4)
5d (E) ≃ − λ

M
− 3λ2E

256πM2
+O(λ2) , (no RG) (5.8.13)

Γ(4)
5d (E) ≃ −λ(E)

M
=
−λ/M

1− 3λE
256πM

+O(λ2) . (RG) (5.8.14)

Like in 4d, eq. (5.8.14) reproduces the one-loop result (5.8.13) and, in addition, encodes

higher order terms. However, in contrast to the 4d case, the higher order terms are

scheme-dependent and are not “special” in the perturbative expansion. They are of order

λl+1(E/M)l, which is the order expected for a generic l-loop computation. There is no

analogue of the logarithmic enhancement found in the 4d case. Hence eq. (5.8.14) should

only be trusted at O(λ2), in which case it merely reproduces the perturbative result

obtained with no RG technique.

The vanishing of β(λ)5d in DR at one-loop level is immediately seen by noting that the

one-loop integral is proportional to Γ(2 − d/2). No divergence then occurs because the
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(analytic continuation of the) Gamma function is well-behaved for negative half-integers

values of its argument.

Scheme-independent β-functions can occur in this example for higher dimensional cou-

plings. Consider for instance the dimension 9 operator φ6, that will be generated at some

order in perturbation theory due to the non-renormalizability of the theory. Its coupling

g has classical dimension −4, so by dimensional analysis we expect in a mass-independent

scheme

β(g)5d = cλ4 , (5.8.15)

where c is a generally non-vanishing constant.10 Since λ does not run, the solution to

eq.(5.8.15) is simply

g(µ) = g(µ0) + cλ4 log
( µ

µ0

)
. (5.8.16)

We see that log terms can appear but in a rather dull way. Moreover, we should keep in

mind that log’s grow slowly and the range of energies we can explore is limited by the

range of validity of the non-renormalizable effective theory.

A similar analysis can also be made for relevant couplings, with the obvious crucial

difference that their effect decreases, rather than increases, in the UV. An example is once

again provided by the φ4 theory, this time in three dimensions, where the theory is super-

renormalizable. The coupling λ has classical mass dimension +1 and in mass-independent

schemes, and to all orders in perturbation theory, we have

β(λ)3d = 0 , (5.8.17)

while in mass-dependent schemes β(λ)3d ≠ 0.11

5.9 “Relevant” RG Flow of Dimensionful Couplings and Renormaliza-

tion of Composite Operators

We have seen in section 5.8 that the use of RG techniques applied to relevant and irrelevant

couplings is not always as useful as in the standard situation where we have marginal

couplings only. We have provided an example, the φ4 theory in 5 space-time dimensions,

where all couplings are irrelevant. In presence of marginal couplings, the situation changes.

10By dimensional analysis other terms could appear in eq.(5.8.15), proportional to couplings associated

to operators of dimension 7 and 8. These operators are however redundant and by the equations of motion

(or equivalently a field redefinition) can be removed. We will discuss redundant operators in section 7.8.
11RG techniques can be used in this theory in another way, by introducing the so called ϵ-expansion

[21]. This is a very interesting and useful technique, which will not be discussed here due to lack of time.
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In a theory where marginal and (ir)relevant couplings are present together, the former can

lead to large logs effects on the latter that should be summed. In other words, the quantum

RG flow of (ir)relevant operators, induced by marginal couplings, can and should be taken

into account. This is what we mean by “relevant” RG flow in the title of this section.

If we denote by c the coupling constant associated to the classically lowest dimensional

irrelevant operator Oc, assuming it to be unique for the moment, dimensional analysis

requires that to all orders in perturbation theory12

βc = f(λi)c , (5.9.1)

where we have denoted by λi all the marginal couplings in the theory. Note that βc can

have only a linear dependence on the coupling constant c, but an arbitrary dependence on

the marginal couplings λi, parametrized in eq.(5.9.1) by the function f . The function f

corresponds to the anomalous dimension of the operator Oc. Before showing this result,

let us first introduce the concept of composite operator and its corresponding anomalous

dimension.

Composite operators are obtained by taking products of elementary fields (and their

derivatives) at the same space-time point. At the quantum level, when two fields approach

the same space-time point, UV divergences arise. Naive product of fields does not hold, i.e.

φ2(x) ≠ (φ(x))2. Indeed, we know that ⟨φ2(x)⟩ ≠ (⟨φ(x)⟩)2.13 For this reason, correlations

functions involving composite operators are divergent, even in a renormalized theory where

the infinities have been already buried in the counter-terms. Such additional divergences

are removed by a renormalization of the composite operators themselves, generalization of

the wave-function renormalization of the elementary fields. Composite operators can be

relevant, marginal or irrelevant: φ2, φ4, (∂φ)2, φ6, (∂φ)4, ∂µφ∂νφ, ∂µ∂ν∂ρφ4, etc. are all

composite operators. They can in general carry Lorentz quantum numbers (spin), so we

can have scalar operators, as well as tensor operators, like the last two illustrated above.

If we denote by O a generic composite operator, in analogy to the elementary field case,

we write the bare operator OB = O(µ)ZO(µ).

Let G(n) be a generic n-point connected Green function of n operators Oi:14

G(n)
B (p1, . . . , pn) = ⟨OB

1 (p1) . . .OB
n (pn)⟩ =

n∏

i=1

ZOi(µ)G(n)(p1, . . . , pn) . (5.9.2)

12Again, this is only true in a mass-independent scheme. From now on, the use of a mass-independent

scheme will be assumed.
13In the operatorial formalism, where φ is an operator in the Hilbert space, some (in general not all)

divergences of composite fields are removed by the normal ordering procedure.
14Composite or elementary. In the latter case Zφ(µ) =

√

Z(µ).
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The straightforward generalization of the CS eqs. (5.4.3) – which are also valid for con-

nected, rather than 1PI, Green functions – are
(

µ
∂

∂µ
+ βi(λ)

∂

∂λi
+

n∑

i=1

γOi(λ)

)

G(n) = 0 , (5.9.3)

where

γOi(λ) = µ
d logZOi

dµ
(5.9.4)

is the anomalous dimension of the operator Oi. In general, the situation is more com-

plicated, because operators with the same quantum numbers typically mix under renor-

malization.15 The anomalous dimension becomes then a matrix of anomalous dimensions:

OB
i = ZO

ij (µ)Oj(µ) and

γij(λ) = (ZO
ik)
−1µ

dZO
kj

dµ
. (5.9.5)

We can now come back to our original problem of studying the RG evolution of an

irrelevant coupling driven by marginal couplings, and show that the function f appearing

in eq.(5.9.1) can be identified with the anomalous dimension of its corresponding operator

Oc. Let us denote by G(n) a generic n-point Green function obtained from a Lagrangian

containing, besides marginal interactions, the term cOc. We can bring down from the

action the term cOc so that (in momentum space)

G(n)(c, p1, . . . , pn) = ⟨φ(p1) . . .φ(pn)⟩c =
∞∑

k=0

(ic)k

k!
⟨φ(p1) . . . φ(pn)Ok

c (0)⟩0

≡
∞∑

k=0

(ic)k

k!
G(n,k)(0, p1, . . . , pn) . (5.9.6)

The CS eqs. satisfied by the G(n,k) are
(
µ
∂

∂µ
+ βi(λ)

∂

∂λi
+ nγ + kγOc(λ)

)
G(n,k)(0, p1, . . . , pn) = 0 . (5.9.7)

We can multiply eq. (5.9.7) by (ic)k/k! and sum over k to write
(
µ
∂

∂µ
+ βi(λ)

∂

∂λi
+ nγ + cγOc(λ)

∂

∂c

)
G(n)(c, p1, . . . , pn) = 0 , (5.9.8)

where we used that c∂G(n)/∂c =
∑

k k(ic)
k/k!G(n,k). The β-function for c can be identified

by looking at the term multiplying ∂/∂c. We then have

βc = cγO(λi) , (5.9.9)

15The degree of mixing depends on the renormalization scheme. In particular, operators with different

classical dimensions cannot mix in mass-independent schemes in theories with marginal couplings only.
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where the anomalous dimension γO(λi) is computed in the theory with c = 0. Comparing

eq.(5.9.9) with (5.9.1), we see that

f = γO. (5.9.10)

Let us solve the RG flow eqution (5.9.9) in the case in which we have only one marginal

coupling λ, with γO(λ) = γ0λ+ . . ., βλ(λ) = b0λ2 + . . .. In this case, using the chain rule,

we can rewrite eq.(5.9.9) as
dc

dλ
βλ(λ) = cγO(λ) , (5.9.11)

that, at leading order in λ, admits the solution

c(µ) = c(µ0)

(
λ(µ)

λ(µ0)

) γ0
b0

. (5.9.12)

We see how the RG flow of the marginal coupling λ(µ) drives an RG flow for the irrelevant

coupling c, with an effect that sensitively depends on the anomalous dimension of the

operator Oc (determined by γ0) and of course on the running of λ (determined by b0),

that enters both explicitly and implicitly in defining λ(µ) in eq.(5.9.12).

More in general, if the lowest dimensional irrelevant operator is not unique, we can

have a set of operators cnOn that mix under renormalization. Repeating the analysis

above, we get

βcn = γnm(λ)cm . (5.9.13)

In many cases eq.(5.9.13) is enough to have a good description of the physics because, by

definition, irrelevant couplings are small in the IR and the lowest dimensional ones capture

the main effects we want to study.16

Irrelevant operators can also come from an underlying renormalizable theory when

some degrees of freedom are integrated out. We will study this topic in chapter 7, where

we will also consider an explicit example of RG flow of an irrelevant coupling.

The above analysis can be repeated in the case in which c is a relevant operator. We

will not repeat the general analysis for relevant operators, but focus on the particular

case of the mass term, which is a relevant operator. The physical mass, defined in a

mass-dependent scheme as Γ(2)(p2 = m2) = 0, cannot depend on the energy scale. But

non-physical masses in mass-independent schemes do have such a dependence. This is

particularly simple in a theory with no irrelevant couplings where, by dimensional analysis

and to all orders in perturbation theory, we have

βm2 = γm(λi)m
2 , (5.9.14)

16 Unless selection rules require to consider higher dimensional operators. Moreover, this is only true

in a perturbative context. At strong coupling everything can possibly happen, e.g. a classically irrelevant

operator might turn into a marginal or even a relevant operator.
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where γm is the anomalous dimension of the mass operator. In the φ4 theory the composite

operator associated to the mass is φ2, γm = γφ
2
. It is a useful exercise to determine γφ

2

at one-loop level. This can be derived by studying the Green function G(2,1) = ⟨φφφ2⟩.
Since Z = 1 at one-loop, we have G(2,1) = (Zφ2)−1G(2,1)

B . The divergent part of G(2,1) is

readily computed by setting the external momentum to zero. We have

G(2,1)
B,div(0) = −iλ

∫
ddp

(2π)d
i2

(p2)2
= − λ

16π2ϵ
, (5.9.15)

and hence

Zφ2 = 1− λ

16π2ϵ
. (5.9.16)

Recalling that β(λ) = −ϵλ+O(1) in d dimensions , one gets

γφ
2
=

d logZφ2

d log µ
=

λ

16π2
. (5.9.17)

Using eq. (5.9.14), we conclude that

βm2 = m2 λ

16π2
. (5.9.18)

We can also get eq.(5.9.18) directly, by-passing the above analysis. The one-loop mass

correction in the φ4 theory is given by the tadpole graph in fig. 5.2. In DR, the one-loop

1PI 2-point function reads

iΓ(2)(p) =
−iµϵλ

2

∫
ddk

(2π)d
i

k2 −m2
− iδm = − iµϵλ

2(4π)d/2
Γ(2− d/2)

(1− d/2)
md−2 − iδm . (5.9.19)

In the MS scheme the counter-term is

δm =
m2λ

32π2

(
2

ϵ
− γE + log 4π

)
, (5.9.20)

so that the tree+1-loop 1PI 2-point function reads

Γ(2)(p) = p2 −m2
MS

+
m2λ

32π2

(
1 + log

µ2

m2

)
. (5.9.21)

In the physical scheme we simply have

Γ(2)(p) = p2 −m2 , (5.9.22)

with no finite one-loop corrections left, where m is the physical, µ-independent, mass.

Matching eqs.(5.9.21) and (5.9.22) gives

m2 = m2
MS

(µ)− m2λ

32π2

(
1 + log

µ2

m2

)
, (5.9.23)
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Figure 5.2: One-loop tadpole graph contributing to the renormalization of the mass in the

φ4 theory.

and hence

0 = µ
dm2

dµ
= βm2 − m2λ

16π2
+O(λ2) =⇒ βm2 = m2 λ

16π2
, (5.9.24)

which reproduces eq.(5.9.18), as expected.

The use of µ-dependent masses is unavoidable when using mass-independent schemes

such as MS or MS. There is nothing wrong in computing amplitudes in terms of unphysical

masses (like the mass terms in the MS scheme), in which case RG flow techniques should

be used to relate mass terms at different energy scales. Eventually one relates these masses

to the physical ones, using formulae like eq. (5.9.23). As a matter of fact, MS masses are

often used in the literature, being the MS scheme one of the most popular schemes in

perturbative computations. For particles like quarks that do not appear in asymptotic

states and for which the direct physical mass definition is unavailable, the story is more

complicated. The MS quark mass, for example, can be defined to be m2
MS

(M), evaluated

at some indirectly derived “pole” mass M . For a heavy quark, for which M ≫ ΛQCD, the

mass M can roughly be computed as the mass of the meson bound states Q̄Q divided by

two. For light quarks, M can be computed using chiral perturbation theory, as explained

in section 8.7. For M ≃ ΛQCD, more complicated procedures are needed.

5.10 RG Improved Effective Potential

The RG technique is also useful in the context of effective potentials. The summation

of LL leads to so called RG improved Effective Potentials. Our favorite φ4 theory is

particularly instructive in this case, since it shows how RG improved potentials help us in

correcting fake perturbative results. We have seen in section 4.2 that the CW potential

for a massless φ4 theory reads (omitting the irrelevant constant term):

Veff (φ) =
λ

4!
φ4 +

λ2

256π2
φ4 log

φ2

φ20
. (5.10.1)
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where φ0 is an arbitrary fixed energy scale. Let us look for the extrema of φ:

0 =
dVeff (φ)

dφ
=

φ3λ

384π2
(64π2 + 3λ+ 6λ log φ2/φ20)→ φ = 0 ,φ = ±φ̄ = ±φ0e−(

1
4+

16π2

3λ ) .

(5.10.2)

The classical minimum at φ = 0 turns into a maximum and two new symmetric minima

arise at ±φ̄. The one-loop truncation of the potential is reliable provided the tree-level

term is greater than the one-loop term, namely for field values such that

3λ

16π2
| log φ|≪ 1 . (5.10.3)

The condition (5.10.3) is manifestly violated at the minima |φ̄|, so we cannot trust the

result we have found for such small values of φ. This problem is easily solved by RG

arguments. Let us define a running coupling λ(µ) by

Veff (φ = µ) ≡ λ(µ)

4!
µ4 . (5.10.4)

In terms of λ(µ) the potential reads

Veff (φ) =
λ(µ)

4!
φ4 +

λ2(µ)

256π2
φ4 log

φ2

µ2
. (5.10.5)

We already know how λ(µ) flows with the energy scale, but it is instructive to see how

the β-function for λ can be computed by demanding the µ-invariance of Veff . Recalling

that γφ = 0 up to one-loop level, we get

0 = µ
dVeff

dµ
= β(λ)

φ4

4!
− λ2φ4

128π2
+O(λ3)→ β(λ) =

3λ2

16π2
. (5.10.6)

By choosing µ = φ in eq. (5.10.5), we can get rid of the log term and write

Veff (φ) =
λ(φ)

4!
φ4 =

λ0

1− 3λ0
16π2 log

φ
φ0

φ4

4!
, (5.10.7)

where φ0 is an arbitrary scale. The minima at φ = ±φ̄ have disappeared in the poten-

tial (5.10.7), which manifestly increases monotonically when φ increases. The potential

(5.10.7) is the RG improved version of the effective potential (5.10.1). Expanding the log

term in eq. (5.10.7), we recover eq. (5.10.1) plus all the LL terms summed by the RG

technique. The origin of the fake result (5.10.2) should now be clear. The minima at

φ = ±φ̄ were obtained by forgetting the large log’s that appear for so small values of φ

(small energies). Being the φ4 theory free in the IR, the effective coupling at such small

energies becomes smaller and smaller and the actual minimum is in fact the tree-level one.
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5.11 Anomalous Dimension of the Photon and QED β-function

The WT identities imply that the radiative corrections to the photon propagator are

transverse to all orders in perturbation theory, as described by eq. (3.3.5). It is useful to

explicitly check this result at one-loop order. In so doing, we will determine the one-loop

counter-term Z3 defined in eq.(3.3.11). Once Z3 is known, we can compute the photon

anomalous dimension and β-function for e. The only one-loop graph contributing to the

photon propagator is the electron loop:

k

q

q + k

≡ iΠ(1)
µν (q) = (−1)(ie)2µϵTr

∫
ddk

(2π)d
i(/k +m)

k2 −m2
γµ

i(/q + /k +m)

(k + q)2 −m2
γν .

(5.11.1)

We can bring together the two electron propagators appearing in eq.(5.11.1) by introducing

the Feynman parameter x:

1

ab
=

∫ 1

0
dx
[
ax+ b(1− x)

]−2
. (5.11.2)

Performing also the Dirac algebra, we have

iΠ(1)
µν = −de2µϵ

∫ 1

0
dx

∫
ddk

(2π)d
kµ(k + q)ν + kν(k + q)µ + (m2 − k · (q + k))ηµν[

(k2 −m2)(1 − x) + x(q + k)2 − xm2
]2 . (5.11.3)

Let us now redefine k → k− qx, so that the odd term k ·q in the denominator is cancelled.

By symmetry, after the momentum shift, the terms in the numerator odd in k vanish. We

have then

iΠ(1)
µν = −de2µϵ

∫ 1

0
dx

∫
ddk

(2π)d
2(kµkν − qµqνx(1− x)) + ηµν(m2 + q2x(1− x)− k2)

(k2 −∆)2
.

(5.11.4)

where ∆ ≡ m2 − q2x(1 − x). Recall that kµkν
∫
= (k2/d)ηµν and perform then the Wick

rotation to euclidean signature: k0 → ik4, k2 → −k2. After these steps, eq.(5.11.4) is

rewritten as

iΠ(1)
µν = −ide2µϵ

∫ 1

0
dx

∫
ddk

(2π)d

(1− 2/d)k2ηµν +
(
m2 + q2x(1− x)

)
ηµν − 2qµqνx(1− x)

(k2 +∆)2
.

(5.11.5)
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Let us now focus on the divergent part of eq.(5.11.5), i.e. to the 1/ϵ pole. Using the tricks

described in section 3.4, we immediately get

iΠ(1)div.
µν = −id e2

8π2ϵ

∫ 1

0
dx

[(
1− 2

d

)
ηµν(−2∆) +

(
m2 + q2x(1− x)

)
ηµν − 2qµqνx(1− x)

]

= i(ηµνq
2 − qµqν)

e2

8π2

(
− 4

3

)1
ϵ
. (5.11.6)

The one-loop correction Π(1)
µν is in the transverse form expected from the WT identity

(3.3.5). The value of the counter-term Z3 needed to cancel the divergence (5.11.6) is (see

fig.3.2)

Z3 = 1− e2

6π2
1

ϵ
, (5.11.7)

where we used here the MS subtraction scheme. The photon anomalous dimension is

γA =
1

2

d logZ3

d log µ
= −eβ(d)e

6π2
1

ϵ
(5.11.8)

where β(d)e is the QED β-function in d (and not 4) dimensions. This is easily determined

from eq.(3.3.13), that in DR reads eB = Z−1/23 µϵ/2e (recall the identity Z1 = Z2). Since

the bare charge eB does not depend on µ, we have

0 = µ
deB
dµ

= Z−1/23

(
− eγA +

1

2
ϵe+ β(d)e

)
=⇒ β(d)e = −1

2
ϵe+ eγA . (5.11.9)

Plugging eq.(5.11.9) in eq.(5.11.8) gives, up to order e2,

γA =
e2

12π2
. (5.11.10)

In turn, eq.(5.11.10) allows us to determine the actual 4D β-function βe:

βe = eγA =
e3

12π2
. (5.11.11)

It is useful to write the RG behavior in terms of α ≡ e2/(4π) and solve for its inverse.

One gets, for µ0, µ≫ m,

α−1(µ) = α−1(µ0)−
2

3π
log

µ

µ0
. (5.11.12)

For µ < m, instead, like for the coupling λ in the φ4 theory, α does not run and its value is

approximately given by α(m). We are clearly assuming here that there is a single charged

particle. In presence of more charged particles with different masses, α stops running at

the scale given by the lowest charged particle. Notice that in the real world, where the

electron is the lightest charged particle, the absence of massless charged particles is crucial

to prevent the electric charge (and hence all electrodynamical interactions) to vanish in

the far IR.
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Chapter 6

Non-Abelian Gauge Theories

6.1 Introduction and Classical Analysis

Non-abelian gauge theories are at the base of our current understanding of particle physics.

Both the strong and the electroweak interactions are described in terms of them. These

theories are based on a generalization of the QED U(1) gauge symmetry, where two trans-

formations do not necessarily commute with each other (hence the name non-abelian).

Before describing them, let us quickly review the role of the U(1) symmetry in QED. We

assume an invariance of the Lagrangian under local (i.e. space-time dependent) trans-

formations parametrized by a function λ(x), under which any field ψ carrying charge q

transforms as

ψ(x)→ eiqλ(x)ψ(x) . (6.1.1)

Due to the space-time dependence of the transformation, the derivative of the field ∂µψ

does not transform covariantly:

∂µψ(x)→ eiqλ(x)
(
∂µψ(x) + iqψ(x)∂µλ(x)

)
. (6.1.2)

We then add a gauge field (photon) Aµ that transforms inhomogeneously:

Aµ(x)→ Aµ(x) + ∂µλ(x) , (6.1.3)

that allows us to define a new (covariant) derivative transforming covariantly under U(1)

gauge transformations:

Dµψ(x) ≡ ∂µψ(x)− iqAµ(x)ψ(x)→ eiλ(x)Dµψ(x) . (6.1.4)

Under infinitesimal U(1) transformations parametrized by ϵ(x)≪ 1, we have

δϵψ(x) = iqϵ(x)ψ(x) , δϵAµ(x) = ∂µϵ(x) . (6.1.5)
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The QED Lagrangian is constructed by forming gauge invariant combinations of ψ, Dµψ

and of the field strength

Fµν = ∂µAν − ∂νAµ . (6.1.6)

Non-abelian gauge theories are constructed by generalizing the above construction to a

set of fields (scalars or fermions) ψl, with l labeling the different fields. We assume that

under an infinitesimal gauge transformation, the ψl are rotated among each other:

δϵψl(x) = iϵα(tα)
m
l ψm(x) , (6.1.7)

where tα are a set of constant matrices, labelled by the index α, satisfying the relation

[tα, tβ] = iCγ
αβtγ . (6.1.8)

The coefficients Cγ
αβ are a set of real parameters denoted the structure constants. They

are manifestly antisymmetric in the two lower indices: Cγ
αβ = −Cγ

βα. We have written

the index γ upstairs, because in principle there might be a non-trivial metric gαβ in group

space, to raise and lower the group indices. In the physically most interesting cases, this

metric can be chosen to be the identity. From now on, we will assume a trivial group

metric. Correspondingly, the position of the indices α, β, etc. will be irrelevant. In this

case, it can be shown that the structure constants Cαβγ become antisymmetric in all three

indices.

Matrices satisfying the condition (6.1.8) form a so-called Lie algebra, namely they

define infinitesimal transformations of a so called Lie group. Differently from the QED

case, the group of transformations (6.1.7) is multidimensional and this explains the origin

of the index α, that runs from 1 up to dimG, the number of dimensions of the group.

The matrices tα are nothing else than a set of generators of the Lie group, meaning that

any group transformation can be written in terms of these matrices, that are linearly

independent from each other. Like any set of matrices, the tα’s also satisfy the so called

Jacobi identity

[[tα, tβ], tγ ] + [[tγ , tα], tβ ] + [[tβ , tγ ], tα] = 0 . (6.1.9)

Using eq. (6.1.8), this identity implies the following constraints among the structure con-

stants:

Cω
αβC

δ
ωγ + Cω

γαC
δ
ωβ + Cω

βγC
δ
ωα = 0 . (6.1.10)

Depending on how many fields ψl we have, the matrices tα are said to be in different

representations of the Lie algebra. In general, there is an infinite set of matrices (of

different size), satisfying eqs. (6.1.8) and (6.1.9). Among these, a special role is played by

the “adjoint” representation. This is the representation in which the generators tAdj
α are
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dimG × dimG matrices, i.e. the indices l,m coincide with the indices α,β. An explicit

form of this representation is given by

(tAdj
α )βγ = iCβ

αγ . (6.1.11)

Indeed, it is straightforward to check that the Jacobi identity (6.1.10) can be rewritten as

[tAdj
α , tAdj

β ] = Cγ
αβt

Adj
γ . (6.1.12)

We do not enter here in any detail concerning the definition of Lie algebras, Lie groups,

etc., because all this will be extensively treated in the group theory course. However, we

need to introduce another relevant representation, the fundamental. It might be useful to

consider a simple example of non-abelian Lie group, G = SU(2). SU(2) is defined by the

set of 2× 2 unitary matrices U † = U−1 with unit determinant (that’s why the name S(for

special, with unit determinant)U(for unitary)(2)). It is straightforward to check that this

set is in fact a group and it is three dimensional. Any SU(2) matrix U can be written as

U = eiωαtα , α = 1, 2, 3 , (6.1.13)

where tα = σα/2 and σα are the usual Pauli matrices

σ1 =

(
0 1

1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0

0 −1

)

. (6.1.14)

The structure constants are

Cαβγ = ϵαβγ , (6.1.15)

where ϵαβγ is the completely antisymmetric tensor, with ϵ123 = +1. The above 2×2 matri-

ces tα, that enter the definition of the group SU(2), form the fundamental representation.

The 3 × 3 matrices (6.1.11) define instead the adjoint representation. We can then have

field “doublets” Dl (l = 1, 2), that transforms as Dl → UlmDm, with U as in eq. (6.1.13)

or field “triplets” Tl (l = 1, 2, 3), transforming as Tl → (UAdj)lmDm, where

UAdj = eiωαt
Adj
α , α = 1, 2, 3 . (6.1.16)

In addition to the fundamental and adjoint representations, there are an infinite number

of other irreducible representations, labelled by the angular momentum J , of dimension

2J + 1, with J any positive integer or semi-integer number.

Similar considerations apply for more general groups, such as SU(N), with N > 2, or

SO(N), with N > 3.1 Instead of defining dim r × dim r matrices U r, for each different

1The group SO(3) is locally isomorphic to SU(2) and is defined by the same 3 generators tAdj.
α introduced

above for SU(2). The group SO(2) is isomorphic to U(1).
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representation r, it is practically more convenient to write the transformation properties of

r in terms of, say, the matrices U in the fundamental representation. All we need to know

is how the representation r in question appears in the tensor product of fundamentals.

For instance, for SU(N) groups, we have N ⊗ N̄ = N2 − 1⊕ 1, where N and N̄ are the

fundamental and anti-fundamental (i.e. complex conjugate) representations, and N2 − 1

is the adjoint one. A field ψ in the adjoint representation of SU(N) can correspondingly

be written as an N ×N matrix field ψij , transforming as

ψ → UψU † . (6.1.17)

Coming back to physics, given the transformation (6.1.7), we add gauge fields Aαµ , one

for each independent direction in field space, so that we can form a covariant derivative.

In analogy to the U(1) case, the transformations of the gauge fields Aαµ must contain a

term of the form ∂µϵα. Contrary to the U(1) case, this cannot be the end of the story,

since α is an index in the adjoint representation. The natural guess for the infinitesimal

transformation of Aαµ is then

δAαµ = ∂µϵ
α + iϵβ(tAdj.

β )αγA
γ
µ = ∂µϵ

α + Cα
βγA

β
µϵ
γ . (6.1.18)

The covariant derivative is defined as

Dµψl ≡ ∂µψl − iAαµ(tα)
m
l ψm . (6.1.19)

It is straightforward to show that this guess is in fact correct and the covariant derivative

transforms as it should:

δ(Dµψ)l = iϵα(tα)
m
l (Dµψ)m. (6.1.20)

It is often convenient to write the components of the gauge fields Aαµ in matrix form by

defining

Aµ = Aαµtα . (6.1.21)

For simplicity of notation we have omitted, and from now on will be done most of the

time, the gauge group indices in eq. (6.1.21). The finite form of eq. (6.1.18) is easily found

by demanding that the gauge transformed connection A→ AU , is such that

Dµ(A)ψ → UDµ(A)ψ . (6.1.22)

for any field in a given representation r, transforming as ψ → ψU = Uψ, where U is

defined as

U(x) = eiΛα(x)tα . (6.1.23)

108



We have

(∂µ−iAµ)ψ → ∂µ(Uψ)−iAU
µ Uψ = U(∂µψ−iAµψ)+(∂µU)ψ+(iUAµ−iAU

µU)ψ . (6.1.24)

Demanding that the last three terms in eq. (6.1.22) vanish uniquely fixes

AU
µ = UAµU

−1 − i(∂µU)U−1 . (6.1.25)

The first term in eq. (6.1.25) is the one expected from a field in the adjoint representation

(see eq. (6.1.17)), while the second is the inohomogenous one characterizing a gauge con-

nection. For the U(1) case the index α is trivial and eq. (6.1.25) reduces to eq. (6.1.3), with

Λ = λ. For infinitesimal transformations, Λα = ϵα, the transformation (6.1.25) correctly

reproduces eq. (6.1.18), as it should.

The generalization of the U(1) field strength Fµν = ∂µAν − ∂νAµ can be found by

recalling that for any field ψ with charge q, the field strength is proportional to the

(commutator part of the) action of two covariant derivatives acting on the field itself.

Taking q = 1, we have

DµDνψ = (∂µ − iAµ)(∂ν − iAν)ψ = (∂µ∂ν − i∂µAν − iAν∂µ − iAµ∂ν −AµAν)ψ . (6.1.26)

Only the second term in the above equation survives when we take the antisymmetric

combination in µ↔ ν:

[Dµ,Dν ]ψ = −iFµνψ . (6.1.27)

The field strength in a non-abelian gauge theory can be defined by generalizing eq. (6.1.27).

Denoting ψ a field in an arbitrary representation of the gauge group, eq. (6.1.26) still

applies, but now the last term does not vanish, since Aµ is a matrix. We have

[Dµ,Dν ]ψ = −i(∂µAν − ∂νAµ − i[Aµ, Aν ])ψ ≡ −iFµνψ . (6.1.28)

In components, Fµν = Fα
µνtα, with

Fα
µν = ∂µA

α
ν − ∂νAαµ + CαβγA

β
µA

γ
ν . (6.1.29)

Contrary to the abelian case, the field strength Fµν is not gauge invariant. Its transfor-

mation properties can easily be found by considering the gauge transform of eq. (6.1.28):

[Dµ,Dν ]ψ → U [Dµ,Dν ]ψ = −iUFµνψ = −iFU
µνψ

U , (6.1.30)

from which we immediately get

FU
µν = UFµνU

−1 . (6.1.31)
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In non-abelian gauge theories the gauge field strength transforms in the adjoint represen-

tation of the gauge group. The most general gauge-invariant Lagrangian can be written as

a Lorentz invariant functional of matter fields and their covariant derivatives, and of the

field strengths Fµν and their covariant derivatives. At the level of dimension 4 (or less)

operators, we have

L = LYM + LMatter (6.1.32)

where

LYM = − 1

2g2
TrFµνF

µν , (6.1.33)

LMatter =
∑

i

ψ̄i(i/D −mi)ψi +
∑

j

|Dµφj |2 − V (ψi,φj) . (6.1.34)

In eq. (6.1.33), we have introduced a dimensionless parameter g that is identified as the

gauge coupling constant of the non-abelian theory. By rescaling the gauge fields as

Aαµ → gAαµ (6.1.35)

we get canonical kinetic terms, having normalized the generators as

Tr tαtβ =
δαβ

2
(6.1.36)

in the fundamental representation. The coupling g now appears in all covariant deriva-

tives in the matter sector and in the self-coupling of the gauge fields in the Yang-Mills

(YM) Lagrangian. Gauge invariance requires that the same coupling g governs all these

interactions. In eq. (6.1.34) i and j run over all fermions and scalars in the theory, Dµ

are the covariant derivatives in the appropriate representations and V encodes the scalar

potential of the scalar fields φj and their Yukawa interactions with the fermions ψi. Gauge

invariance requires that δϵV = 0.

The carriers of the force associated to the non-abelian group, that we generally denote

by “gluons”, are themselves subject to the force they carry. The equations of motion

(e.o.m.) for Aαµ deduced from the Lagrangian (6.1.32) are

∂µF
µν
α = −gCαβγAβµFµν

γ −
δLMatter

δAαν
≡ −J ν

α (6.1.37)

where J α
ν are the dimG conserved currents associated to the symmetry group G:

∂µJ µ
α = 0. (6.1.38)

The e.o.m. (6.1.37), written in terms of J α
µ are not covariant. It is convenient to shift the

gluon contribution to the current, the first term in the second relation in eq. (6.1.37), to
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the left-hand side of that equation. In doing so, the e.o.m. read

DνF
µν
α = −Jµ

α , (6.1.39)

where

DρF
µν
α = ∂ρF

µν
α − ig(tAdj

β )αγA
β
ρF

µν
γ ,

Jµ
α =

δLMatter

δAαµ
=
δLMatter

δDµΨI
(−igtαΨI) .

(6.1.40)

In eq. (6.1.40) we have rewritten the form of the current Jαµ to make explicit its covariant

properties, in contrast to to the conserved current J α
µ . The field Ψ encodes both fermions

and scalars and I = (i, j). The current Jαµ is covariantly conserved, namely DµJ
µ
α = 0.

Indeed,

DµJ
µ
α = −DνDµF

µν
α = [Dµ,Dν ]F

µν
α = iF β

νµ(t
Adj
β )αγF

µν
γ = CαβγF

β
µνF

µν
γ = 0. (6.1.41)

The field strength Fµν satisfies another important relation, called Bianchi identity. It is a

consistency relation, and can be derived starting from the Jacobi identity (6.1.9), applied

to covariant derivatives:

[Dµ, [Dν ,Dρ]] + [Dρ, [Dµ,Dν ]] + [Dν , [Dρ,Dµ]] = 0 . (6.1.42)

Using eq. (6.1.27), we can rewrite the above expression as

DµFνρ +DρFµν +DνFρµ = 0 . (6.1.43)

It is a straightforward exercise to show that eq. (6.1.43) is identically satisfied.

6.2 Quantum Treatment: the Faddeev-Popov Method

The quantization of gauge theories is non-trivial. The essential point is that Lorentz

invariance forces us to describe helicity-one fields in terms of a four-vector field, but the

latter has four components, and hence more degrees of freedom than necessary. The time-

component of a vector field, in addition, is problematic, because it would lead to a kinetic

term with an opposite sign with respect to its spatial components. Non-physical degrees

of freedom are then expected. The way in which gauge theories solve the problem is to

introduce a redundancy in the theory, gauge invariance, so that we can eliminate these

extra unwanted and unphysical degrees of freedom.

Functional methods based on the path integral are by far the best way to quantize

gauge theories. Before considering non-abelian theories, it is very useful to recall how
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QED can be quantized using the path integral. Let’s first see why a naive path integral

quantization cannot work, by computing the photon propagator

⟨Aµ(x)Aν(y)⟩ = N
∫

DAµ Aµ(x)Aν(y) e
iS(A) , (6.2.1)

where N is a normalization constant and

S(A) = −1

4

∫
d4x F 2

µν =
1

2

∫
d4p

(2π)4
Aµ(−p)Dµν(p)A

ν(p) (6.2.2)

is the usual free action, written both in configuration and momentum space. The tensor

Dµν equals

Dµν(p) = (−p2ηµν + pµpν) . (6.2.3)

The photon propagator is equal to the Fourier transform of the inverse of Dµν(p):

⟨Aµ(x)Aν(y)⟩ =?

∫
d4p

(2π)4
iD−1µν (p)e

ip·(x−y) . (6.2.4)

However, detDµν(p) = 0, no inverse exists and no propagator can be defined. Another

way of looking at the problem is obtained by performing a shift of variables in the path

integral: Aµ(x)→ Aµ(x) + ∂µλ(x). We get

⟨Aµ(x)Aν(y)⟩ = ⟨Aµ(x)Aν(y)⟩+ (∂µλ∂νλ) N
∫

DAµ e
iS(A) , (6.2.5)

whose only solution is ⟨Aµ(x)Aν(y)⟩ =∞. The problem arises from the fact that the action

is gauge invariant and we are integrating over all possible field configurations, including

those that are related by a gauge transformation. All pure gauge configurations, such

as Aµ(x) = ∂µλ, are not dumped by the action and lead to the above divergence. The

problem is solved by restricting the integration to gauge inequivalent configurations only.

In other words, we have to implement a gauge-fixing condition of the form G(A) = 0,

where G(A) is a functional of the gauge field Aµ. This can be imposed inside the path

integral by means of a functional generalization of the Dirac delta-function. Care should

be paid on possible Jacobian factors. These can arise by recalling the formula

δ[f(x)] =
∑

i

∣∣∣∣
df

dx

∣∣∣∣
−1

x=x
(i)
0

δ(x− x(i)0 ) , (6.2.6)

where x(i)0 are the values where the function f vanishes. The n-dimensional integral

generalization of eq. (6.2.6) is

1 =

∫ ∏

i

dxi δ
(n)(fj(xi))

∣∣∣∣det
∂fj
∂xi

∣∣∣∣ (6.2.7)
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where fj are n functions of the n variables xi and we have assumed that they all vanish

at a single point x0,i. The further infinite dimensional generalization of eq. (6.2.7) is

1 =

∫
Dλ δ(G(Aλ))

∣∣∣∣det
δG(Aλ)

δλ(x)

∣∣∣∣ , (6.2.8)

where Aλµ(x) = Aµ(x) + ∂µλ(x) and G(Aλ) is an arbitrary functional, assumed to have a

single function λ0 where the functional vanishes. A simple choice for G(A) is

G(A) = ∂µA
µ =⇒ G(Aλ) = ∂µA

µ +✷λ . (6.2.9)

Inserting eq. (6.2.8) inside the path integral gives

N
∫

DAµ e
iS(A)

∫
Dλ δ(G(Aλ))

∣∣∣∣det
δG(Aλ)

δλ(x)

∣∣∣∣ = N|det✷|
∫

DAµ e
iS(A)

∫
Dλ δ(G(Aλ))

= N ′
∫

Dλ
∫

DAµ e
iS(A) δ(G(A)) = N ′′

∫
DAµ e

iS(A) δ(G(A)) , (6.2.10)

where we have included into the normalization constants the gauge-field independent factor

det✷ and the integration over the gauge parameter λ. The functional delta into the last

term of eq. (6.2.10) avoids to integrate over redundant field configurations. With a simple

trick, we can also get rid of the functional delta and yet have a well-defined path integral.

Instead of taking a single gauge fixing like the one in eq. (6.2.9) we can introduce a family

of gauge fixing terms, parametrized by an arbitrary function f :

Gf (A) = ∂µA
µ − f . (6.2.11)

Since no physical observable can depend on the gauge fixing, we can average over the

different gauge fixings by introducing a phase factor

exp
(
− i

2ξ

∫
d4x f2(x)

)
(6.2.12)

and integrating over f(x). This is useful, since in so doing we can get rid in one step of the

functional delta and of the integration over f(x). In eq. (6.2.12) ξ is a positive parameter.

The path integral becomes now

N
∫

DAµ e
iS(A)− i

2ξ

∫
d4x (∂µAµ)2 . (6.2.13)

The final outcome of these manipulations is the addition of a new gauge-variant term in

the action, called gauge-fixing term. The latter is crucial to make sense of the photon

propagator. Equation (6.2.1) is replaced by

⟨Aµ(x)Aν(y)⟩ = N
∫

DAµ Aµ(x)Aν(y) e
iS(A)− i

2ξ

∫
d4x (∂µAµ)2 . (6.2.14)
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The tensor (6.2.3) becomes

Dµν(p) = −p2ηµν + pµpν
(ξ − 1)

ξ
, (6.2.15)

and it admits the inverse

D−1µν (p) = −
1

p2

(
ηµν − (1− ξ)pµpν

p2

)
. (6.2.16)

Reintroducing the iϵ, we finally get

⟨Aµ(x)Aν(y)⟩ =
∫

d4p

(2π)4
−i

p2 + iϵ

(
ηµν − (1− ξ)pµpν

p2

)
eip·(x−y) . (6.2.17)

The photon propagator is not a direct physical observable and depends on ξ. Common

choices for ξ in explicit computations are ξ = 0 (Landau gauge), in which case the tree-level

propagator is transverse and ξ = 1 (Feynman gauge), in which this simplifies considerably.

The quantization of non-abelian gauge theories proceeds along the same way as the

abelian case, but it presents additional complications. The naive measure is

N
∫

DAαµ e
iS(A) . (6.2.18)

It is gauge-invariant, but in a less trivial way than in abelian theories, since a gauge trans-

formation rotates the fields. The Jacobian associated to the infinitesimal transformation

(6.1.18) is

Jacαβµν (x, y) =
δA′αµ (x)

δAβν (y)
= δνµδ(x− y)(δαβ + ϵγCαβγ). (6.2.19)

Since Det(1 + ϵ) = 1 + Tr ϵ+O(ϵ2), we have

det Jacαβµν (x, y) = δµµδ(0)(δαα + ϵγCααγ) = δµµδ(0)δαα (6.2.20)

that is the infinite dimensional generalization of the unit matrix. We then conclude that

the measure DAαµ is gauge invariant. Let us now proceed like in the abelian case, in-

troducing a delta-functional gauge-fixing in the path integral, like in eq. (6.2.8). Let us

define

∆−1G (A) =

∫
DU δ

(
G(AU (x))

)
. (6.2.21)

In eq. (6.2.21), DU is the so-called invariant measure of the group G, parametrized by

group elements U(Λ). It is not, like in the abelian case, simply the integration over the

Lie algebra generators,
∏
αDΛα(x), but it includes a non trivial measure ρ(Λ). It is called

invariant measure because it satisfies the following properties:
∫

DUf(U) =

∫
DUf(U−1) =

∫
DUf(U · U0) =

∫
DUf(U0 · U) (6.2.22)
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where U0 is a constant element of the group and f(U) is an arbitrary function over the

group.

** Although we will never need its explicit form in the following, it is worth to spend

a few more words on ρ(Λ). This can be defined starting from the metric in group space

gαβ as

gαβ = Tr

(
U−1(Λ)

(∂U(Λ)

∂Λα

)
U−1(Λ)

(∂U(Λ)

∂Λβ

))
. (6.2.23)

The invariant measure is

ρ(Λ) =
√

detgαβ . (6.2.24)

The parameters Λα in eq. (6.2.23) are space-time independent coordinates spanning the

group G. They do not necessarily correspond to the x-independent version of the gener-

ators appearing in eq. (6.1.23). An example will clarify this point. The group SU(2) is

defined as the set of 2× 2 unitary matrices U of unit determinant. Any matrix U can be

written as

U =

(
z1 z2

−z∗2 z∗1

)

, (6.2.25)

with |z1|2 + |z2|2 = 1, z1,2 ∈ C. The group SU(2) is isomorphic to the three-dimensional

sphere S3. Instead of using standard coordinates subject to a constraint, we might use

radial coordinates. Denoting zi = xi + iyi, i = 1, 2, we have

x1 =sinψ sin θ cosφ , y1 = sinψ sin θ sinφ

x2 =sinψ cos θ , y1 = cosψ ,
(6.2.26)

with 0 ≤ φ < 2π, 0 ≤ θ < 2π, 0 ≤ ψ ≤ π. The invariant SU(2) measure coincides with

the standard metric of S3: ρ(ψ, θ,φ) = sin2 ψ sin θ.2 Given the explicit form of the metric

(6.2.23) it is straightforward to prove the relations (6.2.22).

The functional ∆G(A) is gauge-invariant: ∆G(AU ) = ∆G(A), that immediately follows

from eq. (6.2.22). The naive measure (6.2.18) can be rewritten as (omitting Lorentz and

color indices in the gauge measure)

N
∫

DA

∫
DU eiS(A)∆G(A) δ

(
G(AU )

)
. (6.2.27)

We can change variables in the path integral by defining Aµ = A′U
−1

µ . Since ∆G(A), the

measure and the action are all gauge invariant, we get (redefine A′ → A)

N
∫

DA

∫
DU eiS(A)∆G(A) δ

(
G(A)

)
= N ′

∫
DAeiS(A)∆G(A) δ

(
G(A)

)
, (6.2.28)

2Notice the similarity of the definition (6.2.24) with the definition of diffeomorphism-invariant measure

in general relativity.
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and we can reabsorb the invariant group measure into the overall path integral normaliza-

tion N . Let us verify that any correlation function of gauge invariant operators does not

depend on the gauge-fixing, namely does not depend on the specific choice of the func-

tional G(A). If O(A) schematically represents some product of gauge invariant operators,

given two arbitrary gauge fixing functionals G and F , one has

⟨O(A)⟩G = N
∫

DAeiS(A)∆G(A) δ
(
G(A)

)
O(A) (6.2.29)

= N
∫

DAeiS(A)∆G(A) δ
(
G(A)

) ∫
DUδ

(
F (AU )

)
∆F (A)O(A)

= N
∫

DA

∫
DU eiS(A)∆G(A) δ

(
G(AU−1

)
)
δ
(
F (A)

)
∆F (A)O(A)

= N
∫

DA

∫
DU eiS(A)∆G(A) δ

(
G(AU )

)
δ
(
F (A)

)
∆F (A)O(A)

= N
∫

DAeiS(A)δ
(
F (A)

)
∆F (A)O(A) = ⟨O(A)⟩F .

On the contrary, the correlation functions of gauge dependent quantities do depend on

the choice of G(A). Similarly to the abelian case, we can also take a family of gauge

fixing functionals and integrate over them. The typical choice will be the non-abelian

generalization of eq. (6.2.11):

Gf (A) = ∂µA
µ
α − fα , (6.2.30)

weighted by the phase factor

exp
(
− i

2ξ

∫
d4x f2

α(x)
)
. (6.2.31)

In this way, we get

⟨O(A)⟩ = N
∫

DAeiS(A)− i
2ξ

∫
d4x (∂µA

µ
α)2∆(A)O(A) , (6.2.32)

where

∆−1(A) =

∫
DU δ

(
∂µ(A

U )µα − ∂µAµ
α

)
. (6.2.33)

The integrand in eq. (6.2.33) has a non-trivial support for values of U infinitesimally close

to the identity: U = 1 + iϵαtα. We have

δ
(
∂µ(A

U )µα − ∂µAµ
α

)
= δ
(
∂µD

µϵα
)
=

δ(ϵα)

|det ∂µDµ| . (6.2.34)

Modulo irrelevant constants, as usual absorbable in the path integral normalization N ,

we get

∆(A) = |det ∂µDµ| . (6.2.35)
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This is nothing else than the non-abelian generalization of the |det✷| term appearing in

eq. (6.2.10). The crucial difference with the abelian case is its gauge field dependence

by means of the covariant derivative. For this reason it should be kept inside the path

integral. We can remove the absolute value, that would make the computation of ∆(A)

quite complicated, because, loosely speaking,

|det ∂µDµ| = |det✷| |det (1 +O(g))| . (6.2.36)

The first factor is irrelevant, while the second one is manifestly positive in perturbation

theory. We can then remove the absolute value and write

∆(A) = det ∂µD
µ . (6.2.37)

It is not easy to directly compute determinants. It is more convenient to turn a determinant

into a local action by inserting additional non-physical degrees of freedom and use the

identity, valid for Grassmann variables ω and ω∗,3

∫
DωDω∗ e−i

∫
d4xω∗(x)F (x)ω(x) ∝ detF , (6.2.38)

where F (x) is an arbitrary differential operator. Using eq. (6.2.38), we can write, modulo

irrelevant constants,

det ∂µD
µ =

∫
DωαDω∗α eiSghost , (6.2.39)

where

Sghost =

∫
d4x ∂µω

∗
αD

µωα =

∫
d4x ∂µω

∗
α

(
∂µωα + gCαβγA

µ
βωγ

)
. (6.2.40)

ωα and ω∗α are dim-G scalar fields with fermion statistic, transforming in the adjoint

representation of G. They are not associated to physical propagating particles and for this

reason they are denoted ghost fields. They cannot appear as physical external states, but

they can and do appear in loops as virtual particles, by means of their interaction with the

gauge fields. Ghosts are crucial to restore unitarity in non-abelian gauge theories. Loosely

speaking, they compensate for the (also unphysical) contribution of the longitudinal and

time component of the gauge fields that, contrary to the abelian case, do not automatically

decouple from scattering amplitudes.

Putting all together, the complete non-abelian Lagrangian density at the quantum

level is the sum of three terms:

Ltot = L+ Lg.f. + Lghost , (6.2.41)

3Recall that inside the path integral ω and ω∗ are two independent variables. In particular, ω∗ is not

the complex conjugate of ω.
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where

L = −1

4
Fα
µνF

µν
α +

∑

i

ψ̄i(i/D −mi)ψi +
∑

j

|Dµφj|2 − V (ψi,φj) , (6.2.42)

Lg.f. = − 1

2ξ
(∂µA

µ
α)

2 , (6.2.43)

Lghost = ∂µω
∗
αD

µωα . (6.2.44)

The propagator of gauge and ghost field is readily found by the quadratic term of the

above Lagrangian density. We have

⟨Aαµ(x)Aβν (y)⟩ = δαβ
∫

d4p

(2π)4
−i

p2 + iϵ

(
ηµν − (1− ξ)pµpν

p2

)
eip·(x−y) ,

⟨ω∗α(x)ωβ(y)⟩ = δαβ

∫
d4p

(2π)4
i

p2 + iϵ
eip·(x−y) .

(6.2.45)

The gauge field propagator is the trivial generalization of the photon propagator (6.2.16),

while the ghost propagator coincides with that of a complex massless scalar field. Recall

that the ghost Lagrangian (6.2.44) depends on the specific form of ∆(A), that in turn

depends on the specific gauge fixing chosen. It is invariant under a U(1) symmetry (ghost

number) under which the ghost fields ωα and ω∗α have respectively charges +1 and -1.

For this reason the latter fields are commonly denoted anti-ghosts and this explains the

notation ω∗α. All the operators appearing in the Lagrangian (6.2.41) have dimensions

less or equal to four, compatibly with a renormalizable theory. However, not all possible

operators of dimensions ∆ ≤ 4 appear in Ltot and hence the renormalizability of these

theories is not obvious. The appearance of unphysical fields in the theory complicates

also the notion of physical field in non-abelian gauge theories. All these issues are best

addressed by introducing the BRST symmetry, subject of the next section.

Before going on we would like to comment on the assumption made below eq.(6.2.8),

that was implicit in writing eq.(6.2.21), about the existence, at a given Aµ(x), of only one

gauge element U0(x) where the functional G(AU ) vanishes. This is equivalent to say that

the equation

∂µ
(
U †(∂µU − i[Aµ, U ])

)
= 0 , (6.2.46)

has either no solutions or such solutions should be discarded in the path integral. In the

abelian case, eq.(6.2.46) boils down to ✷λ = 0 that clearly admits plane wave solutions.

These can be ruled out by demanding proper boundary conditions for Aµ in the path

integral. This is particularly clear in the euclidean case, where we demand Aµ to vanish

at infinity. The conditions λ→ 0 at infinity and ✷λ = 0 in euclidean space imply λ = 0.

In contrast, in the non-abelian case there exists in general non-trivial solutions of the
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above equation that would force us to consider other gauge field configurations AU , called

Gribov copies. Their possible presence is important in a non-perturbative treatment of

gauge theories, but will not affect the perturbative expansion around the free theory (like

the absolute value in eq.(6.2.36)). The above assumption can then be justified only in a

perturbative set-up.

6.3 BRST Symmetry

The Faddeev-Popov path integral quantization of gauge theories reviewed above requires

to fix a gauge and hides the underlying gauge invariance of the theory.4 In other words,

the Lagrangian Ltot cannot obviously be gauge invariant. On the other hand, it was found

by Becchi, Rouet and Stora, and indepedendently by Tyutin, that Ltot is invariant under

an additional symmetry, called BRST symmetry. It is useful to rewrite the gauge fixing

term in a different fashion by “integrating in” an auxiliary field Hα(x):

e−
i
2ξ

∫
d4x f2

α(x) =

∫
DHα e

iξ
2

∫
d4xH2

α−i
∫
d4x fαHα , (6.3.1)

so that

Ltot = L+ Lghost +
ξ

2
H2
α − fαHα . (6.3.2)

The total Lagrangian (6.3.2) is invariant under infinitesimal transformations parametrized

by an anticommuting variable θ:

δθΨ = itαθωαΨ ,

δθAµ = θDµωα ,

δθωα = − 1

2
θCαβγωβωγ ,

δθω
∗
α = − θHα ,

δθHα = 0 .

(6.3.3)

These are the BRST transformations, written in the non-canonical basis for the gauge fields

where the gauge coupling does not appear in the interactions. The field Ψ represents any

matter field, fermionic or bosonic. The BRST transformations are nilpotent, namely if we

denote δθF ≡ θsF , then δθ(sF ) = θs2F = 0 for any functional of the fields Ψ, Aµ, ωα, ω∗α
and Hα. Let us check that s2 vanishes when acting on single fields. From eq. (6.3.3) we

have sΨ = itαωαΨα. Then

δθ(sΨ) =itα
(
(δθωα)Ψ+ ωα(δθΨ)

)
= itα

(
− 1

2
θCαβγωβωγΨ+ ωαitβθωβΨ

)

=θωαωβΨ
(
− i

2
Cαβγtγ +

1

2
[tα, tβ ]

)
= 0 .

(6.3.4)

4The analysis in this section closely follows section 15.7 of ref. [2].
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Consider now the BRST transformations of the gauge fields. We have sAµα = Dµωα =

∂µωα + CαβγA
β
µωγ . Then

δθ(sA
α
µ) = ∂µ

(
− 1

2
θCαβγωβωγ

)
+Cαβγθ(∂µωβ+CβρσA

ρ
µωσ)ωγ+CαβγA

β
µ

(
− 1

2
θCγρσωρωσ

)
.

(6.3.5)

Consider first the terms proportional to Aµ in eq. (6.3.5). Reshuffling indices, one has

δθ(sA
α
µ)|A = θAβµωρωσ

(
− 1

2
CαβγCγρσ + CαργCγβσ

)

= − 1

2
θAβµωρωσ(CαβγCγρσ + CραγCγβσ + CβργCγασ) = 0 ,

(6.3.6)

where the last equality follows from the Jacobi identity (6.1.10). The terms with no gauge

fields give

δθ(sA
α
µ)|noA = θCαβγ

(
− 1

2
(∂µωβ)ωγ −

1

2
ωβ(∂µωγ) + (∂µωβ)ωγ

)
= 0 . (6.3.7)

Similarly, we have

δθ(sωα) = −
1

2
Cαβγ

(
(−1

2
θCβρσωρωσ)ωγ + ωβ(−

1

2
θCγρσωρωσ)

)

=
1

2
θωρωσωβCρσγCγβα = 0 ,

(6.3.8)

where again the last equality follows from the Jacobi identity (6.1.10) and the antisym-

metrization in the indices ρ, σ and β. The nilpotency of the BRST transformations acting

on ω∗α and Hα is trivial. We immediately have, from eq. (6.3.3),

δθ(sω
∗
α) = δθsHα = 0 . (6.3.9)

Summarizing, we have shown that for any field Φ = A,Ψ,ω,ω∗,H,

s2Φ = 0 . (6.3.10)

For two fields, we have

δθ(Φ1Φ2) = θ(sΦ1)Φ2 + Φ1(θsΦ2) = θ
(
(sΦ1)Φ2 ± Φ1(sΦ2)

)
, (6.3.11)

with + or − depending whether the field Φ1 is bosonic or fermionic.5 Hence

s(Φ1Φ2) =
(
(sΦ1)Φ2 ±Φ1(sΦ2)

)
. (6.3.12)

Acting again with a BRST transformation gives

δθ(sΦ1Φ2) = δθ(sΦ1)Φ2 + sΦ1δθΦ2 ± (δθΦ1)sΦ2 ± Φ1δθ(sΦ2)

= θ
(
(s2Φ1)Φ2 ∓ (sΦ1)(sΦ2)± (sΦ1)(sΦ2) + Φ1(s

2Φ2)
)
= 0

(6.3.13)

5Namely with Fermi statistics. In particular, ghosts and anti-ghosts are fermionic.
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if eq. (6.3.10) is satisfied, for Φ1 both bosonic and fermionic. Iterating the argument for

more fields, we conclude that for any functional F (Φ),

s2F (Φ) = 0 . (6.3.14)

We now proceed to prove that the Lagrangian (6.3.2) is BRST-invariant. On the physical

fields Ψ and Aαµ , the BRST transformations (6.3.3) can be seen as infinitesimal gauge

transformations with parameter ϵα(x) = θωα(x). The BRST-invariance of the gauge and

matter Lagrangian term L immediately follows from the fact that L is gauge invariant.

Let us now turn to the remaining three terms in eq. (6.3.2). We have

δθfα = δθ∂
µAαµ = θ∂µD

µωα = θsfα . (6.3.15)

Modulo total derivatives, we then get

Lghost = −ω∗αsfα . (6.3.16)

Since sω∗α = −Hα, the last three terms in eq. (6.3.2) can be rewritten as

Lghost +
ξ

2
H2
α − fαHα = s

(
fαω

∗
α −

1

2
ξω∗αHα

)
. (6.3.17)

In this way, the BRST invariance of these terms is automatically ensured by the fact that

s2 = 0 for any functional. We conclude that the whole Lagrangian Ltot is invariant under

BRST transformations.

From an operatorial point of view, the BRST transformations (6.3.3) are generated by

a Grassmann Hermitian operator Q. For any field Φ, we have

δθΦ = i[θQ,Φ] = iθ[Q,Φ]∓ , (6.3.18)

where − and + denote commutator and anti-commutator, respectively, depending on

whether the field Φ is bosonic or fermionic. We then have

[Q,Φ]∓ = −isΦ . (6.3.19)

The nilpotency of s, s2 = 0, is equivalent to

(−is)2Φ = [Q, [Q,Φ]∓]± = [Q2,Φ]− = 0 =⇒ Q2 = 0 . (6.3.20)

The BRST operator Q allows us to make the following partition of the Hilbert space in

non-abelian gauge theories. Any state |φ⟩ in the Hilbert space falls in one of the following

three categories:

Q|φ1⟩ ≠ 0

Q|φ2⟩ = 0 , with |φ2⟩ = Q|φ1⟩ (6.3.21)

Q|φ3⟩ = 0 , but |φ3⟩ ≠ Q|φ1⟩ .
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The fields in the second class are manifestly unphysical, since they have vanishing norm:

||φ2⟩|2 = ⟨φ2|φ2⟩ = ⟨φ1|Q2|φ1⟩ = 0 . (6.3.22)

We now show that gauge invariance implies that physical states should be annihilated by

Q. More precisely, matrix elements between physical states |α⟩ and |β⟩ should not depend

on the choice of gauge fixing term. We have just seen that the total Lagrangian Ltot can

be written as a physical gauge invariant term L plus a BRST variation of some functional

F : Ltot = L + sF (Φ). The specific form of F depends on the gauge-fixing chosen. If we

infinitesimally deform the gauge fixing, the functional F will also be deformed F → F+δF .

Demanding that

⟨α|β⟩F = ⟨α|β⟩F+δF (6.3.23)

is equivalent to the condition

⟨α|[Q, δF ]+|β⟩F = 0 , ∀α,β ∈ physical (6.3.24)

and for any sensible choice of gauge-fixing functional δF . We then conclude that Q should

annihilate physical states. These are then identified with the states in the third category

in eq. (6.3.21). States that are annihilated by the operator Q (|φ3⟩) are said to be in the

kernel of Q. The states |φ2⟩ are said to be in the image of Q. The physical states are states

in the kernel that are not in the image of Q. Such states are said to be in the cohomology

of Q. It is clear that physical states are not uniquely defined. If |α⟩ is a given physical

state, then any state of the form

|α̃⟩ = |α⟩+Q|φ1⟩ (6.3.25)

defines the same physical state, since

⟨α̃|β⟩ = ⟨α|β⟩ (6.3.26)

for any other physical state |β⟩. Physical states |phys⟩ correspond to equivalence classes

within the class |φ3⟩. This complicated structure of the Hilbert space in non-abelian gauge

theories is a consequence of the redundancy introduced by the gauge symmetries. Like

ghosts, any unphysical state, even if not present as an external line in a scattering process,

can contribute as a virtual particle in loops. On the other hand, the optical theorem

relates the imaginary part of a loop diagram with the square of scattering diagrams where

the virtual particles become external on-shell states. Unitarity is then not obvious. BRST

invariance is of great help to show us that, in fact, no problem arises because physical

states are unitary by themselves, namely the contribution of unphysical states in loop
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diagrams always cancels. Ghosts are crucial for this cancellation to occur. This is best

seen by considering

⟨α|S†S|β⟩ =
∑

i=1,2,3

⟨α|S†|φi⟩⟨φi|S|β⟩ = ⟨α|β⟩ , (6.3.27)

where |α⟩ and |β⟩ are two arbitrary physical states. In principle all states in the Hilbert

space contribute in the completeness relation, but since the BRST operator Q commutes

with the S matrix and Q annihilates both |α⟩ and |β⟩, the states φi should also be anni-

hilated by Q. Hence the states |φ1⟩ cannot enter eq. (6.3.27). The states |φ2⟩ enter, but
have vanishing inner product with states in both classes |φ2⟩ and |φ3⟩. We then conclude

that effectively

⟨α|S†S|β⟩ =
∑

phys

⟨α|S†|phys⟩⟨phys|S|β⟩ = ⟨α|β⟩ , (6.3.28)

and hence unitarity is recovered.

The non-abelian generalizations of the QED WT identities, so called Slavnov-Taylor

identities, provide constraints on the form of correlation functions. As an example, let

consider the general relation (4.4.16), adapted to a BRST transformation in a non-abelian

gauge theory. Let us take Jψ = Jω = 0 and keep only the currents for the non-abelian

gauge field and the anti-ghosts. Explicitly, eq. (4.4.16) becomes
∫

d4x

(
⟨sAµ

α(x)⟩JJαA,µ(x) + ⟨sω⋆α(x)⟩JJαω⋆(x)

)
=

∫
d4x

(
⟨Dµωα(x)⟩JJαA,µ(x)−

1

ξ
⟨∂µAµ

α(x)⟩JJαω⋆(x)

)
= 0 ,

(6.3.29)

where in the last equality we have integrated out the auxiliary field Hα = ∂µA
µ
α/ξ. Let

us take two functional derivatives of eq. (6.3.29) with respect to the anti-ghost and gauge

currents and then set all currents to zero. We get

∫
d4x

δ2

δJνA,α(y)δJ
β
ω⋆(z)

(
⟨Dµωγ(x)⟩JJγA,µ(x)−

1

ξ
⟨∂µAµ

γ (x)⟩JJ
γ
ω⋆(x)

)∣∣∣∣∣
JA=Jω⋆=0

=

i⟨ω⋆β(z)Dνωα(y)⟩ −
i

ξ
⟨Aν,α(y)∂µAµ

β(z)⟩ = 0 .

(6.3.30)

Multiply now expression (6.3.30) by ∂/∂yν . In so doing the first term becomes trivial,

because the operator ∂νDν is, by definition, the inverse of the exact ghost propagator:

⟨ω⋆β(z)∂νDνωα(y)⟩ = −iδαβδ(4)(z − y) . (6.3.31)

Plugging in eq. (6.3.30) gives

⟨∂νAαν (y)∂µA
µ
β(z)⟩ = −iξδ

α
β δ

(4)(z − y) . (6.3.32)
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The exact gluon propagator is trivial in the color indices and can be written as

Gαβ
µν (y, z) ≡ ⟨Aαν (y)Aβµ(z)⟩ = δαβ

∫
d4p

(2π)4
Gµν(p)e

ip(y−z) , (6.3.33)

with

pµpνGµν(p) = −iξ . (6.3.34)

In perturbation theory, we can write Gµν(p) = G(0)
µν (p) + G(q)

µν (p), where G(0)
µν (p) is the

tree-level propagator we have computed in eq. (6.2.45) and G(q)
µν (p) encodes the quantum

corrections. We notice that the classical propagator alone satisfies eq. (6.3.34), implying

that the quantum corrections must be transverse: pµpνG(q)
µν (p) = 0. The gluon propagator

to all orders in perturbation theory can be written as

Gµν(p) =
−i

p2 + iϵ

(
ηµνp2 − pµpν

p2(1−Π(p2))
+ ξ

pµpν
p2

)
, (6.3.35)

where all quantum corrections are encoded in the scalar form factor Π(p2).

BRST invariance is very useful to also establish the renormalization properties of non-

abelian gauge theories. Being a symmetry of the total action Stot =
∫
d4xLtot, one can

show that the total quantum action Γtot is of the same form of Stot, with renormalized

parameters. This derivation is discussed in detail in section 6.5.

6.4 The Background Field Method

The renormalization of non-abelian gauge theories can proceed in a perturbative way as it

was explained in chapter 3 — and exemplified in the case of the abelian U(1) gauge theory

(QED), by singling out the leading divergences and the class of diagrams which are in need

of renormalization. However, the corresponding analysis becomes quite challenging and

demanding already for the lowest-order calculations, because of the rather large number

of diagrams involved. In particular, in non-abelian gauge theories the identity (3.3.15) no

longer holds. This important difference between abelian and non-abelian theories can be

traced back to the different nature of the associated conserved currents in the two classes

of theories. In abelian gauge theories we have a gauge-invariant divergence-less current

Jµ and its associated well-defined conserved charge Q given by the spatial integral of its

time component. The notion of an absolute normalization of the charge Q guarantees

that Z1 = Z2 for all charged particles. As we have seen below eq.(6.1.37), in non-abelian

gauge theories the currents are either conserved but not covariant, or non-conserved but

covariant. Hence there is no a well-defined standard gauge-invariant conserved charge Q

as in the QED case and correspondingly Z1 ≠ Z2, though the ratio Z1/Z2 is the same for
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all charged fields. Contrary to QED, then, in addition to the gluon two-point function

we should in general compute vertex corrections in order to derive the β-function for

the gauge coupling. This can in principle be computed in different ways, using gauge,

ghost or matter vertices. Gauge invariance guarantees that the same result is obtained

independently of this choice.

As a matter of fact, also in non-abelian gauge theories the β-function can be deduced

from the gluon two-point function using an alternative approach, denoted background field

method, that will be discussed in this section. We present the principle of the background

field method primarily as a tool to compute the renormalization constant ZA of the gauge

fields and the associated β-function. It should be clear, however, that this method has a

wider variety of applications.

6.4.1 The method

The basic idea behind the background field method consists in calculating the effective

action in the presence of a classical background field gauge Aµ, in total analogy to the

scalar analogue (4.1.12):

eiΓ(Aµ) =

∫

1PI
DQµ eiS(Aµ+Qµ)δ(G(A,Q))∆G(A,Q) , (6.4.1)

where we have denoted by Aµ and Qµ the background and fluctuating fields, respectively.

The key point is to choose a gauge fixing in the path integral such that Γ(A) is gauge

invariant under transformations of the background:

δBA
α
µ = ∂µϵα + gCαβγA

β
µϵγ ,

δBQ
α
µ = gCαβγQ

β
µϵγ .

(6.4.2)

It is important to distinguish the gauge transformations of the background (6.4.2) from

the quantum gauge transformations under which6

δAαµ = 0 ,

δQα
µ = ∂µϵα + gCαβγ(A

β
µ +Qβ

µ)ϵγ .
(6.4.3)

The gauge fixing where Γ(A) is gauge invariant is called background field gauge and is

obtained by choosing the functional (6.2.30) as

Gf (A,Q) = Dµ(A)Q
µ
α − fα = ∂µQ

µ
α + gCαβγA

β
µQ

µ
γ − fα . (6.4.4)

6Note that the sum A+Q transforms in the same way (i.e., as in eq. (6.1.18)) under both transformations

(6.4.2) or (6.4.3), as expected from the full gauge field. The different splitting distinguishes however the

background from the quantum gauge transformations.
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The ghost action associated to this gauge fixing is obtained, as usual, by taking a quantum

gauge transformation of the gauge fixing functional:

δG(A,Q) = Dµ(A)D
µ(A+Q)ϵα (6.4.5)

and hence

Lghost = Dµ(A)ω
∗
α(D

µ(A)ωα + gCαβγQ
µ
βωγ) . (6.4.6)

Weighting the path integral in eq. (6.4.1) with the phase factor (6.2.31) and integrating

over the delta functional gives

eiΓ(Aµ) =

∫

1PI
DQµDωDω∗ eiS(Aµ+Qµ)+iSghost− i

2ξ

∫
d4x(Dµ(A)Qµ

α)2 . (6.4.7)

Under the background gauge transformations (6.4.2) the ghosts and anti-ghosts transform

as fields in the adjoint representations:

δBωα = gCαβγϵβωγ ,

δBω
∗
α = gCαβγϵβω

∗
γ .

(6.4.8)

Notice that while the ghost and gauge fixing terms are clearly not gauge invariant under

the quantum gauge transformations (6.4.3), they are invariant under the background gauge

transformations (6.4.2) and (6.4.8). The matter action in S(A+Q), in fact, is manifestly

invariant. The gauge kinetic term is

− 1

4

(
∂µ(A

α
ν +Qα

ν )− ∂ν(Aαµ +Qα
µ) + gCαβγ(A

β
µ +Qβ

µ)(A
γ
ν +Qγ

ν)

)2

=

− 1

4

(
Fα
µν(A) +Dµ(A)Q

α
ν −Dν(A)Q

α
µ + gCαβγQ

β
µQ

γ
ν

)2

,

(6.4.9)

which is also invariant. We have then proved that δBΓ(A) = 0. The divergent part of

Γ(A) has to be a gauge-invariant polynomial of dimension 4 and therefore it is necessarily

of the form

− ZA

4

∫
d4x Fµν,α(A)F

µν,α(A) + finite parts (6.4.10)

where ZA is a possibly divergent constant. Note that, as usual, ZA = 1 for g → 0, and

therefore ZA = 1 +O(g2). By comparing the renormalized action above to the bare one

with coupling constant gB and bare fields AB , it is possible to conclude that AB = Z1/2
A A

and that g = gBµ−ϵ/2Z
1/2
A . As a consequence of the gauge invariance (which constraints

the form of Γ) the renormalization of the coupling constant g is fixed by the renormalization

constant of the field A, as it was the case for QED. The β-function can then be calculated

as in subsection 5.11.
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(a)

p q

Aµ,α

ω∗γ ωβ
(b)

p q
k

Aµ,α

Qρ,γ Qν,β
(c)

p q

Aµ,α

ψ̄i ψj
(d)

p q

Aµ,α

φ†i φj

Figure 6.1: Trilinear vertices involving one background field A within the background

field method. Wiggly lines indicate the background field A, curly lines the quantum

fluctuations Q, dashed directed lines the ghosts, while dotted directed lines the scalars.

We list here only the trilinear vertices which, at the lowest order in perturbation theory,

give a non-vanishing contribution to the two-point function of the background fields: (a)

A-ω∗-ω vertex V Aω∗ω in eq. (6.4.11), (b) A-Q-Q vertex V AQQ in eq. (6.4.17), (c) A-ψ̄-ψ

vertex V Aψ̄ψ in eq. (6.4.20), and (d) A-φ†-φ vertex V Aφ†φ in eq. (6.4.21).

6.4.2 Two-Point Function of the Background Field: Feynman Rules

The calculation of ZA requires to take into account for the divergences which arise when

the integration over Q, ω, and ω∗ is performed in eq. (6.4.7). Given eq.(6.4.10), it is

enough to consider the two-point function of the background field A. This is analogous

to a standard propagator if were not for the fact that A is considered as an external field.

Let us report below the Feynman rules that are necessary to the computation of ZA at

one-loop level.

From Lghost in eq. (6.4.6) one gets a A-ω∗-ω-vertex (represented in fig. 6.1(a))

V Aω∗ω
µα;β;γ ≡

δiLghost

δAµ
αδωβ(q)δω∗γ(p)

= −gCαβγ(p+ q)µ, (6.4.11)

where pµ and qµ are the momenta of the ghosts. In eq.(6.4.11) we have omitted to write the

dependence of the gauge field Aµ on its momentum, since the vertex does not depend on

it. Analogue simplifications will be done below. The additional vertices involving A which

are generated by this term are of the form A-A-ω∗-ω and A-Q-ω∗-ω. While the latter does

not contribute at one-loop to the two-point correlation function of the background field,

the former can. We have (see fig. 6.2(a))

V AAω∗ω
µα;β;γ;δ ≡

δiLghost

δAµ
αδAνβδωγδω

∗
δ

= ig2ηµν(CαγωCβδω + CαδωCβγω) . (6.4.12)

The gauge-fixing term Lg.f. generates a A-Q-Q-vertex

Ṽ AQQ
µα;νβ;ργ ≡

δiLg.f.

δAµ
αδQν

β(q)δQ
ρ
γ(p)

= −g

ξ

(
ηµνCαβγpρ + ηµρCαγβqν

)
, (6.4.13)
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(a)

Aµ,α Aν,β

ω∗δ ωγ
(b)

Aµ,α Aν,β

Qσ,δ Qρ,γ
(c)

Aµ,α Aν,β

φ†i φj

Figure 6.2: Quartic vertices involving two background fields A within the background field

method. Wiggly lines indicate the background field A, curly lines the quantum fluctuations

Q, dashed directed lines the ghosts, while dotted directed lines the scalars. We list here

only the quartic vertices which, at the lowest order in perturbation theory, might give

a non-vanishing contribution to the two-point function of the background fields: (a) A-

A-ω∗-ω vertex V AAωω∗
in eq. (6.4.12), (b) A-A-Q-Q vertex V AAQQ in eq. (6.4.18), (b)

A-A-φ†-φ vertex V AAφ†φ in eq. (6.4.22).

with the momenta of the fields oriented as in fig. 6.1(b). In addition to this interaction,

Lg.f. generates a vertex A-A-Q-Q,

Ṽ AAQQ
µα;νβ;ργ;σδ ≡

δiLg.f.

δAµ
αδAνβδQ

ρ
γδQσ

δ

= − ig2

ξ

(
ηµρηνσCαγωCβδω + ηµσηνρCβγωCαδω

)
. (6.4.14)

The vertex involving three gauge fields A in the standard YM theory generates several

vertices: A-A-Q, A-Q-Q, and Q-Q-Q but only the second one is relevant for determining

ZA at the lowest order. We have

V̂ AQQ
µα;νβ;ργ ≡

δiL
δAµ

α(k)δQν
β(q)δQ

ρ
γ(p)

= gCαβγ
(
(k − q)ρηµν + (q − p)µηνρ + (p − k)νηρµ

)
,

(6.4.15)

where all momenta are assumed to be outgoing from the vertex. The expression (6.4.15)

coincides with the trilinear vertex computed in YM theories in standard gauges. The

vertex involving four gauge fields A in the standard YM theory generates several vertices:

A-A-A-A, A-A-A-Q, A-A-Q-Q, A-Q-Q-Q, and Q-Q-Q-Q but only the third one is relevant

for determining ZA at the lowest order. The corresponding expression is again the standard

one:

V̂ AAQQ
µα;νβ;ργ;σδ ≡

δiL
δAµ

αδAνβδQ
ρ
γδQσ

δ

= −ig2
(
CαβωCγδω(η

µρηνσ − ηµσηνρ)+

CαγωCβδω(ηµνηρσ − ηµσηνρ) +CαδωCβγω(ηµνηρσ − ηµρηνσ)
)
.

(6.4.16)

The total vertices A-Q-Q and A-A-Q-Q of this theory are given by the sum of the one

stemming from the gauge-fixing term in eqs. (6.4.13) and (6.4.14) and the ones from L in
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eqs. (6.4.15) and (6.4.16), see figs.6.1(b) and 6.2(b),

V AQQ
µα;νβ;ργ = gCαβγ

((
k − q − 1

ξ
p
)

ρ
ηµν + (q − p)µηρν +

(
p− k +

1

ξ
q
)

ν
ηρµ

)
, (6.4.17)

V AAQQ
µα;νβ;ργ;σδ = −ig2

(
CαβωCγδω(ηµρηνσ − ηµσηνρ) + CαγωCβδω (6.4.18)

(
ηµνηρσ − ηµσηνρ +

1

ξ
ηµρηνσ

)
+ CαδωCβγω

(
ηµνηρσ − ηµρηνσ +

1

ξ
ηµσηνρ

))
,

where

V AQQ
µα;νβ;ργ ≡ Ṽ AQQ

µα;νβ;ργ + V̂ AQQ
µα;νβ;ργ ,

V AAQQ
µα;νβ;ργ;σδ ≡ Ṽ AAQQ

µα;νβ;ργ;σδ + V̂ AAQQ
µα;νβ;ργ;σδ . (6.4.19)

The interaction with the matter is ruled by the standard vertices of the YM theory. For

fermions we have, see fig. 6.1(c),

V Aψ̄ψ
µα;ij ≡

δiL
δAµ

αδψjδψ̄i
= igγµt

α
ij , (6.4.20)

where tα are the gauge generators in the appropriate representation. For scalars, we can

have both the trilinear and quartic vertices, see figs. 6.1(d) and 6.2(c):

V Aφ†φ
µα;ij ≡ δiL

δAµ
αδφj(q)δφ

†
i (p)

= −igtαij(p+ q)µ , (6.4.21)

V AAφ†φ
µα;νβ;ij ≡

δiL
δAµ

αδAνβδφjδφ
†
i

= ig2ηµν{tα, tβ}ij , (6.4.22)

where again tα are the gauge generators in the appropriate representation.

With all these vertices at hand, the radiative corrections to the two-point function of

the background field can be computed. We leave to the reader to perform the computation

of ZA at one-loop level and report here only the final result for the β-function.

In a SU(N) gauge theory with nf Dirac fermions in representations r(F )
i and ns scalars

in representations r(S)i of SU(N), one has at one-loop level

β(g) = − g3

(4π)2

(
11N

3
− 4

3

nf∑

i=1

T2(r
(F )
i )− 1

3

ns∑

i=1

T2(r
(S)
i )

)

, (6.4.23)

where

trrt
αtβ ≡ δαβT2(r) , T2(adj.) = N . (6.4.24)

In particular, for ns = 0 and r(F )
i equal to the fundamental representation for any fermion,

we have:

β(g) = − g3

(4π)2

(
11N

3
− 2

3
nf

)
, (6.4.25)

QCD corresponds to the choice N = 3 and nf = 6 and is then an asymptotically free

theory with β(g) < 0, as we discuss in general in sec. 5.3.
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6.5 Proof of the Renormalizability of Non-Abelian Gauge Theories∗∗

The BRST symmetry provides a useful set-up to prove the renormalizability of non-abelian

gauge theories. Before attaching the problem, we need however to develop a bit on the

formalism and derive what is called the master equation.7

6.5.1 The Master Equation∗∗

The relation (4.4.17), applied to the BRST transformations (6.3.3), give
∫

d4x ⟨∆n[χ(x)]⟩J(χ)
δLΓ

δχn(x)
= 0, (6.5.1)

where χn is a compact notation to denote all the fields: χn = (Aαµ ,ωα,ω
∗
α,ψ,φ,Hα), and we

have defined δχn = θsχn ≡ θ∆n(χ), Care has to be taken in taking functional derivatives

in presence of Grassmann fields, so we distinguish with a subscript L and R derivatives

defined as follows:
δLF

δφ(x)
=

−→
δL

δφ(x)
F ,

δRF

δφ(x)
= F

←−
δR

δφ(x)
. (6.5.2)

The BRST transformations are quadratic in the fields and hence ⟨∆n[χ(x)]⟩J(χ) ≠ ∆n[χ(x)].

In order to overcome this problem, we introduce, in addition to the source Jn that couple

to χn, extra sources Kn(x) that couple to ∆n(χ). Correspondingly we define

eiW [J,K] =

∫
DχneiStot+i

∫
∆nKn+i

∫
χnJn (6.5.3)

and the 1PI generator

Γ[χ,K] = W [J,K]−
∫

d4xχn(x)Jn(x) , (6.5.4)

where Jn = Jn(χ,K), obtained by inverting the relation

δRW [J,K]

δJn(x)
= χn(x) . (6.5.5)

Under a BRST transformation δ∆n = θs2χn = 0 and hence the 1PI action Γ[χ,K] satisfies

the analogue of eq.(6.5.1):
∫

d4x ⟨∆n[χ(x)]⟩J(χ,K)
δLΓ[χ,K]

δχn(x)
= 0, (6.5.6)

Taking a functional R-derivation with respect to Kn(x) of eq.(6.5.4) gives

δRΓ[χ,K]

δKn(x)
=
δRW [J,K]

δKn(x)
+

∫
d4y

δRW [J,K]

δJm(y)

δRJm(y)

δKn(x)
−
∫

d4yχm(y)
δRJm(y)

δKn(x)

=
δRW [J,K]

δKn(x)
= i⟨∆n[χ(x)]⟩J(χ,K).

(6.5.7)

7The analysis in this section closely follows sections 16.4, 17.1 and 17.2 of ref. [2].
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We can then rewrite eq.(6.5.6) as

∫
d4x

δRΓ[χ,K]

δKn(x)

δLΓ[χ,K]

δχn(x)
= 0 . (6.5.8)

Since the sources Kn have the same commuting properties as ∆n, which are opposite to

those of χn, δRΓ/δKn and δLΓ/δJn anti-commute with each other. We can then rewrite

more compactly eq.(6.5.8) as

(Γ,Γ) = 0 , (6.5.9)

where we have defined, for any two functionals F and G, the operator

(F,G) ≡
∫

d4x
( δRF

δχn(x)

δLG

δKn(x)
− δRF

δKn(x)

δLG

δχn(x)

)
. (6.5.10)

Equation (6.5.9) is denoted the master equation and is the key relation that we will use

in the next subsection to prove the renormalizability of non-abelian gauge theories.

6.5.2 Structure of divergences⋆⋆

In this subsection we will prove that all the divergences occurring at any loop in pertur-

bation theory can be reabsorbed by a renormalization of the couplings appearing in the

classical action, namely by a proper choice of counter-terms. We define the classical bare

action including the extra K-source term:

SB = Stot(χ) +

∫
∆nKn . (6.5.11)

As usual, we rewrite the action SB = S + S∞, where S is the action written in terms of

physical fields and couplings and S∞ includes the counter-terms. The 1PI action Γ[χ,K]

admits a loop expansion of the form

Γ[χ,K] =
∞∑

N=0

ΓN [χ,K] (6.5.12)

where ΓN [χ,K] is the N -loop effective action. Clearly, we have Γ0 = S. Plugging

eq.(6.5.12) in the master equation (6.5.9) gives an infinite set of equations, valid for any

N :
N∑

N ′=0

(ΓN ′ ,ΓN−N ′) = 0 . (6.5.13)

We denote by ΓN,∞ the divergent part of the N -loop effective action. If the theory is

renormalizable, by a proper choice of S∞, ΓN should be finite for each value of N , i.e.

ΓN,∞ should all vanish. We will prove this statement by induction, assuming that this is
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true for M ≤ N − 1, namely that all the divergences in ΓM have been reabsorbed in S∞.

If this is true, divergences in eq.(6.5.13) can only arise from the terms with N ′ = 0, N ,

that give rise to the equation

(S,ΓN,∞) = 0 . (6.5.14)

Let us see the possible form of ΓN,∞. It should be a local functional, invariant under all the

linearly realized symmetries of the classical action. By power counting renormalization,

all operators should have dimension less or equal to 4. Notice that

[∆n] =[χn] + 1 , [Kn] = 3− [χn] ,

gh.(χn) ≡ γn , gh.(∆n) = γn + 1 , gh.(Kn) = −γn − 1 ,
(6.5.15)

where we have denoted by γn the ghost number of the field χn. Since∆H trivially vanishes,

KH = 0. We see from eq.(6.5.15) that all K-currents have negative ghost charge, with the

exception of Kω∗ that has ghost charge zero. Thus the only allowed operator quadratic

in the K-currents is Kα
ω∗Kα

ω∗ . This is already of dimension four, so no extra fields can be

added to it. From eq.(6.5.7) we have

δRΓN,∞

δKα
ω∗(x)

= i⟨∆ω∗
[χ(x)]⟩J(χ,K) = −iHα(x) , (6.5.16)

where the last identity applies because the BRST transformation of ω∗α is linear. The

right-hand side of eq.(6.5.16) is fully saturated by the classical action, and we conclude

that ΓN,∞ does not depend on Kω∗ for N > 0 and is at most linear in the K’s for any N .

We can write

ΓN,∞[χ,K] = ΓN,∞[χ, 0] +

∫
d4xDn

N [χ]Kn(x) . (6.5.17)

Recall that

S[χ,K] = S[χ] +

∫
d4x∆n[χ]Kn(x) . (6.5.18)

Let us plug eqs.(6.5.17) and (6.5.18) in eq.(6.5.14). The terms with no K’s give
∫

d4x

(
− δLS[χ]

δχn(x)
Dn

N [χ(x)]−∆n[χ(x)]
δLΓN,∞

δχn(x)

)
= 0 . (6.5.19)

In deriving eq.(6.5.19) we used the fact that Kn and χn are bosonic (fermionic) and

fermionic (bosonic) for any n, hence for any two arbitrary bosonic functionals A and B

one has
δRA

δχn

δLB

δKn
= −δLA

δχn

δRB

δKn
= −δLB

δKn

δLA

δχn
. (6.5.20)

The terms linear in K’s give
∫

d4x

(
Dn

N [χ(x)]
δL∆m[χ]

δχn(x)
+∆n[χ(x)]

δLDm
N [χ]

δχn(x)

)
= 0 . (6.5.21)
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Equation (6.5.19) can be rewritten as

∫
d4x∆(ϵ)n

N

δLΓ
(ϵ)
N

δχn
= 0 , (6.5.22)

where we have defined

Γ(ϵ)
N [χ] = S[χ] + ϵΓN,∞[χ, 0] ,

∆(ϵ)n
N = ∆n + ϵDn

N ,
(6.5.23)

with ϵ an infinitesimal parameter. The O(ϵ0) term vanishes because S is BRST-invariant,

while the O(ϵ) terms reproduce eq.(6.5.19). Similarly, eq.(6.5.19) can be rewritten as the

O(ϵ) terms of the following relation:

∆(ϵ)n
N

δL
δχn

(
∆(ϵ)n

N

δL
δχn

)
= 0 . (6.5.24)

We conclude from eqs.(6.5.23) and (6.5.24) that the action Γ(ϵ)
N is invariant under the

transformations generated by ∆(ϵ)n
N , which are nilpotent, like the original BRST transfor-

mations ∆n.

Comparing eqs.(6.5.17) and (6.5.18) we notice thatDn
N and∆n have the same ghost and

Lorentz quantum numbers. The most general ∆(ϵ)n
N transformations is then parametrized

by a simple generalization of the original BRST transformations (6.3.3):

δ(ϵ)Nθ Ψ = iθQN
α ωαΨ ,

δ(ϵ)Nθ Aµα = θ(BN
αβ∂µωβ +DN

αβγAµβωγ) ,

δ(ϵ)Nθ ωα = − 1

2
θEN

αβγωβωγ .

(6.5.25)

The transformations of ω⋆α and Hα are like the original BRST transformations (6.3.3)

since Dω⋆

N = KH = 0. For simplicity, from now on we omit the superscript N on δ(ϵ)Nθ

and the coefficients QN
α , B

N
αβ , D

N
αβγ and EN

αβγ . Nilpotency of the ghost transformation in

eq.(6.5.25) requires that Eαβγ satisfies a Jacobi identity (compare with eq.(6.3.8)). Hence

Eαβγ should be the structure constant of a Lie algebra. Since for ϵ→ 0 we should recover

the original BRST transformations, we conclude that Eαβγ must be the structure constant

of the original Lie algebra, up to a constant:

Eαβγ = ZCαβγ . (6.5.26)

Consider now the gauge fields. We have s(ϵ)Aµα = Bαβ∂µωβ +DαβγAµβωγ . Then

δ(ϵ)θ (s(ϵ)Aαµ) =∂µ
(
− 1

2
BαβθEβγδωγωδ

)
+Dαβγθ(Bβσ∂µωσ +DβρσA

ρ
µωσ)ωγ

+DαβγA
β
µ

(
− 1

2
θEγρσωρωσ

)
.

(6.5.27)
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Using eq.(6.5.26) and reshuffling indices, the terms proportional to Aµ in eq. (6.5.27) give

δ(ϵ)θ (s(ϵ)Aαµ)|A = −1

2
θAβµωρωσ(DαγρDγβσ −DαγσDγβρ + ZCγρσDαβγ) . (6.5.28)

This term vanishes, again due to the Jacobi identity, if

Dαβγ = ZCαβγ . (6.5.29)

The terms with no gauge fields give

δ(ϵ)θ (s(ϵ)Aαµ)|noA = θ∂µωσωγZ(CαβγBβσ −BαβCβσγ) , (6.5.30)

and vanishes if

Bαβ = ZNδαβ . (6.5.31)

Finally, let’s look at the fermion transformations.

δ(ϵ)θ (s(ϵ)Ψ) = iQα

(
(δ(ϵ)θ ωα)Ψ+ ωα(δ

(ϵ)
θ Ψ)

)
= iQα

(
− 1

2
ZθCαβγωβωγΨ+ ωαiQβθωβΨ

)

= θωαωβΨ
(
− i

2
ZCαβγQγ +

1

2
[Qα, Qβ ]

)
.

(6.5.32)

This vanishes if

Qα = Ztα . (6.5.33)

Summarizing, we find that the ∆(ϵ)n
N transformations (6.5.25) read

δ(ϵ)θ Ψ = iθZtαωαΨ ,

δ(ϵ)θ Aµα = θZ(Z ′∂µωα +CαβγAµβωγ) ,

δ(ϵ)θ ωα = − 1

2
ZθCαβγωβωγ .

(6.5.34)

Modulo the two (N-dependent) constants Z and Z ′, they are like the original BRST

transformations (6.3.3). Let us now construct the possible form of the action Γ(ϵ)
N [χ].

It is a local functional, has to contain up to dimension four operators, and has to be

invariant under the transformations (6.5.34) and under all the linearly realized symmetries

of the original total tree-level action (6.3.2). These are Lorentz invariance, ghost number

conservation and the global gauge transformations

δΨ = itαϵαΨ ,

δAµ = CαβγAµβϵγ ,

δωα = Cαβγωβϵγ ,

δω∗α = Cαβγω
⋆
βϵγ ,

δHα =CαβγHβϵγ .

(6.5.35)
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For the gauge fixing choice fα = ∂µAα, we have an additional symmetry, invariance under

anti-ghost shifts:

δTω
⋆
α = cα , (6.5.36)

where cα is an arbitrary Grassmann constant parameter. It is clear that the only dimension

four or less terms containing ghosts and compatible with all the above symmetries are

∂µω⋆α∂
µωα and dαβγ∂µω⋆αA

µ
γωβ. The only terms involving Hα are HαHα, Hα∂µA

µ
α and

eαβγHαA
µ
βAµγ . We have Γ(ϵ)

N [χ] =
∫
d4xL(ϵ)

N , with

L(ϵ)
N = L′(ψ, A) + 1

2
ξ′HαH

α + cHα∂µA
µ
α − eαβγHαA

µ
βAµγ

− Zω∂µω
⋆
α∂

µωα − dαβγ∂µω
⋆
αA

µ
γωβ .

(6.5.37)

In eq.(6.5.37), L′(ψ, A) is the part of the Lagrangian that depends only on the gauge and

matter fields. Let us impose the modified BRST transformations (6.5.34) to L(ϵ)
N . The

terms linear in the Hα field give

δ(ϵ)L(ϵ)
N |Hα = cHαθZ∂

µ(Z ′∂µωα + CαβγAµβωγ)− 2eαβγHαAµγθZ(Z ′∂µωβ +CβρσAµρωσ)

+ Zωθ∂µHα∂
µωα + dαβγθ∂µHαA

µ
γωβ

= θ∂µHα∂
µωα(−cZZ ′ + Zω) + θ∂µHαA

µ
γωβ(cZCαβγ + dαβγ)

− 2θHαA
γ
µAµρωσ(eαβγZCβρσ)− 2θHαA

γ
µ∂

µωβ(eαβγZZ ′) .

(6.5.38)

This vanishes only if

eαβγ = 0 , dαβγ = −cZCαβγ , c =
Zω
ZZ ′

. (6.5.39)

The remaining terms are of the form ∂ω⋆ω∂ω and ∂ω⋆Aω2. They do not give additional

constraints. Indeed,

δ(ϵ)L(ϵ)
N |∂ω⋆ω∂ω = − Zω∂µω

⋆
α

(
− 1

2
Z
)
Cαβγθ∂

µ(ωβωγ)− dαβγ∂µω
⋆
αθZZ ′∂µωγωβ

= θ∂µω
⋆
α∂

µωγωβZ(ZωCαβγ + Z ′dαβγ) = 0 ,
(6.5.40)

and

δ(ϵ)L(ϵ)
N |∂ω⋆Aω2 = − dαβγ∂µω

⋆
α

(
θCγρσZAµ

ρωσωβ +Aµ
γ

(
− 1

2
θZ
)
Cβρσωρωσ

)

= ∂µω
⋆
αθωσωβA

µ
ρ

(ZωZ
2Z ′

)(
CγρσCγαβ + CγρβCγσα + CγραCγβσ

)
= 0 .

(6.5.41)

Invariance of L′(ψ, A) under the transformations (6.5.34) is ensured by demanding gauge

invariance, with gauge parameter

ϵα(x) = ZZ ′θωα(x) , (6.5.42)
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in terms of rescaled Lie algebra generators and structure constants: t̃α = tα/Z ′, C̃αβγ =

Cαβγ/Z ′. In the canonical basis, such rescalings correspond of course to a renormalization

of the gauge coupling constant g̃ = g/Z ′. Putting all together, we can finally write down

the most general form of L(ϵ)
N :

L(ϵ)
N = − ZAF̃

α
µν F̃

µν
α − Zψψ̄γ

µ(∂µ − it̃αA
α
µ)ψ

+
1

2
ξ′HαHα +

( Zω
ZZ ′

)
Hα∂

µAαµ − Zω(∂µω
⋆)(∂µωα + C̃αβγA

µ
βωγ) ,

(6.5.43)

where schematically F̃ = dA+ C̃A2. We notice that this Lagrangian has the same form as

the tree level one. Hence, by redefining at level N the fields and couplings in the tree-level

action, we can set L(ϵ)
N [χ, 0] = S[χ], namely ΓN,∞[χ, 0] = 0. This concludes the proof of

the renormalizability of non-abelian gauge theories.
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Chapter 7

Effective Field Theories

We have so far mostly considered renormalizable quantum field theories, since these the-

ories have simple renormalization properties. Once a finite number of observables is fixed

(by experiment), these theories allow for very accurate predictions. It is however clear

that renormalizable theories such as the SM cannot be the ultimate theory of nature,

since gravity is not included. From this perspective, renormalizable theories are special

because they allow us to hide in a redefinition of a finite number of parameters all our

ignorance of the UV physics which is beyond the model in consideration. Aside from an

improved calculability, there is no conceptual reason to focus only on such a restricted

class of theories.

Unless one is so ambitious to try to construct the ultimate, possibly, finite theory of

everything, any quantum field theory should be seen as an effective field theory, namely

a theory that is reasonably accurate in a given energy regime and is replaced by some

other more complete theory at a given UV scale M . This happens all the time in physics

and is the most efficient way to study a phenomenon keeping only the relevant degrees

of freedom. Classical examples are the Fermi theory of electroweak interactions or the

pion chiral Lagrangian. These theories are effective, being replaced, at sufficiently high

energies, by the SM and QCD, respectively. It is obvious that if we are interested in

processes happening at a given scale E ≪ M and involving light fields only, with masses

much smaller than M , the heavy states with mass ∼M cannot be produced, so that the

latter can be integrated out. In a path integral approach, the complete 1PI generating

functional of light fields is given by

eiΓ(φl) =

∫

1PI
Dηl eiSIR(φl+ηl) , eiSIR(φl) =

∫
Dφh eiSUV (φl,φh) , (7.0.1)

where φl and φh schematically denote light and heavy fields. Here SUV and SIR represent
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the underlying UV and IR effective actions, respectively. At tree-level, we simply have

S(0)
IR(φl) = SUV (φl,φh(φl)) , (7.0.2)

where φh(φl) is the classical solution to the heavy field equations of motion. Being the

integrated fields heavy, the action admits a well-defined momentum expansion in terms

of local operators. We could proceed by computing the one-loop and higher loop effective

actions S(l)
IR and reconstruct in this way the whole effective action SIR. The key point

of effective field theory is to replace this procedure by a simpler one, where we compute

radiative effects involving the light fields starting from the action

SEFT (φl) = S(0)
IR (φl) +∆S(φl) , (7.0.3)

where ∆S encodes all higher dimensional local operators up to some order, depending

on the accuracy we want to achieve, and compatible with the global symmetries of the

theory. All the unknown couplings multiplying the higher dimensional local operators

are then fixed by comparing given quantities as computed in the UV theory and in the

EFT. In principle, one might want to directly compare S-matrix elements, but it is often

easier to compare 1PI functions, generically off-shell. Note that 1PI functions can be

compared at an unphysical point, since by analyticity we are ensured that their on-shell

properties are equal. However, this is somewhat improper and too conservative, because

physical observables correspond to on-shell S matrix elements and not to the whole Green

functions, and different off-shell Green functions can lead to the same on-shell results,

as we will see in section 7.8. We will nevertheless require the off-shell equality of 1PI

functions in our examples for simplicity. Note also that in the UV theory 1PI refers to

the light fields only. Graphs that can be splitted in two disconnected ones by cutting a

propagator of a heavy field should be included.

The procedure of fixing the parameters of the IR theory using the UV theory is called

“matching”. Of course, matching requires to also perform a computation in the full theory

but, as we will see, it is typically much easier to do computations in the EFT and then

matching, rather than computing everything in the full theory.

7.1 1PI vs Wilsonian Actions

Before considering various examples of use of effective field theories techniques, we would

like here to emphasize the difference between the various effective actions introduced so

far.1 The effective action Γ(φ) defined in eq.(4.1.2) is the generator of all 1PI amplitudes

1See 4.3 for a further subtlety.
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in the theory, namely those involving an arbitrary combination of heavy and light fields.

In the context of EFT, we also have Γ(φl) appearing in the l.h.s. of the first equation in

(7.0.1), which generates the 1PI amplitudes associated to the light fields. Another effective

action is SIR, defined in the l.h.s. of the second equation in (7.0.1). The effective actions

Γ(φ) and Γ(φl) are shortly denoted 1PI actions, while SIR is called a Wilsonian effective

action. The key difference between 1PI and Wilsonian actions is that in the latter the

virtual particles are always massive. Correspondingly, while 1PI actions are intrinsically

non-local, namely they cannot be written as the integral of some effective Lagrangian

density (even with an infinite number of terms), the Wilsonian action always admits such

rewriting. The key point can be understood already at tree-level. When we integrate out

a scalar particle of mass M at tree-level, roughly speaking we get an effective action term

that reads in momentum space as

SIR ⊃
∫

d4pΦ1(−p)
1

p2 −M2
Φ2(p) , (7.1.1)

where Φ1,2 are local functionals of the remaining light fields and 1/(p2−M2) represents the

propagator of the massive particle that has been integrated out. The term is manifestly

non-local and cannot be written in configuration space as the integral of a Lagrangian

density. At low energies, p2 ≪M2, we can expand the propagator as

1

p2 −M2
= − 1

M2
− 1

M2

p2

M2
+ . . . (7.1.2)

Plugging eq.(7.1.2) in eq.(7.1.1), however, gives a (generally infinite) sum of local terms

of the form

SIR ⊃ −
1

M2

∫
d4xΦ1(x)

(
1 +

✷

M2
+ . . .

)
Φ2(x) . (7.1.3)

On the contrary, when massless fields are present, the term in eq.(7.1.1) is intrinsically

non-local and eq.(7.1.3) does not apply.

7.2 Two Scalars

Consider

LUV =
1

2
(∂H)2 − 1

2
M2H2 +

1

2
(∂L)2 − 1

2
m2L2 − g

2
HL2 , (7.2.1)

where m ≪ M and the dimensionful coupling g is assumed to be of O(M).2 The most

general EFT for L reads as follows:

LIR =
1

2
ZL(∂L)

2 − 1

2
m̃2L2 − λ

4!
L4 + h.d.o. , (7.2.2)

2This theory is not realistic, since the cubic potential HL2 is not positive definite, but the considerations

we want to make are insensitive to this stability problem.
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where h.d.o. stands for higher dimensional operators. The tree-level integration of H gives

H = −gL2/(2M2) +O(p2/M4). Plugged back in eq. (7.2.1) gives

L(0)
IR =

1

2
(∂L)2 − 1

2
m2L2 − λ

4!
L4 +O(g2M−4) (7.2.3)

so that tree-level matching gives

ZL = 1 +O(g2) , m̃2 = m2 +O(g2) , λ = −3g2

M2
+O(g4) . (7.2.4)

It is important to emphasize that the factors ZL, m̃2, etc. in eq. (7.2.4) are the analogues

of (1+δZ), m2+δm2, etc. defined in eq. (5.1.5) in the Wilsonian RG flow. They are finite

terms, which at the quantum level indicate how the EFT fields, masses etc. differ from

their UV counterparts to compensate for the different UV behaviour of the two theories, so

that low-energy observables match in the two descriptions. They should not be confused

with the usual counter-terms needed to subtract divergences, which we will never explicitly

write, always fixing them by an MS subtraction scheme.

We can directly use L(0)
IR as effective theory to compute Green functions for energies

much smaller than M . For instance, the MS renormalized four-point 1PI function reads

(see eq. (5.6.4)):

Γ(4)(s, t, u) = −λ(µ) + λ2(µ)

32π2

∫ 1

0
dx

[
log

m2 − sx(1− x)

µ2
+ (s→ t) + (s→ u)

]
. (7.2.5)

By taking s ≃ t ≃ u ≃ µ we get Γ(4)(µ) ≃ −λ(µ), where

λ−1(µ) = λ−1(µ0)−
3

16π2
log
( µ

µ0

)
(7.2.6)

is the usual one-loop running in the φ4 theory, assuming µ, µ0 > m. The natural scale

where the effective theory parameter λ should be matched, at one-loop level, with the

underlying UV parameters g and M is at the scale µ0 = M , since this is the energy scale

boundary between the two theories. This is understood by comparing the 1PI four point

amplitude Γ(4). The following diagrams contribute to Γ(4) in the UV theory (continuous

and dashed lines correspond to light and heavy fields, respectively). At leading order in
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an 1/M expansion and for zero external momentum, we get

+ perms. =
(1
2
× 3
)
(−ig)4µ2ϵ

∫
ddk

(2π)d

(
i

k2 −m2

)2( −i
M2

)2

=
3ig4

32π2M4
log

m2

µ2
,

+ perms. = (6)(−ig)4µ2ϵ
∫

ddk

(2π)d

(
i

k2 −m2

)2 −i
M2

i

k2 −M2

=
3ig4

8π2M4

(
1 + log

m2

M2

)
, (7.2.7)

+ perms. = (6)(−ig)4µ2ϵ
∫

ddk

(2π)d

(
i

k2 −m2

)2( i

k2 −M2

)2

=
6ig4

8π2M4

(
1 +

1

2
log

m2

M2

)
,

where in parenthesis we have denoted the geometrical factor (permutations included) of

the graph. Recall that Γ(4) is 1PI in the light fields only, and hence the first graph in

eq.(7.2.7), reducible when cutting the propagator of the heavy field, should be included in

the computation.

Including the tree-level term, we get

Γ(4)(0) =
3g2(µ)

M2
+

3g4(µ)

8π2M4

(
3 + 2 log

m2

M2
+

1

4
log

m2

µ2

)
. (7.2.8)

Comparing eq. (7.2.5) (at zero momentum) with eq. (7.2.8) and using the tree-level relation

(7.2.4) for λ, we get

λ(µ) = −3g2(µ)

M2
− 3g4

8π2M4

(
3 + 2 log

µ2

M2

)
. (7.2.9)

Notice how all the (potentially large) logs involving the light mass m2 cancelled from

eq. (7.2.9). This is not a coincidence. All the IR properties of the UV theory (as well as

large IR effects) are reliably described by the EFT by construction, so that the matching

equations are always regular in the IR. It is quite clear from eq. (7.2.9) that the best scale

to match the two theories is µ = M , in which case we have

λ(M) = −3g2(M)

M2
− 9g4

8π2M4
. (7.2.10)

Taking µ0 = M in eq. (7.2.6) and using eq. (7.2.10), will allow us to take into account

possible large logs of the form log(µ/M). Notice that the g4/M4 term in eq. (7.2.10) can

safely be neglected at one-loop level, starting to be relevant only at two-loop level, if NLL

want to be resummed. In other words, no one-loop computation of the 1PI 4-point function
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would have been needed in matching the theory at µ ≃M and we would have been able to

resum the leading log(µ/M) terms without performing any radiative computation in the

UV theory! In general, an l-loop computation in the effective theory requires an l−1-loop

matching computation in the UV theory. This example clearly shows the usefulness of

effective theories even in such a simple set-up.

7.3 Yukawa Theory I: Heavy Scalar, Light Fermion

Consider a light fermion field coupled to a massive scalar by means of a Yukawa-like

coupling. The UV and IR Lagrangians are

LUV =
1

2
(∂φ)2 − 1

2
M2φ2 + ψ̄(i/∂ −m)ψ − gφψ̄ψ (7.3.1)

LIR = Zψψ̄i/∂ψ − m̃ψ̄ψ +
λ

2
ψ̄ψψ̄ψ + h.d.o. (7.3.2)

The tree-level integration of φ gives φ = −gψ̄ψ/M2 + O(p2/M4). Plugging back in

eq. (7.3.1) gives

Zψ = 1 + δZψ , m̃ = m+ δm , λ =
g2

M2
. (7.3.3)

Let us now compute the 1PI 2-point function Γ(2)(p) in both the UV and the IR EFT at

one-loop level. In the UV theory the relevant one-loop diagram is
k

p p+ k
= (−ig)2µϵ

∫
ddk

(2π)d
i

k2 −M2

i(/p + /k +m)

(k + p)2 −m2
(7.3.4)

=
ig2

16π2

∫ 1

0
dx
(
/p(1− x) +m

)
log

(
µ2

−p2x(1− x) +m2x+ (1− x)M2

)
.

Expanding for M ≫ m, p, we get

Γ(2)(p) = /p−m− g2

16π2

[
/p

(
1

2
log

M2

µ2
− 1

4
+

m2

2M2
− p2

6M2
+O

( 1

M4

))

+ m

(
log

M2

µ2
− 1− m2

M2
log

m2

M2
− p2

2M2
+O

( 1

M4

))]

. (7.3.5)

In the effective theory, the relevant one-loop diagram is

k

p
= (−1)(iλµϵ)

∫
ddk

(2π)d

(
i(/k +m)

k2 −m2
+

iTr(/k +m)

k2 −m2

)
(7.3.6)

=
−5iλm3

16π2

(
1 + log

µ2

m2

)
, (7.3.7)
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where the two terms in square brackets indicate the two different contractions among the

four fermions in ψ̄ψψ̄ψ, and we have taken Tr I = 4 (rather than d). The 1PI 2-point

function Γ(2)(p) in the IR reads then

Γ(2)(p) = (1 + δZψ) /p− (m+ δm)− 5λm3

16π2

(
1 + log

µ2

m2

)
. (7.3.8)

Matching eqs. (7.3.5) and (7.3.8) gives

δZψ(µ) = − g2

16π2

(
1

2
log

M2

µ2
− 1

4
+

m2

2M2
+O

( 1

M4

))
,

δm(µ) = −5λm3

16π2

(
1 + log

µ2

m2

)
+

mg2

16π2

(
log

M2

µ2
− 1− m2

M2
log

m2

M2
+O

( 1

M4

))
.

= −mg2

16π2

(
1 + log

µ2

M2

)(
1 +

m2

M2

)
− 4m3g2

16π2M2

(
1 + log

µ2

m2

)
, (7.3.9)

where in the last line we have used the tree-level relation (7.3.3) for λ. It is clear from

eq. (7.3.9) that the matching is best performed at µ = M . Matching the p2/M2 terms

in eq. (7.3.5) would require the addition of the higher dimensional operators of the form

ψ̄/∂✷ψ or ψ̄✷ψ. We neglect them, since their effect is small, suppressed by p2/M2 times a

loop factor. The physical fermion mass is given, at one-loop level, by

mphys = m(M)

[
1− g2

16π2

(5
4
+

9m2

2M2
+

4m2

M2
log

M2

m2

)]
. (7.3.10)

7.4 Yukawa Theory II: Heavy Fermion, Light Scalar

Consider now the opposite case with an heavy fermion field coupled to a light scalar:

LUV =
1

2
(∂φ)2 − 1

2
m2φ2 + ψ̄(i/∂ −M)ψ − gφψ̄ψ (7.4.1)

LIR =
1

2
Zφ(∂φ)

2 − 1

2
m̃2φ2 +

λ3
3!
φ3 +

λ4
4!
φ4 + h.d.o. (7.4.2)

The tree-level integration of ψ gives ψ = 0, so that

Zφ = 1 + δZφ, m̃2 = m2 + δm2 , λ3 = O(g3) , λ4 = O(g4) . (7.4.3)

Let us again match the 1PI 2-point function in the UV and in the IR theory. In the UV

we have k

p

p+ k

= (−1)(−ig)2µϵTr
∫

ddk

(2π)d
i(/k +M)

k2 −M2

i(/p + /k +M)

(k + p)2 −M2

= − 4ig2

16π2

∫ 1

0
dx
(
M2 − p2x(1− x)

)[

3 log

(
µ2

−p2x(1− x) +M2

)
− 5

]

, (7.4.4)
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taking Tr I = 4 (rather than d). Expanding for M ≫ m, p, we get

Γ(2)(p) = p2 −m2 − 4g2

16π2

[

p2
(
− 1

2
log

M2

µ2
+

4

3
− p2

20M2
+O

( 1

M4

))

+ M2

(
− 3 log

M2

µ2
− 5 +O

( 1

M4

))]

. (7.4.5)

In the EFT we simply have

Γ(2)(p) = p2 −m2 + p2δZφ − δm2 . (7.4.6)

Matching eqs. (7.4.5) and (7.4.6) gives

δZφ(µ) = − 4g2

16π2

(
− 1

2
log

M2

µ2
+

4

3

)
,

δm2(µ) = −4g2M2

16π2

(
3 log

M2

µ2
+ 5

)
. (7.4.7)

The physical scalar mass is given by

m2
phys = m2(M) +

g2

16π2
M2
(
− 20 +

16

3

m2

M2

)
. (7.4.8)

7.5 Naturalness and the Hierarchy Problem

The scalar mass correction in eq. (7.4.8) is of O(M2g2/(16π2)). For M ≫ m, the ratio

(M/m)2 can overcome the one-loop suppression so that the radiative term is generically

much bigger than the tree-level one. If we want to keep the physical scalar mass small,

a fine-tuning between the MS mass term m2(M) and the one-loop correction is needed

(of course this readjustment is needed at each order in perturbation theory). This is

not a conceptual problem, and there is nothing wrong in principle to do that, but it is

nevertheless unpleasant to have in the EFT a parameter that is so sensitive to the UV

physics. Even a small change in the UV theory (say, g → g + δg in our toy example) will

give rise to a large radiative correction to m2
phys. and to a new readjustment. This is the

typical example of an “hierarchy problem” or “naturalness problem”, namely the problem

of explaining why a parameter in an EFT Lagrangian is much smaller than its expected

value at the quantum level.3 Natural parameters are often defined as follows:

3The hierarchy problem is often defined as due to quadratically (or higher) divergent graphs in regular-

izations with some cut-off Λ. Although this argument is essentially correct, it relies on the use of Λ and,

taken as it is, does not apply to regularizations like DR, where no Λ is introduced and there are no real

quadratic divergences. It would then seem that the hiearchy problem is “scheme dependent”, whereas of

course it is not, as we have just shown.
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dimensionless couplings should be of order one and dimensionful couplings should be of

order of the largest mass scale in the theory, to the appropriate power. Exceptions arise if

a symmetry is restored when a coupling (dimensionless or not) vanishes, in which case it

is natural to have that coupling arbitrarily small.

Let us check, using our results above, that this definition makes sense. In the scalar

theory of section 7.2, when g = O(M) (natural value), we get that the dimensionless

coupling λ in the EFT is of O(M2/M2) = O(1). Contrary to the scalar case, the fermion

mass correction in eq. (7.3.10) is proportional to the mass itself. This implies that, for

m → 0, all loop corrections vanish as well. Hence, light fermion masses are natural.

According to our general definition of natural parameters, some symmetry should be

restored when m → 0. This is indeed what happens, the symmetry being the chiral

symmetry ψ → γ5ψ (combined with the discrete Z2 inversion symmetry φ → −φ in the

UV theory). No symmetry is instead restored when the scalar mass term goes to zero, so

that in this case we have a naturalness problem.

Despite hierarchy problems do not lead to real inconsistencies and we can live with

them, they have been the main driving force in going beyond the SM, since the Higgs boson

mass term is unnatural. Similarly, one of the main problems in theoretical physics today

is provided by another hierarchy problem, which is why the vacuum energy we measure is

so smaller than its natural value.

7.6 Non-Leptonic Decays

As a final example, we consider a commonly used EFT of the weak interactions, by means

of four-fermion operators. The charged electroweak current in the SM contains the terms

LSM ⊃
g√
2
W+

µ

(
VudūLγ

µdL + VusūLγµsL) + h.c. (7.6.1)

Integrating out the W gives, among others, the flavour changing four-Fermi interaction

term

− 4GF√
2
VusV

⋆
du(ūLγ

µsL)(d̄LγµuL) , (7.6.2)

with the matching relation
GF√
2
=

g2

8m2
W

. (7.6.3)

The most general EFT dimension six interaction terms that can contribute toK decays

are

LIR = −c1O1 − c2O2 + h.c., (7.6.4)
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Figure 7.1: One-loop graphs contributing to the renormalization of the four-Fermi operator

(7.6.2). All external momenta are vanishing.

where

O1 = (ūLγ
µsL)(d̄LγµuL) , O2 = (ūLγ

µuL)(d̄LγµsL) . (7.6.5)

Tree-level matching gives

c1(mW ) =
g2

2m2
W

VusV
⋆
du(mW ) , c2(mW ) = 0 . (7.6.6)

Although at tree-level only O1 appears, symmetry arguments do not forbid O2, which is

expected to arise at the quantum level. Operators like (7.6.5) are relevant for the decays

of the strange mesons, such as the K’s. The natural scale where the operators O1,2 should

be renormalized is O(mK), being this the scale of the decay process. It is important to

compute the RG flow of the couplings ci = ci(µ), i = 1, 2, and see its effect. The main

contribution is given by the QCD corrections. In what follows we then compute the QCD

effects on the RG flow of c1 and c2.

Recall that at the linear level, the RG evolution of the couplings c1,2 is fixed by the

anomalous dimensions of the corresponding operators (see eq. (5.9.13)):

µ
dci
dµ

= βi = γijcj , (7.6.7)

where γij is the 2× 2 matrix of anomalous dimensions of the composite operators O1 and

O2 which, as we will see, mix under renormalization. We have then to determine γij . By

definition,

OB
i = Zij(µ)Oj(µ) , (7.6.8)

where OB
i are the bare composite operators. In analogy to what done at the end of section

5.9, where we computed the anomalous dimensions of the composite operator φ2 in the
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λφ4 theory by demanding the finiteness of the connected Green function ⟨φ2φφ⟩ at zero

momentum, we might determine Zij by demanding that the connected Green functions

G(4,1)
i ≡ ⟨OiūLuLs̄LdL⟩ are finite at zero momentum. The Green functions G(4,1)

i carry

four spinor indices, one for each elementary quark field. In order to simplify the notation,

we will multiply G(4,1)
i by the wave functions of the external fermion fields and denote

them by the same symbol of the corresponding fermion field uL, dL and sL.

The relevant 1PI one-loop graphs renormalizing O1 are depicted in fig. 7.1. A similar

set of graphs, with d↔ u in the external lines, renormalizes O2. Due to the conservation

of the underlying electroweak currents, the diagrams (1) and (2) in fig. 7.1 precisely com-

pensate for the non 1PI one-loop graphs correcting the external quark lines so that we do

not need to compute them. This is best understood by noticing that G(4,1)
iB = ZijG

(4,1)
j /Z2

q ,

where
√

Zq is the wave function renormalization of the elementary quark fields, flavour-

independent when only strong interactions are taken into account. The factors Z2
q com-

pensate then for the divergences arising from the diagrams (1) and (2). In the following we

neglect all quark masses and choose the Feynman gauge ξ = 1 for the gluon propagator.

Keeping only the divergent terms, diagram (3) gives

(3) = (igc)
2µϵ
∫

ddk

(2π)d

(
d̄Lγ

µ i/k

k2
γνtauL

)(
ūLγµ

−i/k
k2

γνt
asL
)−i
k2

= − g2c
32π2ϵ

(
d̄Lγ

µγργνtauL
)(

ūLγµγργνt
asL
)
+ finite terms . (7.6.9)

Similarly, we get

(4) = (3) , (5) = (6) =
g2c

32π2ϵ

(
d̄Lγ

µγργνtauL
)(

ūLγνγργµt
asL
)
+ finite terms .

(7.6.10)

Eqs. (7.6.9) and (7.6.10) are best written using certain identities in both color and spinor

indices, identities that are derived in detail in subsection 7.6.1. Using the results in that

section, we have

taijt
a
kl =

1

2

(
δilδjk −

1

3
δijδkl

)
, (7.6.11)

ψ2Lψ̄1L =
1

2
(ψ̄1Lγ

µψ2L)γµPR . (7.6.12)

Starting from eq.(7.6.9), we first use eq.(7.6.12) to write

K ≡
(
d̄iLγ

µγργνtaiju
j
L

)(
ūkLγµγργνt

a
kls

l
L

)
=

1

2

(
d̄iLγ

µγργνγαPRγµγργνs
l
L

)
tkla t

ij
a

×
(
ūkLγαu

j
L

)
= −16

(
ūkLγαu

j
L

)(
d̄iLγ

αslL

)
tija t

kl
a , (7.6.13)

where in the second equality we have used the gamma matrix algebra relation

γµγργνγαγµ = −2γαγνγρ . (7.6.14)
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We can now apply eq.(7.6.11) to get

K = −16
(
ūkLγ

αujL

)(
d̄iLγαs

l
L

)1
2

(
δilδjk −

1

3
δijδkl

)
= −8

(
ūLγ

αuL
)(

d̄LγαsL
)

+
8

3

(
ūkLγ

αuiL

)(
d̄iLγαs

k
L

)
. (7.6.15)

Applying again eq.(7.6.12) to the second term in eq.(7.6.15) gives

K = −8
(
ūLγ

µuL
)(

d̄LγµsL
)
+

8

3

(1
2

)(
d̄Lγ

µuL
)(

ūLγ
αγµPRγαsL

)

= −8
(
ūLγ

µuL
)(

d̄LγµsL
)
− 8

3

(
d̄Lγ

µuL
)(

ūLγµsL
)
, (7.6.16)

where we have the relation

γαγµγα = −2γµ . (7.6.17)

The second row in eq.(7.6.18) is our final expression of K. As can be seen, we have started

with the four fermion operator O1 with the schematic form (ūs)(d̄u) and ended up with

having generated also the form (ūu)(d̄s), corresponding to the operator O2. Identical

manipulations can be performed starting from the term (5) in eq.(7.6.10) and will not be

reported. Summarizing, we have

(
d̄Lγ

µγργνtauL
)(

ūLγµγργνt
asL
)
= −8(d̄LγµsL)(ūLγµuL)−

8

3
(d̄Lγ

µuL)(ūLγµsL) ,
(
d̄Lγ

µγργνtauL
)(

ūLγνγργµt
asL
)
= −2(d̄LγµsL)(ūLγµuL)−

2

3
(d̄Lγ

µuL)(ūLγµsL).(7.6.18)

Collecting all terms and taking into account that O1 and O2 are related by an odd exchange

of fermion operators, we get (αc = g2c/(4π))

O1,B = O1(µ)+
αc

2πϵ

[
O1(µ)−3O2(µ)

]
, O2,B = O2(µ)+

αc

2πϵ

[
O2(µ)−3O1(µ)

]
, (7.6.19)

from which we compute the wave-function renormalizaiton matrix Zij :

Zij = δij +
αc

2πϵ

(
1 −3
−3 1

)

+O(α2
c) . (7.6.20)

The matrix of anomalous dimension is now easily computed from eq.(5.9.5):

γij =
αc

2π

(
−1 3

3 −1

)

+O(α2
c) , (7.6.21)

where we have used the tree-level d-dimensional QCD β-function β(αc) = −ϵαc +O(1).4

The operator basis in which the anomalous dimension matrix is diagonal is given by the

4Recall that the limit d → 4 should always be performed at the end of the computation.
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operator combinations5

O1/2 =
O1 −O2

2
, O3/2 =

O1 +O2

2
, (7.6.22)

with eigenvalues

γ1/2 = −2αc

π
, γ3/2 =

αc

π
. (7.6.23)

We then have ciOi = c1/2O1/2 + c3/2O3/2, with c1/2 = c1 − c2, c3/2 = c1 + c2. In this new

basis the RG flow for the couplings reads

µ
dci
dµ

= γici , i = 1/2, 3/2 . (7.6.24)

The equations are easily integrated by writing µdci/dµ = dci/dαcβc, where βc is the

(one-loop) QCD β-function

βc = −
α2
c

2π
b0 b0 = 11− 2

3
nf . (7.6.25)

We get

c1/2(µ) = c1/2(µ0)

(
αc(µ)

αc(µ0)

) 4
b0

, c3/2(µ) = c3/2(µ0)

(
αc(µ)

αc(µ0)

)− 2
b0

. (7.6.26)

The integration constants ci(µ0) are fixed by taking µ0 = mW and matching by using

eq. (7.6.6): c3/2(mW ) = c1/2(mW ) = g2VusV ⋆
du/(2m

2
W ) ≡ c0. By taking µ ∼ mK , we can

estimate the effect of the QCD LL corrections. For nf = 4,6 one roughly gets c1/2(mK) ≃
2c0, c3/2(mK) ≃ 0.7c0, with an enhancement by about a factor 3 of the isospin 1/2 operator

with respect to the 3/2 one, showing that QCD corrections are far from being negligible.

7.6.1 Useful Color and Spinor identities

In this subsection we provide the details to derive eqs.(7.6.11) and (7.6.12). Let us first

consider the color indices. When the combination of color generators taijt
a
kl is summed over

all generators, the indices i, j, k, l can only be carried by the group space metric δij . Hence

we must have ∑

a

taijt
a
kl = Aδilδjk +Bδijδlk , (7.6.27)

5The label 1/ 2 and 3/2 refers to the quantum numbers of such operators under an approximate global

SU(2)L symmetry under which uL and dL form a doublet and sL is a singlet. This is an abuse of language,

because while O1/2 is in fact a component of an operator doublet with isospin 1/2, the operator O3/2 is a

component of a mixture of operators with isospin 1/2 and 3/2. We follow here the notation of ref.[1].
6This is, of course, a simplification, since we should take into account the b quark for energies above its

mass and integrate out the c quark below its mass, by performing a more refined matching.

149



with A and B coefficients to be determined. Multiplying by δij (or by δkl) and by δjk (or

by δil) we get, for SU(N),

0 = δlk(A+NB) ,

C2(r)δil ≡
∑

a

(tata)il = δil(NA+B) , (7.6.28)

where C2(r) is the quadratic Casimir group invariant, that depends on the representation

of the generators ta. For SU(N) generators in the fundamental representation we have

C2(fund.) =
N2 − 1

2N
. (7.6.29)

The solution of eqs.(7.6.28) is

A =
1

2
, B = − 1

2N
. (7.6.30)

For SU(3) we have then
∑

a

taijt
a
kl =

1

2

(
δilδjk −

1

3
δijδkl

)
, (7.6.31)

that coincides with eq.(7.6.11). Let us now turn to the spinor indices. Here we look for

identities relating products of two fermion bilinears expressed in different combinations.

Schematically (ψ̄1Γψ4)(ψ̄3Γψ2) ∼ (ψ̄1Γψ2)(ψ̄3Γψ4), where Γ are products of gamma ma-

trices. Relations of this form are called Fierz identities. The latter are best derived by

decomposing an open index fermion bilinear ψaψ̄b in terms of an independent basis in

spinor space. A convenient independent basis is provided by the antisymmetric products

of gamma matrices:

1ab , γµab , γµνab , γµνρab , γµνρσab , (7.6.32)

where γµ1...µn is the completely antisymmetrized product of gamma matrices:

γµ1...µn ≡ 1

n!
(γµ1 . . . γµn ± perms.) . (7.6.33)

A spinor basis should consists of 4 × 4 = 16 matrices, with complex valued coefficients.

The total number of matrices appearing in eq.(7.6.32) is indeed 1 + 4 + 6 + 4 + 1 = 16.

One also notices that the matrices (7.6.32) are orthogonal in spinor space, namely

Tr(γµ1...µn1γµ1...µn2 ) = 0, for n1 ≠ n2 (7.6.34)

and hence they form a basis.7 Notice that the matrix γµνρσ is equivalent to the chiral γ5

matrix. Hence, an alternative, but simpler, basis is given by the set

1ab , γµab , γµνab , (γµγ5)ab , γ5ab . (7.6.35)

7Notice that this true in any number of even dimensions d. In particular, the total number of matrices

equal (1 + 1)d = 2d = 2d/2 × 2d/2, where 2d/2 is the dimension of the spinor space in d even dimensions.

150



A generic fermion bilinear can then be written as follows

ψ2aψ̄1b = c1δab + c2γ
µ
ab + c3γ

µν
ab + c4(γ

µγ5)ab + c5(γ5)ab , (7.6.36)

where ci (i = 1, . . . 5) are coefficients to be determined. Multiplying eq.(7.6.36) by δab

immediately allows us to fix c1:

c1 =
η

4
(ψ̄1ψ2) , (7.6.37)

where η = +1 for commuting spinors and η = −1 for anti-commuting spinors. Similarly,

multiplying eq.(7.6.36) by the various gamma matrices allows us to fix the remaining

coefficients. We get

ψ2aψ̄1b =
η

4

(
(ψ̄1ψ2)δab+(ψ̄1γµψ2)γ

µ
ab+(ψ̄1γµνψ2)γ

µν
ab +(ψ̄1γµγ5ψ2)(γ5γ

µ)ab+(ψ̄1γ5ψ2)(γ5)ab
)
.

(7.6.38)

Using eq.(7.6.38), it is clear how to relate products of bilinears of the form (ψ̄1Γψ4)(ψ̄3Γψ2)

to (ψ̄1Γψ2)(ψ̄3Γψ4). The relation (7.6.38) is the master equation that, applied to different

products of bilinears, gives rise to different sets of Fierz identities. In the situation dis-

cussed in section 7.6, eq.(7.6.9), we have to consider chiral fermions. This simplifies the

analysis, because upon multiplying eq.(7.6.38) by PL from the left and by PR from the

right, (PL = (1 + γ5)/2, PR = (1 − γ5)/2), three out of five terms in the r.h.s. of that

equation vanish. For two (commuting) spinor wave functions we take η = 1, the remaining

two terms combine to give

ψ2L,aψ̄1L,b =
1

2
(ψ̄1Lγ

µψ2L)(γµPR)ab , (7.6.39)

that is eq.(7.6.12) of section 7.6.

7.7 (Ir)relevance of Higher Dimensional Operators

We have so far neglected all higher dimensional operators appearing in the EFT, assuming

that their effect is small. This assumption is actually correct, and this is the main reason

why we study EFT after all, but it is not as trivial as what naively expected. At the

quantum level the insertion of higher dimensional operators in Feynman amplitudes leads

to bad divergences that can obscure the irrelevance of these operators at low energies.

As a matter of fact, these operators are not always negligible at low-energies, their effect

depending on the regularization and renormalization procedure used to deal with the

divergences. As an illustrative example, let us go back to the two scalar theory in section

7.2 and let us add the dimension six operator

λ̃

M2
L3

✷L (7.7.1)
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to the Lagrangian (7.2.2).8 The operator (7.7.1) is indeed generated, at tree-level, when we

integrate H out. Naively, we expect that (7.7.1) is suppressed at low-energies as E2/M2

with respect to the λ coupling in eq. (7.2.2). However, at the quantum level eq. (7.7.1)

leads to severe divergences. For instance, at one-loop level the 1PI 4-point function with

one λ and one λ̃ vertex is quadratically divergent, so that

δΓ(4) ∝ λ λ̃

M2

∫
d4k

k2

(k2 + p2)2
∼ λ λ̃

M2

(
Λ2 + p2 log

Λ2

p2
+ . . .

)
, (7.7.2)

where p generically denotes external momenta or the mass m. Since the cut-off Λ of the

EFT is around M , we see that the divergent term can compensate for the manifest 1/M2

suppression to give a contribution to Γ(4) of the same order of the leading λ2 term.

This potential problem is actually scheme-dependent and is manifestly absent in DR

with a mass-independent renormalization subtraction scheme, such as MS. In DR, diver-

gences arise as poles in 1/ϵ and, when subtracted, leave a renormalized amplitude where

the sliding scale µ appears in logs only. Since in the EFT the only other mass scales present

are the light masses and the low-energy momenta, by dimensional analysis all higher di-

mensional operators are manifestly suppressed. In the example above, for instance, we

get, once the poles are subtracted,

δΓ(4) ∝ λ λ̃

M2

∫
ddk

k2

(k2 + p2)2
∼ λ λ̃

M2

(
p2 log

µ2

p2
+ . . .

)
, (7.7.3)

which is manifestly sub-leading with respect to the λ2 term.

Of course by using any other regulator, after the divergence is subtracted, no depe-

dence on the cut-off appears. However, in a generic regularization and renormalization

prescription, power-like dependence on the sliding scale is induced, which can spoil the

naive dimensional analysis. For instance, by renormalizing the operators L4 and L3
✷L at

a scale µ, one would get

δΓ(4) ∼ λ λ̃

M2

(
p2 log

µ2

p2
+ µ2 log

µ2

p2
+ . . .

)
. (7.7.4)

If the subtraction point µ ≪ M , we can still neglect higher dimensional operators, but

in a sufficiently complicated set-up powers of M might be induced by mixing with var-

ious operators. Moreover, we have seen that it is convenient in effective field theory to

renormalize at the scale µ ∼M , in which case dimensional analysis, when using eq.(7.7.4),

would break down. These problems are avoided by using DR with a mass independent

8As we will see in the next section, this is a so called redundant operator, but this is inessential for the

argument we want to make here.
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subtraction. In other words, mass-independent schemes preserve dimensional analysis, an

observation we already made in subsection 5.8 in the context of the RG flow of general

dimensionful couplings. We now see that this property has the fundamental implication

of validating a naive treatment of higher dimensional operators in the context of EFT.

7.8 Redundant Operators

We have discussed at length that in EFT one should write down a local effective action for

the lights fields including all the higher dimensional operators up to the desired order, the

coefficients of which will be then fixed by a matching procedure. It turns out, however,

that there is a redundancy in this description, since the physical observables in general

depend on only a subset of the EFT coupling constants (called physical in what follows).

The remaining couplings are called redundant, because they can be expressed in terms

of the physical ones. This redundancy can be traced back to the LSZ reduction formulas

(2.3.12), for which on-shell amplitudes are associated to the residue of multiple poles in a

Green function, not to the whole off-shell Green function. We can obtain different Green

functions by changing, for instance, the asymptotic field φ that creates one-particle states.

Any other quantum field φ′, as long as ⟨0|φ′|p⟩ ≠ 0, is an equally good choice. The off-

shell Green functions associated to φ′ would generally differ from those associated to φ,

but both would lead to identical on-shell properties. In other words, different off-shell

Green functions lead to the same on-shell physics.

The same redundancy can similarly be discussed in terms of operators, and not of their

associated couplings, using the Schwinger-Dyson equations (4.4.3). Viewing δS/δφ as a

particular composite operator in the theory, we can interpret eqs.(4.4.3) as the statement

that such composite operator, when inserted in Green functions, gives only rise to contact

terms with Green functions containing a lower number of fields. On-shell, this implies

that some pole is lost and these operators should not contribute to physical processes

(compare with the situation discussed in subsection 4.4.3 in the context of the WI in

QED). These operators are called redundant [22]. Composite operators made of δS/δφ

times other operators evaluated at the same space-time point (suitably renormalized) are

also redundant. This can be shown as follows [22]. Let us define

θ(x) = F (φ(x))
δS

δφ(x)
(7.8.1)

a (suitably renormalized) composite operator, where F is a local functional of φ and

δS/δφ(x) are the equations of motion for the field φ. We can introduce external sources s

153



and J for φ and θ, respectively, and consider the generating functional

eiW [J,s] =

∫
Dφ ei

∫
ddx(L+sφ+Jθ) . (7.8.2)

We will be interested in correlation functions with at most one insertion of θ, so we can

expand in J and keep only the terms up to linear level. Performing the path integral

change of variables

φ(x)→ φ(x) − J(x)F (φ(x)) , (7.8.3)

we then get

eiW [J,s] =

∫
Dφ
∣∣∣det Jac(x, y)

∣∣∣ei
∫
ddx(L+s(φ−JF )) , (7.8.4)

where

Jac(x, y) = δ(d)(x− y)− J(x)
δF ((φ(x))

δφ(y)
(7.8.5)

is the Jacobian associated to the change of variables. By taking n functional derivatives

with respect to s(xi) and one with respect to J(x), and setting s = J = 0, we get the

identity

i⟨φ(x1) . . . φ(xn)θ(x)⟩ = −
n∑

i=1

δ(d)(x− xi)⟨φ(x1) . . . F (φ(x)) . . . φ(xn)⟩

−⟨φ(x1) . . . φ(xn)
δF ((φ(x))

δφ(x)
⟩ . (7.8.6)

The last term in eq.(7.8.6) arises from the determinant of the Jacobian. For any local

functional of fields F (φ), it is UV divergent and proportional to δ(d)(0), so it vanishes in

DR, where such divergences are set to zero. In this way eq.(7.8.6) is the generalization of

the Schwinger-Dyson equations (4.4.3), which are reproduced by taking F = 1. Equation

(7.8.6) shows that any local composite operator θ of the form (7.8.1) does not contribute

to physical processes.

In practice redundant operators can be removed in EFT either by using the equations

of motion at the Lagrangian level or alternatively by field redefinitions. It is useful to

see how this works in a simple example: an EFT featuring only a real scalar with Z2

symmetry φ→ −φ. Up to dimension six operators, the most general EFT reads as:

L(d≤6)
EFT =

1

2
(∂φ)2 − λφ4 + g1

M2
φ6 +

g2
M2

(✷φ)2 +
g3
M2

φ3✷φ+O
( 1

M4

)
, (7.8.7)

where, for further simplification, we have neglected the mass term m2φ2. One could write

down other dimension six operators, but these are equal, up to total derivatives, to the

operators in eq.(7.8.7). For example, integrating by parts, one easily gets

φ2(∂φ)2 = −1

3
φ3✷φ+

1

3
∂µ(φ

3∂µφ) , (7.8.8)

154



the last operator giving a vanishing contribution in the action. The equation of motion

for φ is

−✷φ− 4λφ3 +O
( 1

M2

)
= 0 . (7.8.9)

Plugging back eq.(7.8.9) in the dimension six terms in the Lagrangian (7.8.7) gives

L̃(d≤6)
EFT =

1

2
(∂φ)2 − λφ4 + g̃1

M2
φ6 +O

( 1

M4

)
, (7.8.10)

where

g̃1 = g1 + 16λ2g2 − 4λg3 . (7.8.11)

We see that two out of the three dimension-six operators are redundant. This implies

that, at this order, physical observables only depend on the two couplings λ and g̃1.

The same conclusion can be reached by making the most general field redefinition

compatible with the symmetries at this order:

φ→ φ+
a

M2
✷φ+

b

M2
φ3 , (7.8.12)

where a and b are so far undetermined dimensionless parameters. In the new basis the

Lagrangian (7.8.7) reads, up to total derivative terms,9

L(d≤6)
EFT → L(d≤6)

EFT =
1

2
(∂φ)2 − λφ4 + g̃1

M2
φ6 +

g̃2
M2

(✷φ)2 +
g̃3
M2

φ3✷φ+O
( 1

M4

)
, (7.8.13)

where

g̃1 = g1 − 4bλ , (7.8.14)

g̃2 = g2 − a , (7.8.15)

g̃3 = g3 − 4aλ− b . (7.8.16)

We can choose a and b such that g̃2 = g̃3 = 0, i.e. a = g2, b = g3 − 4λg2. Plugging these

values back in eq.(7.8.14) reproduces eq.(7.8.11) and gives rise to the same EFT (7.8.10).

The presence of two redundant operators in the Lagrangian (7.8.7) can also be seen by

taking the following basis for the dimension six operators:

L(d≤6)
EFT =

1

2
(∂φ)2−λφ4+ ĝ1

M2
φ6+

ĝ2
M2

(✷φ+4λφ3)2+
ĝ3
M2

φ3(✷φ+4λφ3)+O
( 1

M4

)
, (7.8.17)

where we immediately see that ĝ2 and ĝ3 are redundant couplings, and the operators Ô2

and Ô3 in eq.(7.8.17) are of the form (7.8.1), with F2 = ✷φ+ 4λφ3, F3 = φ3.

9We have seen that no contribution in DR arises from the Jacobian associated to the change of variables

(7.8.12), which can then be neglected.
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Removing redundant operators can lead to a significant simplification. It should how-

ever be noted that if one starts with a Lagrangian where redundant operators have been

removed, like eq.(7.8.10), and considers off-shell Green functions, the cancellation of UV

divergences will generally require the introduction of counterterms associated to the re-

dundant operators. Such counterterms can then be rexpressed in terms of counterterms

for the non-redundant operators using field redefinitions or the equations of motion.
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Chapter 8

Spontaneously Broken Symmetries

Symmetries are a fundamental concept in QFT but they are often broken in Nature. If

a physical system described by a Lagrangian L(φ) is invariant under some symmetry, a

possible breaking term is obtained by adding terms to L(φ) which do not respect the

symmetry (explicit breaking). If the corresponding breaking operators have dimensions

less than four, the UV behaviour of the theory (and its divergences) will not be affected

by the symmetry breaking terms. In this case we say that the symmetry is softly broken.

Another possibility occurs when L(φ) is invariant under the symmetry but the ground

state (the vacuum) is not. IfG is the operator in the Hilbert space parametrizing the action

of the symmetry group, G|0⟩ ≠ |0⟩. In this case we have what is called a spontaneous

symmetry breaking. Classical prototypical example is the breaking of the SO(3) spatial

rotations in a ferromagnet. The laws of Nature are all spatially symmetric, but the vacuum

is not. The simplest example of a spontaneous symmetry breaking mechanism is provided

by the λφ4 theory with a negative squared mass term, that enjoys a Z2 symmetry under

which φ → −φ, with ⟨φ⟩ = ±φ0 ≠ 0. Clearly, the Z2 symmetry exchanges the two

degenerate vacua, Z2| ± φ0⟩ = |∓ φ0⟩. The two vacua are physically identical, so that we

can choose any of the two and expand for small fluctuations around the selected one.

The story is however not so simple. We are tacitly assuming that the vacuum is

one of the two vacua | ± φ0⟩, and not a linear combination of them. If the vacuum was

|±⟩ = 1/
√
2(|φ0⟩ ± | − φ0⟩), then the symmetry would be exact and not spontaneously

broken (the vacua being mapped to themselves, up to a possible sign factor). This is

in fact what happens in the quantum mechanical analogue of the double well potential:

the hamiltonian eigenstates are given by |±⟩, since tunneling effects induce non-trivial

transitions of the form ⟨±φ0| ∓ φ0⟩, and no spontaneous Z2 symmetry breaking occurs.

So we start in the next section explaining why and how spontaneous symmetry breaking
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takes place in QFT.

8.1 Why Spontaneous Symmetry Breaking?

As we mentioned, spontaneous symmetry breaking does not occur in quantum mechanics.1

More generally, it does not occur in systems with a finite number of degrees of freedom,

like in QFT defined on a finite volume. The tunneling effects between different vacua in

QFT are exponentially suppressed by the volume of space V . As V →∞, such transitions

no longer occur and different degenerate vacua are equivalent and completely disconnected

from each other: spontaneous symmetry breaking can then occur.

The absence of transitions between different degenerate vacua in QFT can be shown

by looking at the equal-time commutators of two generic local operators A and B. Assume

that the vacua are discrete and take them orthonormal:

⟨u|v⟩ = δu,v . (8.1.1)

Inserting a complete basis of states we have

⟨u|A(x⃗)B(0)|v⟩ =
∑

w

⟨u|A(0)|w⟩⟨w|B(0)|v⟩ +
∫

d3p⃗ eip⃗·x⃗ ρ(p⃗) , (8.1.2)

where the first term is the sum over all the possible vacua w present in the theory and

ρ(p⃗) ≡
∑

n

⟨u|A(0)|n, qn⟩⟨n, qn|B(0)|v⟩δ(3)(p⃗− q⃗n) (8.1.3)

represents the sum over n-particles states with total momentum q⃗n. If we assume that

ρ(p⃗) is integrable, the Riemann-Lebesgue lemma applies and we have

lim
|x⃗|→∞

∫
d3p⃗ eip⃗·x⃗ ρ(p⃗) = 0 . (8.1.4)

This condition is automatically satisfied if the theory has a mass gap, namely if the

one-particle states are all massive, in which case the Fourier transform of ρ(p⃗) vanishes

exponentially in |x⃗| at large distances. It ensures that operators inserted far away from

each other have no correlation. This is cluster decomposition at the operator level, that

will play an important role again in what follows. Since A and B are space-like separated,

microcausality requires that

[A(x⃗), B(0)] = 0 . (8.1.5)

1The analysis in this section closely follows section 19.1 of ref. [2]. I also found useful chapter 2.2 of

Parisi’s book [23], that contains several interesting observations that are often omitted in QFT textbooks,

in particular about the role of cluster decomposition.
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Eqs.(8.1.2), (8.1.4) and (8.1.5) imply that the matrix elements ⟨u|A(0)|v⟩ and ⟨u|B(0)|v⟩
should commute for any u and v, and hence can be simultaneously diagonalizable. There

exists then a basis of vacua where

⟨u|A(0)|v⟩ = auδu,v . (8.1.6)

Since A is an arbitrary local operator, we can take it to be the hamiltonian density operator

and thus we have proved that no transitions between degenerate vacua are possible in QFT.

Notice how the infinite volume limit entered crucially in eq.(8.1.4).

However, this is not the end of the story, because we have still to rule out the possibility

that the final vacuum is given by some linear combination
∑

u cu|u⟩, where |u⟩ is the

orthonormal basis defined by eq.(8.1.6), rather than by any of the |u⟩. This possibility is

ruled out by demanding cluster decomposition of the correlation function:

lim
|x⃗|→∞

⟨A(x⃗)B(0)⟩c = lim
|x⃗|→∞

(
⟨A(x⃗)B(0)⟩ − ⟨A(x⃗)⟩⟨B(0)⟩

)
= 0 . (8.1.7)

For instance, for two vacua related by a Z2 symmetry, we can denote |±⟩ the vacua in the

diagonal basis (8.1.6) and by |α⟩ the linear combination

|α⟩ = cosα|+⟩+ sinα|−⟩ , (8.1.8)

with 0 ≤ α ≤ π/2. In a α-vacuum we have

lim
|x⃗|→∞

⟨φ(x⃗)φ(0)⟩α =⟨α|φ(0)|+⟩⟨+|φ(0)|α⟩ + ⟨α|φ(0)|−⟩⟨−|φ(0)|α⟩

=v2(sin2 α+ cos2 α) = v2 ,
(8.1.9)

where ±v is the VEV of the field φ in the two vacua |±⟩. On the other hand

⟨φ(0)⟩α = ⟨α|φ(0)|α⟩ = v(cos2 α− sin2 α) = v cos 2α , (8.1.10)

so that

lim
|x⃗|→∞

⟨α|φ(x⃗)φ(0)|α⟩c = v2(1− cos2 2α) = v2 sin2 2α . (8.1.11)

The only α-vacua that satisfy cluster decomposition are those with α = 0,π/2, i.e. the

states |+⟩ and |−⟩. Spontaneous symmetry breaking can then be seen as an obstruction

in having a vacuum that at the same time is invariant under a symmetry and satisfies

cluster decomposition.

The discussion above can be generalized to continuous symmetries where we have an

infinite family of degenerate vacua. For continuous symmetries we also have an important

theorem, the Goldstone theorem, relating the symmetry breaking pattern to the spectrum

of the theory.
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8.2 The Goldstone Theorem

Let G be a group of global continuous symmetries with generators tα, α = 1, . . . ,dimG,

acting on some system. By Noether’s theorem, we have dimG conserved currents Jαµ (x):

∂µJαµ (x) = 0 and the associated charges Qα =
∫
d3xJα0 (x). The group G is said to be

spontaneously broken if, on the vacuum, the generators splits into two sets, labelled by a

and i, such that

Qa|0⟩ ≠ 0 , Qi|0⟩ = 0 , (8.2.1)

with a non-empty set for a. The unbroken generators labelled by ti form a subgroup of

G, denoted by H, so that we have dimG− dimH broken generators (a = 1, . . . ,dimG−
dimH). Goldstone’s theorem states that, independently of the specific pattern of breaking

and physical system we are considering, in the spectrum there will appear one massless and

spinless particle for each broken generator. The particle will be scalar or pseudoscalar,

depending on the parity of the associated broken generator. These particles are called

Goldstone or Nambu-Goldstone (NG) bosons. For simplicity, we will always refer to them

in what follows as to the NG particles.

Proof of the theorem. Let φn be the set of fields responsible for the spontaneous

symmetry breaking pattern G→ H. This implies that an infinitesimal action of the group

G on the fields φn do not leave them invariant, namely ⟨φ′n(0)⟩ ≠ ⟨φn(0)⟩, where φ′ are
the fields one gets after the infinitesimal action. In other words, we must have

⟨δφn(0)⟩ = ϵα⟨[Qα,φn(0)]⟩ ≠ 0 , (8.2.2)

with ⟨[Qa,φn(0)]⟩ ≡ δφan ≠ 0, for each a. Consider now the two-point function of a

conserved current Ja
µ with the fields φn. Since ∂µJa

µ(x) = 0, we have

∂µx ⟨0|T [Ja
µ(x)φn(0)]|0⟩ = ∂µx

(
θ(x0)⟨Ja

µ(x)φn(0)⟩ + θ(−x0)⟨φn(0)Ja
µ(x)⟩

)

= δ(x0)⟨[Ja
0 (x),φn(0)]⟩

. (8.2.3)

Let us denote by Ga
µ,n the Fourier transform of the two-point function:

⟨0|T [Ja
µ(x)φn(0)]|0⟩ =

∫
d4p

(2π)4
Ga

µ,n(p)e
−ip·x . (8.2.4)

By Lorentz invariance, we have

Ga
µ,n(p) = ipµH

a
n(p

2) . (8.2.5)

Integrating eq. (8.2.3) over space-time gives
∫

d4x ∂µx ⟨0|T [Ja
µ(x)φn(0)]|0⟩ =

∫
d4p δ(p)p2Ha

n(p
2) = ⟨[Qa,φn(0)]⟩ ≠ 0 . (8.2.6)
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The integral of a divergence does not vanish when long-range particles appear, and these

are precisely the NG bosons. More precisely, we must have

Ha
n(p

2) =
δφan
p2

+ . . . (8.2.7)

where . . . represent terms that are regular when p→ 0. A pole in the two-point function of

Ja
µ with φn is a signal of the presence of massless 1-particle states, one for each unbroken

generator a. Since φn are spinless (otherwise in the vacuum we will break the Lorentz

symmetries as well), such particles are necessarily of spin zero. Their intrinsic parity is

then fixed by the parity of the associated current Ja. Q.e.d.

Denoting by NGa the one-NG particle states, we have

⟨0|Ja
µ(x)|NGb(p)⟩ =

ipµFabe−ip·x√
2p0(2π)3

,

⟨NGb(p)|φn(x)|0⟩ =
Zb
ne

ip·x
√

2p0(2π)3
,

(8.2.8)

where Fab and Za
n are matrices (of mass dimension one and zero, respectively) related to

δφan in eq.(8.2.7). This relation is found by noticing that Ga
µ,n above is associated to the

spectral density ρaµ,n of the two point function ⟨0|Ja
µ(x)φn(0)|0⟩ (recall eq.(2.1.16)):

Ga
µ,n(p) =

∫ ∞

0
dσ ρaµ,n(p,σ)

i

p2 − σ + iϵ
, (8.2.9)

where by Lorentz invariance ρaµ,n(p,σ) = pµρan(σ). The contribution of the one-particle

NG bosons to ρan is easily computed from eq.(8.2.8):

ρan,NG(σ) = iFabZ
b
nδ(σ) . (8.2.10)

Matching eqs.(8.2.7), (8.2.9) and (8.2.10) we then have

δφan = iFabZ
n
b . (8.2.11)

We can also define the NG fields πa(x) with canonical 1-point function with the NG

particles:

⟨NGb(p)|πa(x)|0⟩ =
δabeip·x√
2p0(2π)3

. (8.2.12)

Putting together eqs. (8.2.8) and eq. (8.2.12), we see that

φn(x) = Za
nπ

a(x) + . . . = (iF )−1ab δφ
b
nπ

a(x) + . . . (8.2.13)
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where . . . denote field components not associated to the NG bosons. For linearly realized

symmetries, in a basis where all the field components φn are real and all the generators

tα are purely imaginary, we simply have

δφan = itanm⟨φm⟩ . (8.2.14)

The appearance of one NG particle per broken generator is physically explained by noticing

that the potential for the φn is, by assumption, invariant under the symmetry. Hence,

around any vacuum ⟨φm⟩, the broken generators do not leave the minimum invariant, but

necessarily shift it in a new minimum with exactly the same energy. Hence, we have a

(dimG-dimH)-dimensional space of flat directions in the potential. It costs no energy

to fluctuate around a flat direction, and the small fluctuation is identified with the NG

boson.

The above proof of the Goldstone’s theorem does not rely on perturbation theory,

indicating that NG particles are expected to arise whenever a global symmetry group is

spontaneously broken, no matter whether the theory undergoing the symmetry breaking

is weakly or strongly coupled. The fields φn responsible for the symmetry breaking are

also not necessarily elementary fields appearing directly in the Lagrangian at some energy

scale, but might be composite fields built with different fields. The most relevant example

of this kind is the spontaneous breaking of the SU(2) chiral symmetry in QCD, induced

by effective scalar fields φn constructed out of quark bilinears. In this case, the three NG

bosons are spin zero mesons that appear as bound states of the original quarks, the pions

π0, π±. We will come back to this relevant case in much more detail in the following.

We close this section by noticing that the Goldstone’s theorem applies for internal

symmetries only, namely for those symmetries whose generators commute with the ones

of the Poincaré group. An example of non-internal symmetry is provided by the confor-

mal group, that in four dimensions is given by SO(4, 2). A CFT is invariant under the

conformal group. When the latter is broken spontaneously to the Poincaré group, one

gets 15 − 10 = 5 broken generators (special conformal transformations and dilatations),

but actually only one massless NG boson, commonly denoted as the dilaton.

As we will shortly see, the Goldstone’s theorem does not apply for local (i.e. space-time

dependent) symmetries as well.

8.3 Vacuum Alignement and Pseudo-Goldstone Bosons

It is interesting to analyze theories where, in some approximation, a spontaneous symmetry

breaking occurs and, in addition, sub-leading effects introduce explicit symmetry breaking
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terms.2 Relevant examples include the above mentioned case of QCD, where the up

and down quark masses can be seen as small explicit symmetry breaking terms of the

SU(2) chiral symmetry. We will consider in what follows linearly realized symmetries

only, for which we know that quantum effects do not spoil the invariance of the action.

By considering space-time independent field configurations φn, the whole effective action

boils down to the effective potential V (φ). The latter, by definition, can be written as

V (φ) = V0(φ) + V1(φ) , (8.3.1)

where V0 is the invariant term, and V1 is the breaking one. In the field region of interest,

by assumption, we have |V1|≪ |V0|. In the basis (8.2.14), we have

δφn = iϵαtαnmφm . (8.3.2)

Invariance of V0 implies
∂V0

∂φn
tαnmφm = 0 , ∀α . (8.3.3)

Let φ0 be the minimum of V0 and φ = φ0 + φ1 the minimum of the whole potential V :

∂V

∂φn

∣∣∣∣
φ=φ0+φ1

= 0 . (8.3.4)

Since |V1| ≪ |V0|, we also have φ1 ≪ φ0 and we can consistently expand eq. (8.3.4) for

small V1 and φ1. At first non-trivial order, we have

∂2V0

∂φn∂φm

∣∣∣∣
φ0

φ1,m +
∂V1

∂φn

∣∣∣∣
φ0

= 0 . (8.3.5)

Taking a derivative with respect to φ of eq. (8.3.3), and evaluating at φ0, we have

∂2V0

∂φn∂φm

∣∣∣∣
φ0

tαmpφ0,p = 0 . (8.3.6)

When the index α runs over the unbroken directions i, (8.3.6) trivially vanishes since

timpφ0,p = 0. For α = a, (8.3.6) is non-trivial and indicates that there are dimG-dimH

directions in field space with a massless eigenvector, that are the NG particles (this can be

in fact seen as an alternative proof of the Goldstone’s theorem). Multiplying eq. (8.3.5)

by tanpφ0,p and using eq. (8.3.6), we finally have

∂V1

∂φn

∣∣∣∣
φ0

tαnpφ0,p = 0 . (8.3.7)

2The analysis in this section closely follows section 19.3 of ref. [2].
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In presence of a perturbation V1, the vacuum φ0 is no longer arbitrary among the would-be

degenerate vacua (in absence of the perturbation) but is restricted to satisfy eq. (8.3.7).

Equation (8.3.7) is denoted vacuum alignment condition, because it shows that the sym-

metry breaking terms typically force the vacuum φ0 to be parallel to the direction of

the explicit breaking term. This is easily seen in the particularly simple example of an

SO(N)→ SO(N − 1) breaking pattern. We choose as explicit breaking term V1 = unφn,

where un is a fixed vector, explicitly breaking SO(N) down to the SO(N − 1) subgroup

that leaves it fixed. The condition (8.3.7) gives untanpφ0,p = 0, namely φ0,n ∝ un (the

matrices ta being antisymmetric). The addition of the small perturbation to the invariant

Lagrangian lifts the vacuum degeneracy and forces φ0 to be parallel to un. The final

unbroken group is then SO(N − 1) and not SO(N − 2), intersection of the two would-be

misaligned SO(N − 1) subgroups.

The explicit term V1 is generally responsible for another important effect: they give

masses to the NG bosons, which become what are sometimes denoted as pseudo-NG

bosons. Their masses can be extracted from the potential by using eq. (8.2.13):

M2
ab =

∂2V

∂πa∂πb

∣∣∣∣
φ

= (iFac)
−1δφcn(iFbd)

−1δφdm
∂2V

∂φn∂φm

∣∣∣∣
φ

. (8.3.8)

Expanding for small V1 and φ1, it is straightforward to see that the pseudo NG boson

masses are linearly proportional to the explicit breaking term:

M2
ab ∝ V1 . (8.3.9)

8.4 Spontaneously Broken Gauge Symmetries: the Higgs Mechanism

The Goldstone’s theorem does not apply in the case in which the broken symmetry is

local.3 It is impossible for gauge theories to keep at the same time Lorentz invariance and

positivity of the Hilbert space, both conditions being important to establish the theorem.

For local symmetries, no NG massless particles appear, but rather the would-be NG bosons

are “eaten” by gauge fields that become massive.

The situation is easily illustrated by the abelian Higgs model (model that will be

extensively analyzed in the final chapter in the special case m = 0), whose Lagrangian is

L = −1

4
FµνF

µν + |DµΦ|2 − V (Φ), V (Φ) = −m2Φ†Φ+
λ

2
(Φ†Φ)2 , (8.4.1)

3This often used terminology is actually misleading. Gauge symmetries, being merely redundancies of

the system, cannot be broken. A more proper term would be gauge theories in a non-linearly realized, or

Higgs, phase.
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with DµΦ = ∂µΦ− ieAµΦ. For m2 > 0, the minimum of the potential is at

|Φ0| =
√

m2/λ ≡ v√
2
. (8.4.2)

It is useful to choose radial coordinates for the field Φ and write

Φ =
v + ρ√

2
eiθ/v , (8.4.3)

where the factor v in the exponential has been introduced to get canonical fields of dimen-

sion one. Expanding around small fluctuations, we quickly get at quadratic order

L = −1

4
FµνF

µν +
1

2
(∂µρ)

2 +
1

2
(∂µθ − evAµ)

2 − 1

2
(2m2)ρ2 + . . . (8.4.4)

The radial field is massive, with mρ =
√
2m, while the angular field θ is massless. Actually

θ mixes at quadratic level with the gauge field Aµ and it is not an eigenstate of the free

Hamiltonian. We can easily get rid of the unwanted mixing term eAµ∂µθ by noticing

that we have still to gauge-fix the U(1) gauge symmetry. Under a U(1) transformation

with parameter α(x), Φ(x)→ exp(iα(x))Φ(x). The radial field ρ(x) is invariant, while the

angular field θ(x) shifts as θ(x)→ θ(x)+vα(x). For any v ≠ 0, we can take α = −θ/v and

set in this way θ(x) = 0. In this gauge, denoted unitary gauge, the third term in eq. (8.4.4)

boils down to a mass term for the U(1) gauge field, mA = ev. We can say that the gauge

field has “eaten” the field θ that becomes the longitudinal component of a massive gauge

field. This mechanism is commonly denoted Higgs mechanism. The number of physical

degrees of freedom (d.o.f.) in the process is unchanged. We started with 2 d.o.f. from the

massless gauge field and 2 d.o.f. from the complex scalar field, for a total of 4, and ended

up in 1 d.o.f. from the neutral field ρ and 3 d.o.f. from the massive gauge field, again for

a total of 4.

Notice that in the limit e→ 0 the U(1) symmetry becomes global and the gauge field

decouples. In this limit the Goldstone’s theorem applies and we recover the massless NG

boson θ.

All the above analysis similarly applies to non-abelian symmetries. Let us consider

the usual sets of real fields φn transforming as (8.3.2) under an infinitesimal local trans-

formation of a group G. For simplicity, we assume the fields φn to be in some irreducible

representation of G, although this is not strictly necessary. The Lagrangian of our system

will include the terms

L ⊃ 1

2

(
∂µφn − igtαnmAαµφm

)2
− V (φ) , (8.4.5)

where we assume that the potential V (φ) has minima for φm = vm such that, in the

“ungauged” limit g → 0, the global group G is spontaneously broken to H. Expanding
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around the non-trivial vacuum, φm = vm + φ′m, the above covariant derivative gives rise

to the following terms, up to quadratic order in the fluctuations,

L ⊂ 1

2
(∂µφ

′
n)

2 − ig∂µφ
′
nt
α
nmvmAαµ +

g2

2
(itαnmvm)(itβnpvp)A

α
µA

µ,β . (8.4.6)

When α,β = i, the second and third terms in eq. (8.4.6) vanish identically, since tinmvm =

0, while they are generically non-vanishing for α,β = a. The second term in eq. (8.4.6) is

the generalization of the ∂µθAµ mixing term in the U(1) case. Recall that the directions

in field space given by tanmvm correspond to the NG boson directions. As we will show

below, it is always possible to choose a gauge (denoted again unitary gauge) in which the

fields φn do not contain NG boson fields, and hence

φ′nt
α
nmvm = 0 . (8.4.7)

The third term in eq. (8.4.6) is a mass term for the gauge fields in the broken directions.

The mass matrix

µ2
αβ = g2(itαnmvm)(itβnlvl) (8.4.8)

is symmetric, real and positive, showing that each gauge field Aa
µ along the broken direc-

tions gets a non-vanishing mass, by eating the corresponding would-be NG boson. In the

basis in which µ2 is diagonal, the propagators Ga
µν for the massive gauge fields read

Ga(UG)
µν (p) =

−i
p2 − µ2

a

(
ηµν −

pµpν
µ2
a

)
, (8.4.9)

where UG stands for unitary gauge and µ2
a are the mass square eigenvalues. Notice that

for large values of the momentum p, the gauge field propagator goes to a constant. The

renormalizability properties of spontaneously broken gauge theories are correspondingly

unclear. In order to fix this problem, it is sometimes more useful to use a more general

class of gauge-fixing terms, denoted by ξ-gauges. The gauge fixing term Lg.f. for ξ-gauges

is a generalization of the usual 1/(2ξ)(∂µAµ)2. It reads

Lg.f. = −
1

2ξ
fαfα, fα = ∂µA

µ
α + iξgφ′nt

α
nmvm . (8.4.10)

The associated ghost Lagrangian is obtained by taking an infinitesimal gauge variation of

fα, with parameter ωα, Lgh. = −gω⋆αδωfα. We get, modulo total derivatives,4

Lgh. = (∂µω⋆α)(Dµωα)− ξg2(itαnmvm)(itβnlφl)ω
⋆
αωβ . (8.4.11)

From eq. (8.4.11) we see that the ghost fields along the broken directions have a mass square

that equals the gauge boson mass matrix times ξ. For any ξ, the term igξ(φ′tv)α∂µA
µ
α

4We take δvm = 0, so that δφ′
m = ωαitαmnφn.
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appearing in eq. (8.4.10), upon an integration by parts, cancels the second unwanted term

in eq. (8.4.6). The unitary gauge (8.4.7) corresponds to the limit ξ → ∞ of the above

class of gauges. In this limit, the term proportional to ξ in Lg.f. oscillates very rapidly

and averages to zero any field configuration for which this term is non-zero. We then

effectively recover the unitary gauge (8.4.7). We see from eq. (8.4.11) that in the unitary

gauge the ghost fields become infinitely massive and can be neglected.

Let us derive the propagators for gauge fields, ghosts and scalar (NG and not) fields

in an arbitrary ξ-gauge. In momentum space, setting µ2 to diagonal form, the quadratic

terms of the gauge bosons in the Lagrangian add to

Lquad.(A) =
1

2
Aαµ(−p)Aβν (p)δαβ

(
− p2ηµν + pµpν

(
1− 1

ξ

)
+ ηµνµ2

α

)
, (8.4.12)

valid for both broken and unbroken generators (in the latter case µ2
i = 0). By inverting

the above quadratic terms, we easily get

Gαβ(ξ)
µν (p) =

−iδαβ
p2 − µ2

a

(
ηµν −

(1− ξ)pµpν
p2 − ξµ2

α

)
. (8.4.13)

The ghost propagator Gω(ξ)
αβ (p) is trivially obtained from eq. (8.4.11):

Gω(ξ)
αβ (p) =

iδαβ
p2 − ξµ2

α
. (8.4.14)

The scalar propagators are different for NG and non-NG bosons. The total mass matrix

in the Lagrangian reads

M2
mn =

∂2V

∂φm∂φn

∣∣∣∣
φ=v

+ ξg2(itampvp)(it
a
nqvq) . (8.4.15)

The mass matrix (8.4.15), acting on the NG boson directions (tbnsvs), gives

M2
mn(t

b
nsvs) = ξg2(itampvp)(it

a
nqvq)(t

b
nsvs) = ξδabµ

2
a(t

a
mpvp) , (8.4.16)

where the first term in eq. (8.4.15) vanishes thanks to the relation (8.3.6). In a generic

ξ-gauge, the would-be NG bosons have a mass which is
√
ξ times the gauge boson mass.

On the other hand, for the non-NG boson directions, defined by eq. (8.4.7), it is the second

term in eq. (8.4.15) that vanishes, giving as masses the eigenvalues m2
i of ∂

2V/∂φmφn. We

then get as scalar propagators

GS
ij(p) =

iδij
p2 −m2

i

, (no NG bosons)

GS(ξ)
ab (p) =

iδab
p2 − ξµ2

a
, (NG bosons)

(8.4.17)
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where the index i runs over all, but the NG bosons, scalar directions.

In the unitary gauge ξ → ∞, the NG bosons decouple and can be seen as eaten by

the gauge fields. In any other gauge they should be kept. Notice how the gauge boson

propagator (8.4.13) goes like 1/p2 for large momenta for any finite values of ξ and it is only

in the unitary gauge that it behaves as p0. This makes any finite ξ-gauge more suitable

than the unitary gauge to address renormalizability properties of spontaneously broken

gauge theories. Commom choices of ξ-gauges are the Landau gauge ξ = 0, in which ghosts

and NG bosons are massless, and the Feynman gauge ξ = 1, in which the gauge propagator

simplifies considerably.

8.5 The Goldstone Boson Equivalence Theorem⋆⋆

The Goldstone boson equivalence theorem, for short denoted equivalence theorem (ET) in

what follows, is a theorem about the behaviour of the scattering amplitude of longitudinally

polarized gauge bosons in a spontaneously broken gauge theory [24]. The theorem states

that at high enough energies the scattering amplitude of longitudinally polarized gauge

bosons is the same as the one obtained by replacing the gauge boson with its corresponding

“eaten” Goldstone boson, considered as a physical state. The relevance of the ET relies

in the fact that the scattering amplitude of massive gauge bosons is indeed dominated by

the longitudinal polarizations at high energies.

More precisely, the ET states that for E ≫ mA

ϵµ1
L,α1

(p1) . . . ϵ
µn
L,αn

(pn)S
α1...αn...
µ1...µn... (p1, . . . , pn, . . .) = Sα1...αn...(p1, . . . , pn, . . .) +O

(mA

E

)
.

(8.5.1)

In eq. (8.5.1), Sα1...αn...
µ1...µn... is the S-matrix element for the scattering of n longitudinally

polarized vector bosons with mass mA (taken equal for simplicity) with possibly other

physical states, unspecified in eq. (8.5.1) and encoded in the second . . . in Sµ1...µn..., while

Sα1...αn... is the scattering of their corresponding n would-be Goldstone bosons φ (with

the same physical states), treated as physical particles. In order to prove the ET we start

by the generalization of eq. (6.3.24), which still applies in spontaneously broken gauge

theories:

⟨α|[Q,O]|β⟩ = 0 , (8.5.2)

where |α⟩ and |β⟩ are arbitrary physical states and O is any operator (not necessarily

gauge invariant) of the theory. If we take O = ω⋆α and work with the auxiliary field Hα

(recall section 6.3), we get

⟨α|Hα|β⟩ = 0 . (8.5.3)
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In the Rξ-gauges defined in eq. (8.4.10), solving for Hα we have

Hα =
1

ξ
(∂µA

µ
α + iξgφ′nt

α
nmvm) . (8.5.4)

For simplicity, let us consider the situation where all massive gauge fields have a common

mass mA and let us define the would-be GB fields

mAπ
α ≡ gφ′nt

α
nmvm . (8.5.5)

The relation (8.5.3) implies that any connected Green function of physical states involving

Hα must vanish. Denoting collectively by Φ any physical field (transverse or longitudinal

gauge field, physical scalar, matter field), we have

⟨Φ(q1) . . .Φ(qn)Hα(p)⟩ = 0 . (8.5.6)

S-matrix elements are given by the amputated Green-functions. In terms of these, eq. (8.5.6)

becomes

pµG(ξ)
µν (p)⟨Φ(q1) . . .Φ(qn)Aν(p)⟩amp = −ξmAG

S(ξ)(p)⟨Φ(q1) . . .Φ(qn)π(p)⟩amp, (8.5.7)

where the propagators are those defined in eqs. (8.4.13) and (8.4.17). We have

pµG(ξ)
µν (p) =

−ipν(p2 − ξm2
A − (1− ξ)p2)

(p2 −m2
A)(p

2 − ξm2
A)

=
−ipνξ

(p2 − ξm2
A)

= −pνξGS(ξ)(p) . (8.5.8)

Plugging eq.(8.5.8) in eq.(8.5.7) gives

pµ

mA
⟨Φ(q1) . . .Φ(qn)Aµ(p)⟩amp = ⟨Φ(q1) . . .Φ(qn)π(p)⟩amp . (8.5.9)

Notice that the ξ-dependence completely dropped. The longitudinal polarization for a

vector with 4-momentum pµ = (E, p⃗) is given by

ϵLµ(p) =
1

mA

(
|p⃗|, p⃗

|p⃗|E
)
. (8.5.10)

For E ≫ mA, |p⃗| = E(1 +O(m2
A/E

2)) and hence

ϵLµ(p) =
pµ
mA

+O
(mA

E

)
. (8.5.11)

We finally get

ϵµL,α(p)⟨Φ(q1) . . .Φ(qn)Aµ(p)⟩amp = ⟨Φ(q1) . . .Φ(qn)πα(p)⟩amp +O
(mA

E

)
. (8.5.12)

169



The above derivation is easily generalized to multiple external longitudinal vector fields.

If we take O = ω⋆α
∏n−1

i=1 Hαi in eq. (8.5.2), we immediately get that the Green functions

with an arbitrary number of insertions of Hα must vanish. Proceeding as above leads to

( n∏

i=1

ϵαi
L,µi

(pi)
)
⟨Aα1

µ1
(p1) . . . A

αn
µn

(pn) . . .⟩amp = ⟨πα1(p1) . . . παn(pn) . . .⟩amp +O
(mA

E

)
,

(8.5.13)

that proves the relation (8.5.1). We conclude by noticing that the proof above applies only

to tree-level amplitudes. Indeed, while the relation (8.5.2) and its generalizations are exact

to all orders in perturbation theory, the form of the amputated Green functions crucially

depends on the form of the propagator. In going from eq. (8.5.7) to eq. (8.5.9) we have

used the tree-level form of the propagators. At the quantum level the relation (8.5.13)

gets corrections, that however can be reabsorbed with a proper choice of the gauge fixing

functional. We do not discuss these subtleties further.

8.6 Effective Field Theories for Broken Symmetries⋆

Massless NG bosons are a generic prediction of the Goldstone’s theorem, no matter

whether the underlying theory is weakly or strongly coupled. At sufficiently low ener-

gies we can then integrate out massive degrees of freedom and write down an EFT for

the NG bosons, possibly interacting with other possibly present light fields, such as gauge

fields. We will see in this section that, surprisingly enough, a lot can be said about this

EFT without even knowing the underlying UV Lagrangian (both spectrum and interac-

tions). All we need to know is the symmetry breaking pattern G→ H, namely the starting

and final global groups. The key point is that the EFT should be not only invariant un-

der the subgroup H, but under the entire group G (this is precisely what we mean by

spontaneous symmetry breaking!). However, while the symmetries for H are manifest and

linearly realized on the NG bosons, the ones for G/H are non-linearly realized and in

general complicated. Group theoretically considerations would allow us to find the proper

way to repackage the NG bosons into fields that have relatively simple transformation

properties so that a general EFT can be found.

Let us start by simply writing down the general commutation relations among the

generators ti ∈ H and ta ∈ G/H, G and H being the Lie algebras of the corresponding

groups. We have

[ti, tj ] = iCijktk , [ti, ta] = iCiabtb , [ta, tb] = iCabctc + iCabiti . (8.6.1)

We take here the structure constants completely antisymmetric in its indices. Since H

is a subgroup of G, Cija = −Ciaj = 0. Let φm be the fields responsible for the G → H
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spontaneous symmetry breaking pattern (again in a basis where all the fields are real).

Since we eventually want to write down an EFT for the NG boson fields, integrating out

the other model-dependent degrees of freedom present in the theory, we have to find a

way to disentangle the NG bosons from the rest. In other words, we have to find a way

to generalize for an arbitrary symmetry breaking pattern G → H, the radial coordinates

decomposition (8.4.3) that in the U(1) → ∅ allows to disentangle the NG boson (θ) from

the massive excitations (ρ). For this purpose let us define fields φ̃ that do not contain NG

boson field directions:

φ(x) = γ(x)φ̃(x), γ(x) ∈ G , (8.6.2)

namely such that

φ̃t(x)tαv = 0, ∀α . (8.6.3)

In eq.(8.6.2) and in what follows we omit for simplicity the matrix indices m,n. In

eq.(8.6.3) we clearly have tiv = 0 and tav ≠ 0, so this equation is non trivial only along

the broken directions. In this basis the NG bosons all sit in the matrix field γ(x). The

definition of φ̃ is not unique. If φ̃ satisfies (8.6.3), so does φ̃′ = φ̃ + citiφ̃, for arbitrary

coefficients ci. Indeed,

φ̃′ttαv = (φ̃t + ciφ̃
ttti)tαv = (φ̃t − ciφ̃

tti)tαv

= −ciφ̃ttitav = −ciφ̃t[ti, ta]v = −iciCiabφ̃
ttbv = 0 .

(8.6.4)

The field matrix γ(x) is therefore defined only modulo x-dependent transformations under

H: γ(x) ∼ γ(x)h(x), with h(x) ∈ H. Given this equivalence class, we can always choose

as representative a γ(x) of the form

γ(x) = eiξa(x)ta , (8.6.5)

where ξa are essentially the NGB’s fields. Under a global G transformation, we have

φ → φ′ = gφ = gγ(x)φ̃(x). The field φ′ can also be decomposed as in eq. (8.6.2). In

general, we will have

φ′(x) = γ(ξ′a(x))h(ξa(x), g)φ̃(x) , (8.6.6)

for some h(ξa(x), g) ∈ H, so thatφ′ = γ(ξ′a)φ̃
′,5 with

φ̃′ = h(ξa, g)φ̃ , (8.6.7)

γ(ξ′a) = gγ(ξa)h
−1(ξa, g) . (8.6.8)

5From now on we omit, for simplicity, the partial or total dependence on x, ξa(x), etc. of the various

fields.
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Notice that the field φ̃(x), under global G transformations, transforms as effectively local

transformations under H. The transformations of ξa and φ̃ simplify considerably when

g = h ∈ H. The second commutation relations in eq. (8.6.1) shows that the broken

generators ta transform linearly under transformations of h, namely

htah
−1 = tbRba(h) , (8.6.9)

where R is some representation (in general reducible) of H. The very same commutation

relations shows that when g = h, the factor h(ξ(x), g) defined in eq. (8.6.6) reduces to the

global x-independent element h: h(ξ(x), g) = h. We then have, using also eq. (8.6.9)

γ′ ≡ γ(ξ′) = hγ(ξ)h−1 = γ(R(h)ξ) . (8.6.10)

Under H, then, the transformations of both ξ and φ̃ are simple and linear:

ξ′a(x) = Rab(h) ξb(x) ,

φ̃′(x) = h φ̃(x) .
(8.6.11)

On the other hand, for infinitesimal transformations along G/H, the NG fields ξa transform

as a shift, at leading order in the field fluctuations. This is immediately visible from

eq.(8.6.8). For g = 1 + iϵata, indeed, we have

δξa = ϵa +O(ξ2, ϵξ) . (8.6.12)

We now assume that the structure constants Cabc in the third commutator in eq. (8.6.1)

vanish, in which case the coset G/H is called symmetric and the formalism describing the

interactions of NG bosons can be simplified. We refer the reader to subsection 8.9 where

a more general formalism allows us to also consider non-symmetric cosets. With Cabc = 0,

the Lie algebra defined by the relations (8.6.1) is invariant under the Z2 symmetry R

under which the broken generators change sign:

R(ti) = ti , R(ta) = −ta . (8.6.13)

We clearly have R(γ) = γ−1. Under G transformations

γ′ = gγh−1 . (8.6.14)

On the other hand

γ′−1 =R(γ′) = R(g)R(γ)R(h−1) = R(g)γ−1h−1

=⇒ γ′ = hγR(g)−1 .
(8.6.15)
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Using both eqs. (8.6.14) and (8.6.15), we see that

U ′ ≡ γ′2 = gγh−1hγR(g)−1 = g UR(g)−1 . (8.6.16)

In other words, while γ does not transform linearly under transformations of G, its square

U = γ2 does. This is a significant simplification, because it allows us to no longer worry

of the complicated factor h(x).

We have found that an EFT for the NG bosons, invariant under G, is best written when

the NG bosons are repackaged in the matrix U . Let us see which kind of invariant terms

we can write using U and U †. Let us first focus on potential terms, i.e. no derivatives.

Since R(g) ≠ g, terms of the form Un or (U †)n are forbidden, the only allowed invariant

terms being trace of operators proportional to U †U . But U †U = 1, so no potential term

is indeed allowed! This should not come as a surprise. We know that NG bosons must be

massless. If a potential term would have been allowed, generally it would give a mass to

them. The absence of any potential could have been anticipated by the shift symmetry

(8.6.12), which is broken by any potential term. Non-trivial invariant operators can instead

be written using derivatives. The leading, two-derivative, term involving the NG bosons

and invariant under the symmetry (8.6.16) is

L =
f2
π

8
tr
(
∂µU∂

µU †
)
+ . . . , (8.6.17)

where fπ is a mass scale, related to the scale of spontaneous symmetry breaking, introduced

for dimensional reasons, and . . . stands for higher dimensional operators involving four or

higher number of derivatives. The expansion of the the matrices U and U † in powers

of ξa in eq. (8.6.17) allows us to find the explicit form for an infinite number of leading

interactions among the NG bosons, all fixed by a single term in the Lagrangian! The

relation between the fields ξa and the canonical NG fields πa defined in eq.(8.2.12) is

obtained by computing the form of the broken currents Ja
µ from eq.(8.6.17). Using the

trick of promoting a global symmetry to a local one, so that δϵL = −∂µϵJµ, we have,

δϵaL = f2
π∂µϵa∂

µξbTr t
atb + . . . = f2

π∂µϵ
a∂µξa + . . . ,⇒ Ja

µ = −f2
π∂µξ

a , (8.6.18)

where we have used the leading order transformation (8.6.12) for the ξ’s and taken Tr tatb =

δab. Matching eqs.(8.2.8) and (8.2.12) with eq.(8.6.18) and demanding that the kinetic

term (8.6.17) is canonical in terms of the πa fields gives

ξa =
Fab

f2
π
πb . (8.6.19)

Since the NGB’s transform linearly under H transformations, the decay constant matrix

Fab should correspondingly be invariant under such transformations. This is in general a

strong constraint on the form of Fab.
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As we mentioned, all the interactions among the NG bosons, including their kinetic

terms, are efficiently encoded in the single term (8.6.17). This is the first of an infinite

series of higher derivative operators involving the matrices U . By expanding U in terms

of field fluctuations, we see that the effective coupling constant of all the interaction terms

that can arise from eq. (8.6.17) is E2/f2
π . For sufficiently low-energies E ≪ fπ, this

term is the most important one, all the higher derivative interactions being suppressed by

additional powers of E/fπ. The EFT Lagrangian (8.6.17) is of course non-renormalizable

and becomes unreliable when E ∼ fπ, in which case an alternative description is needed.

More precisely, the energy scale where we expect our effective theory to break down is

E = Λ ≃ 4πfπ, including the 4π factor coming from loops (analogue of the effective QED

expansion parameter e2/(16π2)). This is the energy scale where the non-NGBs degrees of

freedom that we have (implicitly) integrated out start to matter and must be included to

possibly embed the theory in a consistent UV complete model.

8.6.1 Adding Gauge Fields⋆

Other light fields might appear in the EFT for the NG bosons, most notably gauge fields.

Like the NG bosons, gauge particles can be naturally light or massless and their interac-

tions are governed by gauge invariance. In fact, gauge interactions in this formalism do not

pose any difficulty. Let us suppose that a subgroup Hg of G, distinct from H, is gauged.

A convenient way to proceed is to pretend that the whole group is gauged, namely take

Hg = G. Since U transforms linearly under G, the local symmetry is implemented in the

usual way discussed in chapter 6 for matter fields; one introduces a gauge field Aµ and

replace ordinary derivatives of U with covariant ones. Under a gauge transformation g we

have

Ag
µ = gAµg

−1 − i(∂µg)g
−1 , (8.6.20)

where Aµ = Ai
µti + Aa

µta is the full (non-canonically normalized) gauge field. Given the

transformation (8.6.16) and the above relation, the covariant derivative

DµU = ∂µU − iAµU + iUAR
µ , (8.6.21)

where AR
µ = Ai

µti −Aa
µta, transforms as DµUg = g(DµU)R(g)−1. Since the theory is now

invariant under local transformations of G, by a proper choice of g we might completely

remove the NGB’s, i.e. we can set U = 1. This is nothing else than the unitary gauge in

a non-linear realization of the symmetry. In this gauge the covariantization of eq.(8.6.17)

leads to mass terms for the gauge fields Aµ − AR
µ = 2Aa

µta, namely to those along the

broken direction, as expected from the Higgs mechanism.
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The generic case Hg ⊂ G can be deduced from the case Hg = G by simply switching

off the gauge fields that are not in the direction of Hg. Denoting by tα̂ the generators of

G that are gauged, in general we have

tα̂ = gα̂αt
α (8.6.22)

where gα̂α are the gauge coupling constants associated to the gauging, all different in the

most general case. We now set

Aαµ = gα̂αA
α̂
µ , (8.6.23)

where Aα̂µ are the actual dynamical gauge fields. In the unitary gauge, as expected, only

the gauge fields along the broken directions get a mass with the corresponding NGB’s

being eaten by them. Notice that gauging a subgroup of Hg explicitly breaks the global

symmetry G, since it determines a specific direction in field space. Taking into account

the normalization (8.6.19) of the broken generators, the gauge field mass matrix reads

µ2
α̂β̂

= FacFad gα̂c gβ̂d . (8.6.24)

This relation is the generalization of eq. (8.4.8). The latter only applies for weakly coupled

descriptions of the spontaneous symmetry breaking in terms of free fields.

8.7 SU(3)V × SU(3)A → SU(3)V : Mesons in QCD⋆

Consider QCD with three active quarks (say, the up, down and strange quark) in the limit

in which they are all massless:

LQCD = −1

4
Ga

µνG
µν
a +Qi/DQ , (8.7.1)

where Q = (u d s)t.6 In addition to the SU(3)c gauge (color) symmetry, the Lagrangian

(8.7.1) is invariant under an additional SU(3)V ×SU(3)A global (flavour) symmety acting

on Q as

Q→ exp(iθVa λa + iθAa λaγ5)Q , (8.7.2)

where λa are the SU(3) Gell-Mann matrices, normalized such that trλaλb = δab/2 in the

fundamental representation. At sufficiently low energies, when the QCD coupling constant

becomes strong, a quark bilinear gets a non-vanishing vacuum expectation value:

⟨QiQj⟩ = Λ̂3δij , (8.7.3)

6The analysis in this section closely follows section 19.7 of ref. [2].
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that breaks G = SU(3)V × SU(3)A down to H = SU(3)V . Here Λ̂ is the scale where the

chiral symmetry breakdown occurs. The eight NG bosons are encoded in the matrix field

γ(x) = eiλ
aξa(x) . (8.7.4)

The SU(3)V unbroken symmetry fixes the parameters Fab to be proportional to the iden-

tity. We take Fab ≡ δabfπ in eq.(8.6.19) and write the 8 NG bosons as

λaξa =
1

fπ

⎛

⎜⎜⎝

1√
2
π0 +

1√
6
η0 π+ K+

π− − 1√
2
π0 +

1√
6
η0 K0

K̄− K̄0 −
√

2
3η

0

⎞

⎟⎟⎠ , (8.7.5)

where fπ is identified with the pion decay constant: fπ ≃ 92 MeV. With this normalization

the 8 spin zero mesons π±, π0, etc. are all canonically normalized.

The commutator of two vector or two axial transformations is a vector transformation,

while the commutator of a vector and axial transformation is an axial transformation. The

schematic commutation relations for SU(3)V × SU(3)A are then [V, V ] = V , [V,A] = A,

[A,A] = V , where V and A schematically represent the SU(3)V and SU(3)A generators.

This is a symmetric coset space, being this algebra invariant under the automorphism

action V → V , A → −A. We can also construct L and R transformations defined as

V = (L + R)/2, A = (L − R)/2, under which the above automorphism exchanges L and

R: L↔ R. According to the general results of section 8.6, the matrix U = γ2 transforms

homogeneously under g. We have7

U → RUL† , (8.7.6)

with obvious notation. In other words, U transforms as a (3, 3̄) representation of SU(3)R×
SU(3)L. Correspondingly, the kinetic terms and leading interactions among the 8 mesons

π, K and η are collected in the single term (8.6.17). As we have seen in the previous

section, the effective field theory is expected to break down at E = Λ ≃ 4πfπ ∼ 1 GeV.

It is natural to assume that Λ ≃ Λ̂, the scale where chiral symmetry breaking occurs.

This scale is related to the scale ΛQCD where quarks confine (confinement scale), but it

is not the same scale, the chiral symmetry breaking scale being slightly higher than the

confinement one. They are also conceptually different. In fact, there exist vacua in gauge

(supersymmetric) theories where it is believed that quarks confine but no chiral symmetry

breaking occurs.

7There is actually no way to distinguish an SU(3)L from an SU(3)R transformation when acting on a

3× 3 matrix such as U . Strictly speaking, we should write U as a 6× 6 matrix, containing U and U†, to

properly distinguish the two SU(3)’s. In doing that, one gets eq. (8.7.6).
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In the real world, of course, the up, down and strange quarks are not massless and the

spin zero mesons π, K and η are not exact NG bosons. The two things are related. The

actual up, down and strange masses explicitly break the SU(3)V × SU(3)A symmetry,

but are small enough, compared to Λ, to be considered as a perturbation of the QCD

Lagrangian (8.7.1) (this would not be the case for the charm, bottom and top, that are all

heavier than Λ). We can get the relation between the quark and meson masses by using

the following trick. We formally promote the quark mass term

M =

⎛

⎜⎜⎝

mu 0 0

0 md 0

0 0 ms

⎞

⎟⎟⎠ , (8.7.7)

to be an external source that transforms under SU(3)L×SU(3)R as M → LMR†, so that

the term Q̄LMQR + h.c. is made invariant. We have morally promoted the mass term to

a so called spurion field, whose vacuum expectation value coincides with the mass matrix

M and whose dynamics is frozen. Spurions are often used in QFT to formally restore

explicitly broken symmetries. In so doing, one proceeds in the computation demanding

the full symmetry, and only at the end of the computation one plugs back the original form

of the breaking term into the spurion field. This is a very efficient way to make manifest

how breaking terms affect physical quantities. Thanks to this trick, at low-energies we

can construct SU(3)L × SU(3)R invariant terms using both U and M . If M is small, we

can consider terms linear in M only. We simply have

Lm = cf3
πtrUM + h.c. , (8.7.8)

where c is an undetermined dimensionless coefficient. By plugging in eq. (8.7.8) the actual

form of the NG fields (8.7.5) and of the mass term (8.7.7) we get, after some simple algebra:

m2
π± = C(mu +md) ,

m2
K± = C(mu +ms) ,

m2
K0 = C(md +ms) ,

(8.7.9)

where C = 2cfπ. The π0 and η0 mix with each other. Expanding for mu,d ≪ ms we get

m2
π0 ≃ C(mu +md) ,

m2
η ≃ C

4ms +mu +md

3
.

(8.7.10)

It is surprising that using symmetries only we can fix the meson masses in terms of

the quark masses and one unknown coefficient C. The above relations are a particular
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example of eq. (8.3.9), showing that in general the masses of the pseudo NG bosons

are linearly dependent on the source of the symmetry breaking violating term in the

Lagrangian. In deriving eqs. (8.7.9) and (8.7.10) we have actually neglected another

relevant source of explicit breaking of the SU(3)L×SU(3)R symmetry, given by the electric

charge. As explained in section 8.6, in this EFT framework electromagnetic interactions

are introduced by identifying a proper U(1) subgroup and gauge it. This is a subgroup

of the unbroken SU(3)V , and its explicit form is found by looking at the infinitesimal

transformations of the quark fields Q. We have δϵ,EMQ = iϵQelQ, where

Qel =

⎛

⎜⎜⎝

2
3 0 0

0 −1
3 0

0 0 −1
3

⎞

⎟⎟⎠ , (8.7.11)

according to the actual electric charges of the up, down and strange quarks. We therefore

get the leading order Lagrangian

LKin+γ =
f2
π

4
tr
(
DµUDµU †

)
− 1

4
FµνF

µν +
(
cf3
πtrUM + h.c.

)
, (8.7.12)

with

DµU = ∂µU + ieQelUAµ − ieUQelAµ . (8.7.13)

It is straightforward to check that eq. (8.7.12) contains the expected interactions of the

QED form for the charged mesons π± and K±. These interactions, at the quantum level,

contribute to the mass of the charged mesons by an amount ∆el, which is the same, at

leading order, for π± and K±, thanks to the SU(3)V global symmetry. Eventually, the

effect of the QED interactions is to shift the charged meson masses in eq. (8.7.10) by this

amount ∆el:

m2
π± → m2

π± +∆el,

m2
K± → m2

K± +∆el .
(8.7.14)

The neutral meson masses, at this order, are clearly unaffected by QED interactions.

There are various ways in which the mass formulas (8.7.9), (8.7.10) and (8.7.14) can be

used. For instance, the following relation holds, independently of C, ∆el and the quark

masses:

3m2
η + 2m2

π± −m2
π0 = 2m2

K± + 2m2
K0 (8.7.15)

and it is experimentally very well reproduced. Alternatively, we might use the meson

masses as experimental input parameters to compute the quark masses or, better, their
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ratios. One has

mu

ms
=

2m2
π0 −m2

π± +m2
K± −m2

K0

m2
K± +m2

K0 −m2
π±

≃ 0.027 ,

md

ms
=

m2
π± +m2

K0 −m2
K±

m2
K± +m2

K0 −m2
π±

≃ 0.050 ,

(8.7.16)

where we have inserted in the last relation the approximate masses for the spin zero

mesons.

The actual global symmetry of the QCD Lagrangian (8.7.1) is U(3)V × U(3)A, rather

than SU(3)V × SU(3)A, since the U(1)V × U(1)A transformations

Q→ exp(iθV + iθAγ5)Q (8.7.17)

are a symmetry of (8.7.1). The U(1)V symmetry is nothing else than the U(1) baryon

number and is unbroken, while U(1)A is manifestly broken by the quark condensate in

eq. (8.7.3). Correspondingly, we should have a ninth pseudo NG boson, called η′. It can

be shown, by adding the η′ to the matrix field (8.7.4), that its mass mη′ is bounded to be

mη′ ≤
√
3mπ. But no such particle has been observed within this range of energies. This

puzzle, denoted the U(1)A problem, has been solved by noticing that the U(1)A symmetry

is explicitly broken – by an amount larger than the explicit breaking of the quark masses

– by instantons, non-perturbative effects that are outside the content of these lectures.

The actual η′ has indeed a much larger mass, mη′ ≃ 960 MeV.

8.8 SO(5)→ SO(4): A Composite Higgs?⋆⋆

The example that follows is a bit more exotic and refers to the electroweak sector of the

Standard Model (SM). We have briefly seen in section 7.5 that scalar masses are unnatural,

in the sense that they are quadratically sensitive to UV physics that push their values to

that scale. This problem clearly applies to elementary scalars, including the Higgs boson

in the SM. But what if the Higgs is not elementary, but rather a composite particle, very

much like the pion? We do not have a hierarchy problem for the pion mass, since we

know that this particle is composite and at some energies of order ΛQCD, “diffuse” in

its quark constituents. Moreover, pions are actually naturally lighter than ΛQCD itself

because, as we have extensively seen in the previous subsection, are pseudo NG bosons of

an approximate global symmetry.

Before developing on this idea of considering the Higgs particle as a pseudo NG boson

of some spontaneously broken global symmetry, it is useful to recall the symmetries of the
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standard, elementary Higgs Lagrangian, in the SM. In the global limit in which we switch

off the SU(2)L × U(1)Y gauge couplings, the SM Higgs sector is

LSM
H = (∂µH)†(∂µH) +m2H†H − λ

2
(H†H)2 , (8.8.1)

where H is an SU(2)L doublet of the form

H =
1√
2

(
h2 + ih1

h4 − ih3

)

. (8.8.2)

A closer look at eq. (8.8.1) reveals that the Higgs Lagrangian is invariant under an SO(4),

rather than SU(2)L, global symmetry. This is manifest if we recast the four real Higgs

components hi (i = 1, 2, 3, 4) in a 4-plet and notice that eq. (8.8.1) is invariant under

the transformations hi → Oijhj , with O ∈ SO(4). It is actually more convenient to

exploit the local isomorphism of SO(4) with SU(2)×SU(2). The fundamental 4 of SO(4)

becomes a bidoublet (2,2) of SU(2)×SU(2). One of the two SU(2) is identified with the

original SU(2)L, and we denote by SU(2)R the other one. We can easily write the SO(4)

generators in the SU(2)L × SU(2)R basis. The 6 anti-symmetric hermitian generators of

SO(4) are proportional to

tabij = −tbaij = δai δ
b
j − δbi δaj , (8.8.3)

where a, b = 1, . . . , 4 label the generators and i, j their matrix components. A simple check

of the algebra reveals that the combinations

t1L = − i

2
(t23 + t14), t2L = − i

2
(t31 + t24), t3L = − i

2
(t12 + t34),

t1R = − i

2
(t23 − t14), t2R = − i

2
(t31 − t24), t3R = − i

2
(t12 − t34),

(8.8.4)

satisfy the commutation relations of the SU(2)L and SU(2)R algebras, respectively. The

action of SU(2)L×SU(2)R is best seen by writing explicitly the Higgs field as a bidoublet

using the 2× 2 matrices σµ = (1, iσk) (k = 1, 2, 3):

HBD =
h412 + ihkσk

2
=

1

2

(
h4 + ih3 h2 + ih1

−h2 + ih1 h4 − ih3

)

. (8.8.5)

Under SU(2)L × SU(2)R, the bidoublet (8.8.5) transforms as

HBD → gLHBDg
†
R , (8.8.6)

with gL ∈ SU(2)L, gR ∈ SU(2)R. It is manifest from eq. (8.8.6) that when the Higgs field

develops a non-vanishing VEV, say ⟨h4⟩ ≡ v ≠ 0, i.e. ⟨HBD⟩ ∝ 12, the SU(2)L × SU(2)R
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global symmetry is broken to the diagonal SU(2)c symmetry, with gL = gR. This unbroken

SU(2)c global symmetry is called custodial symmetry and plays an important role in

establishing that the W and Z boson mass ratio at tree-level is

m2
Z

m2
W

=
g2 + g′2

g2
, (8.8.7)

where g and g′ are the SU(2)L and U(1)Y gauge coupling constants. In this formalism,

the gauge fields are introduced by gauging the whole SU(2)L global group and a subgroup

of SU(2)R, along the σ3 generator, which is identified with the U(1)Y symmetry. The full,

gauged, Higgs Lagrangian reads

LSM
H = tr (DµHBD)

†(DµHBD) +m2trH†
BDHBD −

λ

2
tr (H†

BDHBD)
2 , (8.8.8)

where

DµHBD = ∂µHBD − igWL
µ HBD + ig′HBDW

R
µ , (8.8.9)

and

WL
µ =

1

2
σiW

i
µ , WR

µ =
1

2
σ3Bµ . (8.8.10)

The custodial SU(2)c symmetry is broken by the hypercharge coupling g′ only.8 If we

set g′ = 0, the Lagrangian (8.8.8) is invariant under SU(2)L × SU(2)R global transforma-

tions, provided we rotate WL
µ → gLWL

µ g
†
L. The 3 would-be NG bosons associated to the

SU(2)L×SU(2)R → SU(2)c breaking are all eaten by the WL’s, and SU(2)c ensures that

the 3 vector bosons all have equal masses mW = gv/2. When g′ ≠ 0, the custodial sym-

metry is broken and the 3 massive gauge fields no longer have equal masses. However, the

breaking pattern fixes their tree-level masses. From eq. (8.8.9) we immediately see that the

gauge bosons along the off-diagonal components of SU(2)L are unaffected by g′ and retain

their masses mW = gv/2. On the other hand, along the U(1)L×U(1)R gauged subgroups

in the σ3 directions, the gauge field along the unbroken symmetry remains massless (the

photon) and the orthogonal direction (the Z) gets a mass equal to mZ =
√

g2 + g′2v/2.

The importance of emphasizing the symmetries of the Higgs Lagrangian becomes clear

when we replace the Higgs field by an unspecified sector responsible for the electroweak

symmetry breaking. In this more general context, we would conclude that the W and Z

boson masses are given by eq. (8.6.24), with α̂ = 1L, 2L, 3L, 3R. More explicitly, we have

gaLb = gδab , gaRb = g′δabδa3 , (8.8.11)

8The fermion Yukawa couplings also break SU(2)c, but here for simplicity we are focusing on the bosonic

sector of the SM, neglecting fermions altogether.
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where a, b = 1, 2, 3 run over the broken SU(2) generators. The crucial point is played

by the custodial SU(2)c symmetry, that forces the Fab terms to be proportional to the

identity (like SU(3)V in the QCD example before): Fab = δabF . Putting all together, the

gauge boson mass matrix is of the form

µ2 = F 2

⎛

⎜⎜⎜⎜⎝

g2 0 0 0

0 g2 0 0

0 0 g2 gg′

0 0 gg′ g′2

⎞

⎟⎟⎟⎟⎠
. (8.8.12)

We automatically recover the SM gauge boson masses, in particular the relation (8.8.7),

with the identification F = v/2. We conclude by stressing that any sector replacing the

usual Higgs in the SM Lagrangian will give the correct leading order electroweak gauge

boson masses, provided it includes an SU(2)c global symmetry.

After this long, but necessary, digression on the SM, let us come back to our idea

of the Higgs field as a pseudo NG boson. Assuming this idea, the Higgs should be a

composite of certain constituents, analogues of quarks and gluons in QCD, that appears

at strong coupling at some energy scale. Being the analogue of the pion in QCD, the Higgs

particle is expected to be the lightest resonance of the strongly coupled theory, that might

include additional heavier resonances (in analogy with the hadron spectroscopy in QCD).

Of course, in contrast to the QCD case, we do not know here what is the UV theory

that becomes strongly coupled. But we have by now learned that a lot can be said about

the dynamics of pseudo NG bosons, by only specifying the group theoretical structure

of the spontaneous symmetry breaking pattern. As far as we are concerned, we have to

assume that the UV theory, no matter what it is, has an approximate global symmetry

group G, spontaneously broken to H, such that the NG bosons along the G/H directions

have the quantum numbers of the SM Higgs. Let us denote by fH the scale where this

breaking occurs. The unbroken group H should be large enough to accommodate an

SU(2)L×U(1)Y subgroup, that we will gauge and identify with the SM electroweak gauge

group. Finally, we might also demand that H includes the custodial symmetry SU(2)c

that ensures the correct tree-level mass ratio (8.8.7) between the SM gauge bosons. The

minimal groups that give rise to the 4 Higgs NG bosons and nothing else are

G = SU(3)→ H = SU(2)× U(1) ,

G = SO(5)→ H = SO(4) ∼= SU(2)L × SU(2)R .
(8.8.13)

This is understood by looking at how the adjoint representations of SU(3) and SO(5)

182



decompose under the breaking pattern above. We have

8→ 30 ⊕ 10 ⊕ 21/2 ⊕ 2̄−1/2 ,

10→ 6⊕ 4 = (1,3) ⊕ (3,1) ⊕ (2,2) .
(8.8.14)

The subscript in the first line of eq. (8.8.14) refers to the U(1) charge and in the sec-

ond line we have reported the decomposition in terms of SO(4) and SU(2)L × SU(2)R

representations, respectively. The broken generators in the SU(3) case transform as the

last two terms in the first line of eq. (8.8.14), and the corresponding NG bosons form a

complex doublet of SU(2). The broken generators in the SO(5) case transform as the last

term in the second line of eq. (8.8.14), and the corresponding NG bosons form a 4-plet of

SO(4) or a bidoublet of SU(2)L×SU(2)R. Both NG bosons have the quantum numbers of

the ordinary Higgs field. However, the SU(3)→ SU(2) case does not include the SU(2)c

custodial symmetry, since the only unbroken SU(2) must be the SU(2)L group. We then

focus on the SO(5)→ SO(4) case in the following.

The SO(5) generators are as in eq. (8.8.3), with the indices a, b, i, j running now from

1 to 5, rather than from 1 to 4. The SO(4) subgroup can be taken to be the one generated

by the matrices (8.8.4), with the understanding that they are now 5× 5 matrices with an

additional row and column of zeros. The remaining SO(5)/SO(4) broken generators are

given by

ta = − i√
2
ta5, a = 1, 2, 3, 4 . (8.8.15)

The 4 NG bosons ha are encoded as usual in the matrix

γ = e
i
√
2hata

fH , (8.8.16)

where the
√
2 factor arises from our choice of normalizations of the SO(5) generators.

It is straightforward to verify that G/H is a symmetric coset space, invariant under the

automorphism (8.6.13), with ti ∈ SO(4) (i = 1, . . . , 6) and ta ∈ SO(5)/SO(4) (a =

1, . . . , 4). The matrix U = γ2 transforms homogeneously under SO(5) transformations, as

in eq. (8.6.16). For a generic gauging, the covariant derivative for U is given in eq.(8.6.21).

In our case, the gauging is all within H, so that Aa
µ all vanish and AR = A. The covariant

derivative (8.6.21) reduces to (now for canonically normalized gauge fields, including gauge

coupling constant factors)

DµU = ∂µU + i(gWL
µ + g′WR

µ )U − iU(gWL
µ + g′WR

µ ) , (8.8.17)

with

WL
µ =

3∑

α=1

tαLW
α
µ , WR

µ = t3RBµ . (8.8.18)
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The Higgs Lagrangian associated to this “composite Higgs” scenario is

LCH
H =

f2
H

16
tr(DµU)†DµU . (8.8.19)

The NG nature of the Higgs forbids a potential for H, in the limit in which the SO(5)

global symmetry is exact and only spontaneously broken to SO(4). But like SU(3)V in

the QCD case is broken by U(1)EM , the SO(5) symmetry is explicitly broken by the

SU(2)L × U(1)Y gauging9. This implies that a potential for the Higgs field, even if not

included at tree-level, will be generated by radiative effects. We will not elaborate more

on this idea, but if suffices to say here that when fermions are also included and coupled

to the Higgs matrix field U , electroweak symmetry breaking can in fact be induced at the

quantum level. When h4 ≠ 0, a straightforward computation shows that the Lagrangian

(8.8.19) gives rise to the following mass terms for the SM gauge fields:

m2
W =

1

4
g2f2

H sin2
( ⟨h4⟩
fH

)
, m2

Z =
1

4
(g2 + g′2)f2

H sin2
( ⟨h4⟩
fH

)
, m2

γ = 0 . (8.8.20)

As expected, thanks to the SU(2)c custodial symmetry, the mass ratio (8.8.7) is repro-

duced. We see that for ⟨h4⟩/fH → 0 we can expand the sin factor and recover the usual

SM formula for the W ’s and Z, where we identify

⟨h4⟩ = v ≡

√ √
2

2GF
≃ 246 GeV . (8.8.21)

This is the limit in which we push to very high energies the SO(5) → SO(4) breaking

pattern, but in so doing we recover the hierarchy problem. On the other hand, various

phenomenological bounds constrain the more natural limit ⟨h4⟩ ≃ fH , so that a little

tuning is needed to achieve a mild separation between ⟨h4⟩ and fH . Notice that away

from the SM limit fH → ∞, ⟨h4⟩ does not coincide with v, as defined in eq. (8.8.21).

From eq. (8.8.20), for finite fH , we get

v = fH sin
(⟨h4⟩
fH

)
. (8.8.22)

8.9 Effective Field Theories for Broken Symmetries: Generale Case⋆⋆

In this section we consider the general construction of the effective field theory of NG

bosons, discussed for the first time by Callan, Coleman, Wess and Zumino [25]. This

9SO(5) might also be broken by additional terms, such as the analogues of the quarks masses in QCD.

Without knowing the UV theory, we might for simplicity assume that there are no such terms.
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slightly more elaborated formalism allows to consider arbitrary symmetry breaking pat-

terns.

The analysis made in section 8.6 continues to be valid up to eq.(8.6.12) included. If

the coset is not symmetric, it is not particularly useful to consider the matrix U = γ2 and

a more elaborate analysis is needed. It is useful in this case to study the transformation

properties of the field combination γ−1∂µγ. By recalling the formula

eXY e−X = Y + [X,Y ] +
1

2!
[X, [X,Y ]] +

1

3!
[X, [X, [X,Y ]]] + . . . (8.9.1)

valid for arbitrary matrices X and Y , we see that the combination γ−1∂µγ is a field defined

in the algebra G of the group G. As such, it can be decomposed as

γ−1∂µγ = itaD
a
µ(x) + itiE

i
µ(x) , (8.9.2)

where necessarily Da
µ(x) = Dab(ξ(x))∂µξb(x), Ei

µ(x) = Eia(ξ(x))∂µξa(x), for some fields

Dab and Eia. Under a global transformation g ∈ G we clearly have

(gγ)−1∂µ(gγ) = γ−1∂µγ . (8.9.3)

On the other hand gγ = γ′h and hence, after multiplication by h−1 to the right, we get

γ−1′∂µγ
′ = h(γ−1∂µγ)h

−1 − (∂µh)h
−1 . (8.9.4)

Using the decomposition (8.9.2) for γ′ and identifying both sides, we get the transforma-

tions of Da
µ and Ei

µ under global G transformations:

taD
a
µ(ξ
′) = htah

−1Da
µ(ξ) = taRab(h)D

b
µ(ξ) ,

tiE
i
µ(ξ
′) = htih

−1Ei
µ(ξ) + i(∂µh)h

−1 .
(8.9.5)

Since H is a subgroup of G, we have

htih
−1 = Rij(h)tj , (∂µh)h

−1 = itiRia(h)∂µξa(x) , (8.9.6)

and thus

Da
µ(ξ
′) = Rab(h)D

b
µ(ξ) ,

Ei
µ(ξ
′) = Rij(h)E

j
µ(ξ)−Ria(h)∂µξa(x) .

(8.9.7)

Under global G transformations, the factors Da
µ transform linearly, while the factors Ei

µ

transform non-linearly like a gauge field. We can in fact use Ei
µ to build covariant deriva-

tives for φ̃. From eqs. (8.6.7) and (8.6.8), we get that under G transformations

∂µφ̃
′ = (∂µh)φ̃+ h(∂µφ̃) = h

(
h−1(∂µh)φ̃+ ∂µφ̃

)
. (8.9.8)
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Defining

Dµφ̃ ≡ (∂µφ̃+ itiE
i
µ)φ̃ , (8.9.9)

we have

Dµφ̃
′ = hDµφ̃ . (8.9.10)

The symmetries constrain the NG bosons to appear in the low-energy Lagrangian only

through the combinations Da
µ and Ei

µ in derivative interactions. We conclude that any

Lagrangian invariant under H transformations and constructed with Da
µ, φ̃ and their

covariant derivatives, will automatically be invariant under the whole group G. Invariant

terms can also be constructed using the “field strength”

Fµν(E) = ∂µEν − ∂νEµ + [Eµ, Eν ] (8.9.11)

and derivatives thereof, keeping in mind that not all invariants constructed in this way

are independent of each other.

The leading order term encoding the NGB kinetic terms is

L ⊃ 1

2
F 2
abD

a
µD

b
µ , (8.9.12)

where Da
µ = ∂µξa + . . .. As we have seen in section 8.6, the linearly realized symmetry H

constrains the coefficients F 2
ab.

The above formalism can easily be extended when a subgroup Hg is gauged. The

physical considerations are clearly the same as discussed in section 8.6. Let us pretend

that the whole group G is gauged and only at the end recover the original theory by

setting to zero the gauge fields not in Hg. One can check that all our previous results,

until eq. (8.9.1) included, are formally still valid, provided the obvious understanding that

now the G transformations are x-dependent. The G invariant field combination to consider

now, analogue of γ−1∂µγ, is10

γ−1Dµγ ≡ γ−1(∂µ − itαAαµ)γ , (8.9.13)

so that the inhomogeneous term in the gauge field transformation cancels the analogue

term coming from ∂µg. The quantity γ−1Dµγ is also defined in the algebra G, so we have

γ−1Dµγ ≡ itaD̂
a
µ(x) + itiÊ

i
µ(x) , (8.9.14)

where D̂a
µ and Êi

µ are the gauged versions of the fields Da
µ and Ei

µ defined in eq. (8.9.2),

which now include the gauge fields Aαµ. Following the same steps as above, we immediately

10In order not to confuse the group element g with the gauge coupling constant g, we adopt here a

non-canonical normalization for the gauge fields Aα
µ .
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get

(γ−1Dµγ)
′ = h(x)(γ−1Dµγ)h

−1(x)− ∂µh(x)h−1(x) . (8.9.15)

Correspondingly, the relations (8.9.5) are valid for D̂a
µ and Êi

µ as well. As before, any

Lagrangian invariant under H transformations and constructed with D̂a
µ, φ̃ and their

covariant derivatives, will automatically be invariant under the whole gauge group G. In

order to also construct H invariant operators involving the field strength Fµν = ∂µAν −
∂νAµ + [Aµ, Aν ], that transforms linearly under G as Fµν → gFµνg−1, we can define NG

boson-dependent field strengths

fµν = γ−1Fµνγ . (8.9.16)

The latter transform as fµν → hγ−1g−1gFµνg−1gγh−1 = hfµνh−1 under G and can be

used together with D̂a
µ, φ̃ and their associated operators constructed acting with covariant

derivatives. We can now set to zero the “spurionic” gauge field components that do not

belong to Hg. The leading order term (8.9.12) in the low-energy effective Lagrangian

becomes

L ⊃ 1

2
F 2
abD̂

a
µD̂

b
µ , (8.9.17)

where D̂a
µ = ∂µξa − gα̂aAα̂µ , with gα̂α as defined in eq.(8.6.22). As expected, the NGB’s

along the gauged directions are eaten by the gauge fields and their mass is given by

eq.(8.6.24).
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Chapter 9

Anomalies

There are different ways of regularizing a QFT. The best choice of regulator is the one

which keeps the maximum number of symmetries of the classical action unbroken. Cut-off

regularization, for instance, breaks gauge invariance and that’s why we prefer to work

in the somewhat more exotic DR, where instead gauge invariance is always manifestly

unbroken. It is also possible that there exists no regulator that preserves a given classical

symmetry. In this case we say that the symmetry is anomalous, namely the quantum

theory necessarily breaks it, independently of the choice of regulator.

Roughly speaking, anomalies can affect global or local symmetries. The latter case is

particularly important, because local symmetries are needed to decouple unphysical fields.

Indeed, anomalies in linearly realized local gauge symmetries lead to inconsistent theories.

Theories with anomalous global symmetries are instead consistent, yet the effect of the

anomaly can have important effects on the theories. We have already seen an example of

anomaly. In classically scale invariant theories, a scale dependence is typically generated

by quantum effects by means of a non-vanishing β-function. This kind of anomaly will

be briefly discussed in section 9.7. We will however mostly focus on global anomalies

associated to chiral currents and their related anomalies in local symmetries. Historically,

the first anomaly, discovered by Adler, Bell, and Jackiw [26, 27], was associated to the

non-conservation of the axial current in QCD. Among other things, the axial anomaly

resolved a puzzle related to the π0 → 2γ decay rate, predicted by effective Lagrangian

considerations to be about three orders of magnitude smaller than the observed one.

In the next section we will first study the basic anomaly associated to a global U(1)

chiral transformation using Feynman diagrams and then consider generalization to non-

abelian groups and to local symmetries.
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9.1 The U(1)A Chiral Anomaly from One-Loop Graphs⋆

The Lagrangian for a free Dirac fermion ψ is

L = iψ̄/∂ψ −mψ̄ψ , (9.1.1)

and is invariant under the vectorial U(1)V symmetry under which ψ → eiαψ, ψ̄ → ψ̄e−iα.

The associated conserved U(1)V current is

Jµ = ψ̄γµψ . (9.1.2)

If m = 0, as we assume from now on, the Lagrangian (9.1.1) is also invariant under the

axial U(1)A symmetry under which

ψ → eiαγ5ψ, ψ̄ → ψ̄eiαγ5 . (9.1.3)

The associated conserved U(1)A current is

Jµ
5 = ψ̄γµγ5ψ . (9.1.4)

While the classical U(1)V symmetry is quantum mechanically preserved and leads to Ward

identities as explained in section 4.4.2, it turns out that there is no way to keep the U(1)A

chiral symmetry at the quantum level. This is clear from a functional integral point of

view. An invariant theory not only requires an invariant action, but also an invariant

measure. And the functional measure is not invariant under the chiral transformation

(9.1.3) (see section 9.4 below for a detailed analysis). The U(1)A current is quantum

mechanically not conserved,

⟨∂µJµ
5 ⟩ = A(x) ≠ 0 , (9.1.5)

and we say that there is a U(1)A chiral anomaly given by A(x). We can probe the anomaly

by adding to the free fermion theory external spin one sources Kµ and Kµ
5 that couple to

Jµ and Jµ
5 , respectively:

Z[Kµ,Kµ
5 ] =

∫
DψDψ̄ ei

∫
d4x[L+KµJµ+Kµ5J

µ
5 ] . (9.1.6)

Anomalies were originally discovered by evaluating three-point functions between external

sources at one-loop level. They arise from loops of the internal fermion lines from current

correlations that involve the chiral matrix γ5. Despite these one-loop graphs are divergent

and would require a choice of regularization, their divergence (i.e. the anomaly) is finite.

Since we are only interested to the anomaly, we can proceed with the computation without

the need of introducing a regulator.
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We are then led to compute the three point functions between two vector currents Jµ

and one axial current Jµ
5 :

Γµνρ(x, y, z) =
iδZ

δKµ
5 (x)δK

ν(y)δKρ(z)

∣∣∣∣
K=K5=0

= ⟨Jµ
5 (x)J

ν(y)Jρ(z)⟩ , (9.1.7)

which in momentum space reads as

Γµνρ(k1, k2) ≡ ⟨Jµ,5(−k1 − k2)Jν(k1)Jρ(k2)⟩ (9.1.8)

where, with some abuse of notation, we denote the Fourier transform with the same symbol

of the corresponding term. The would-be conservation of the two currents, ∂µJµ = ∂µJ
µ
5 =

0, would imply at the quantum level the relations

(k1 + k2)
µΓµνρ = kν1Γµνρ = kρ2Γµνρ = 0 . (9.1.9)

No contact terms arise in eqs.(9.1.9), because the axial and vector currents are classically

invariant under the U(1)V × U(1)A transformations. As we will see, due to the anomaly,

it turns out to be impossible to impose all three conditions (9.1.9) simultaneously.

The two diagrams in fig. 9.1 contribute at one-loop level to Γµνρ. They give

Γµνρ(k1, k2) = −
∫

d4p

(2π)4
tr

(
γµγ5S(p + a+ k)γρS(p+ a+ k1)γνS(p + a) +

γµγ5S(p + b+ k)γνS(p+ b+ k2)γρS(p + b)

)
, (9.1.10)

where k = k1 + k2 and S(p) = /p/p2 is the free fermion propagator for a massless fermion.

In eq. (9.1.10) a and b are arbitrary constant vectors, whose relevance will be clear in the

following. Let us first compute the divergence of the axial current, kµΓµνρ. It is convenient

to write

S(p+a) /k S(p+a+k) = S(p+a)(/p+/a+/k−/p−/a)S(p+a+k) = S(p+a)−S(p+a+k) , (9.1.11)

so that

kµΓµνρ(k1, k2) =

∫
d4p

(2π)4

[
fρν(p, b+ k2, b+ k)− fρν(p, a, a+ k1)+ (ρ↔ ν, a↔ b, k1 ↔ k2)

]

(9.1.12)

where

fρν(p, a, b) ≡ tr
(
S(p+ a)γρS(p + b)γνγ5

)
= 4iϵγρων

pω(a− b)γ + aγbω
(p + a)2(p+ b)2

. (9.1.13)

Noticing that fρν(p+ c, a, b) = fρν(p, a+ c, b+ c), the second term in eq. (9.1.12) becomes
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µ,−k1 − k2

ν, k1

ρ, k2

p+ a

p+ a+ k1

p+ a+ k1 + k2

+

µ,−k1 − k2

ρ, k2

ν, k1

p+ b

p+ b+ k2

p+ b+ k1 + k2

Figure 9.1: One-loop graphs contributing to the anomaly. All external momenta are

incoming. The wavy and dashed lines represent the external vector and axial sources,

respectively.

identical to the first one by shifting the virtual momentum p → p + b − a + k2, giving

naively kµΓµνρ = 0. However, these expressions are divergent and momentum shift is not

allowed. Indeed, for a generic function f(x), we have
∫ ∞

−∞
dx
[
f(x+ a)− f(x)

]
=

∫ ∞

−∞
dx
[
af ′(x) + . . .

]
= a

[
f(∞)− f(−∞)

]
+ . . . . (9.1.14)

Equation (9.1.14) vanishes if f(±∞) = f ′(±∞) = . . . = 0, conditions automatically

satisfied for convergent integrals, but not for divergent ones. In the case at hand, the

analogue of f is p3fρν and fρν ∼ 1/p3, so f(±∞) ≠ 0. The integral is governed by the

asymptotic behaviour of f and thus it is easy to evaluate. Rotating the virtual momentum

p to euclidean values and applying Stokes theorem, we have

i

∫
d4pE
(2π)4

[
fρν(pE + k, a, b) − fρν(pE , a, b)

]
=

i

(2π)4
lim

pE→∞

∫
kµpE,µp

2
Efρν(pE)dΩ4

=
i

(2π)4

∫
kµp

µ
Ep

2
E
4iϵγρωνkω(a− b)γpωE

(p2E)
2

dΩ4 =
Ω4

(2π)4
ϵγρωνk

ω(a− b)γ , (9.1.15)

where Ω4 = 2π2 is the volume of the unit four-sphere and in the last relation we have used

SO(4) invariance to write
∫

pµEp
ω
Ef(p

2
E)dΩ4 = −

δµω

4
Ω4 p

2
E f(p2E) . (9.1.16)

Using eq. (9.1.15), the derivative of the axial current is easily computed:

kµΓµνρ(k1, k2) =
1

8π2
ϵγρων

[
(k2 + b− a)ω(−k1)γ + (k1 + a− b)ωkγ2

]

=
1

8π2
ϵγρων(k1 − k2 +∆)ω(k1 + k2)

γ , (9.1.17)

191



with∆ ≡ a−b. It is now clear why we have introduced the otherwise redundant parameters

a and b. In a convergent expression, they would trivially be reabsorbed in a shift of the

virtual momentum p, but in the case at hand the final expression turns out to depend

on their difference ∆. Being ∆ arbitrary, one could choose ∆ = k2 − k1, so that the

“anomalous” term (9.1.17) would cancel. However, care has to be paid on the divergence

of the two vector currents Jν and Jρ. Proceeding exactly as before, we can compute

kν1Γµνρ(k1, k2) =
1

8π2
ϵγµωρ

[
(k1 + k2)

γ(b− a)ω − (b− a− k1)
ωkγ2

]

=
1

8π2
ϵγµωρk

ω
1 (∆+ k2)

γ , (9.1.18)

kρ2Γµνρ(k1, k2) =
1

8π2
ϵγµων

[
(k1 + k2)

γ(a− b)ω − (a− b− k2)
ωkγ1

]

=
1

8π2
ϵγµωνk

γ
2 (∆− k1)

ω . (9.1.19)

The choice ∆ = k2−k1 would then lead to the non-conservation of the two vector currents

Jν and Jρ. Since three-point functions between 3 vector currents do not lead to any

anomaly, we insist in having vanishing divergence for the vector currents. This uniquely

fixes ∆ = k1 − k2, opposite to the choice leading to the conservation of the axial current.

We can shift the anomalous term from one current to another, but what is important is

that there is no choice of∆ for which all three currents are conserved. Plugging∆ = k1−k2
in eq. (9.1.17) gives

kµΓµνρ(k1, k2) =
1

2π2
ϵγρωνk

ω
1 k

γ
2 . (9.1.20)

This is the final form of the chiral anomaly in momentum space. When Kµ are actual

external sources, the anomaly term in eq.(9.1.20) corresponds to a local counterterm for

these external sources and effectively do not lead to any non-conservation of currents in the

quantum theory. However, we can equally couple the free fermion theory to dynamical

gauge fields, gauging the U(1)V symmetry, in which case the vector currents Kµ are

nothing else than the U(1)V gauge fields Aµ (modulo a coupling constant factor, depending

on the normalization chosen). The gauging of U(1)V does not break the U(1)A symmetry,

that still remains at the classical level. In this case the wavy lines depicted in fig.9.1 are

actual photons and it is not difficult to reconstruct the local anomaly functional A(x)

entering in eq.(9.1.5). This should be such that, when taking two functional derivatives

with respect to the gauge fields Aµ gives, in momentum space, the term in the right hand

side of eq.(9.1.20). For canonically normalized gauge fields we get, in configuration space,

⟨∂µJµ
5 ⟩ = −

g2

16π2
ϵµνρσFµνFρσ . (9.1.21)

This is the standard form of the chiral anomaly. We see that when gauge fields are coupled

to the fermion field the chiral current is not conserved.
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It is not difficult to generalize the above analysis to non-abelian global symmetries.

The Lagrangian for N massless free Dirac fields ψi (i = 1, . . . , N) has an SU(N)V ×
SU(N)A × U(1)A × U(1)V global symmetry. The vector and axial currents read

Jαµ = ψ̄γµT
αψ, Jαµ5 = ψ̄γµγ5T

αψ, (9.1.22)

where Tα the U(N) generators, including the U(1) factor. We then evaluate the 3-point

function at one-loop level between two vector and 1 axial currents:

Γαβγµνρ (k1, k2) ≡ ⟨Jαµ5(−k1 − k2)J
β
ν (k1)J

γ
ρ (k2)⟩ . (9.1.23)

Similarly to eq. (9.1.10), we have

Γαβγµνρ (k1, k2) = −
∫

d4p

(2π)4

[

tr(TαT γT β)tr

(
γµγ5S(p + a+ k)γρS(p+ a+ k1)γνS(p + a)

+tr(TαT βT γ)γµγ5S(p+ b+ k)γνS(p+ b+ k2)γρS(p+ b)

)]

. (9.1.24)

Since the currents transform under a symmetry transformation, their classical conservation

turns in non-trivial WT identities, see eq.(4.4.13):

i∂µx1
⟨Jαµ5(x1)Jβν (x2)Jγρ (x3)⟩ = δ(x1 − x2)⟨δαJβν (x2)Jγρ (x3)⟩+ δ(x1 − x3)⟨Jβν (x2)δαJγρ (x3)⟩ ,

(9.1.25)

where, under an infinitesimal chiral transformation, δαJ
β
µ = CβαγJ

γ
µ5. By parity invariance

the two-point function between a vector and an axial current vanishes, the contact terms

in eq.(9.1.25) then vanish and in momentum space we simply have1

(k1 + k2)
µΓαβγµνρ = 0 . (9.1.26)

It is convenient to write

tr(TαT βT γ) =
1

2
tr({Tα, T β}T γ) + 1

2
tr([Tα, T β ]T γ) = Dαβγ +

i

2
Cαβγ , (9.1.27)

where in eq.(9.1.27) we have introduced the factor

Dαβγ ≡ 1

2
tr({Tα, T β}T γ) , (9.1.28)

symmetric under permutation of its indices. It can be shown that the terms proportional

to Cαβγ do not give rise to anomalies, which are found in the terms proportional to Dαβγ .

1Contact terms will not vanish when taking the divergence of currents in other correlators, such as three

vector currents.These terms are always proportional to the structure constants Cβαγ and can be shown to

not give rise to anomalies.
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These can be manipulated exactly as before and eventually lead to the same form of the

anomaly:

Γαβγµνρ (k1, k2)|ano. = DαβγΓµνρ(k1, k2)|ano. . (9.1.29)

As before, a non-conservation of currents in the quantum theory arises only when

we gauge some of the global symmetries. With non-abelian symmetries we have to pay

attention in the gauging procedure, because it can lead to an explicit violation of some

of the global symmetries. For example, gauging the whole U(N)V factor would break

SU(N)A, because the gauge coupling interaction is not SU(N)A invariant. The U(1)A

symmetry is however classical preserved, so we might consider the case in which the axial

current is given by U(1)A, while the vector currents are gauged and correspond to gauge

fields. In this case Tα can be taken equal to unity and we get

⟨∂µJµ
5 ⟩ = −

g2

4π2
ϵµνρσ∂µA

β
ν∂ρA

γ
σtr(T

βT γ) . (9.1.30)

where Dαβγ → tr(T βT γ). In the non-abelian case, additional one-loop (square and pen-

tagon) diagrams contribute to the anomaly and should be considered. When they are

summed to eq. (9.1.30), the whole non-abelian form of the field strength is reconstructed

and we get the final result

⟨∂µJµ
5 ⟩ = −

g2

16π2
ϵµνρσF β

µνF
γ
ρσtr(T

βT γ) . (9.1.31)

Eq.(9.1.31) is the generalization of eq.(9.1.21) for non-abelian gauge fields and, as expected,

boils down to eq.(9.1.21) in the abelian case with T β = T γ = 1.

In any given regularization, where all amplitudes are made finite and the shift in the

virtual momentum allowed, the anomaly would appear differently. For instance, in DR,

the anomaly arises from subtleties related to the definition of γ5 in d ≠ 4 dimensions

(see, e.g., ref. [1] for a computation of the anomaly in DR). In Pauli-Villars regularization,

where a heavy (PV) fermion is added, the anomaly is related to the explicit breaking

of the axial symmetry given by the PV fermion mass term. There is no regulator that

preserves at the same time the vector and axial symmetries and as a result an anomaly

always appears.

9.2 Gauge Anomalies⋆

As we have already mentioned, anomalies can also affect local symmetries, in which case

we refer to them as “gauge anomalies”. The latter can arise in chiral, parity non-invariant,

gauge theories, where left and right-moving fermions transform in representations of the
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gauge group that are not complex conjugate with each other. The simplest gauge anomaly

can be described by starting from the Lagrangian for a free chiral fermion ψL:

L = iψ̄L/∂ψL , (9.2.1)

invariant under U(1)L transformations ψL → eiαψL, ψ̄L → ψ̄Le−iα, with U(1)L current

Jµ = ψ̄LγµψL = ψ̄γµPLψ, with PL = (1 + γ5)/2 the chirality projector. The 3-point

function at one-loop level between three currents is

Γµνρ(k1, k2) = −
∫

d4p

(2π)4

[

tr

(
γµPLS(p + a+ k)γρPLS(p+ a+ k1)γνPLS(p + a)

+γµPLS(p+ b+ k)γνPLS(p + b+ k2)γρPLS(p+ b)

)]

. (9.2.2)

where Γµνρ(k1, k2) ≡ ⟨Jµ(−k1 − k2)Jν(k1)Jρ(k2)⟩. Since P 2
L = PL, eq.(9.2.2) turns into

a sum of a non-anomalous 3-point correlators with no γ5 factors and an anomalous one

with one insertion of γ5. The last term, modulo a factor 1/2 coming from PL, equals

eq.(9.1.10). We then get

kµΓµνρ(k1, k2) =
1

2

1

8π2
ϵγρων(k1 − k2 +∆)ω(k1 + k2)

γ , (9.2.3)

and similarly 1/2 of the divergences (9.1.18) and (9.1.19) for the J ν and J ρ currents.

Gauging the chiral theory (9.2.1) amounts to couple the above three currents to a U(1)

gauge field. Since the theory is chiral, there are no vector and axial currents, but only

left currents to couple to the gauge field. As a result, there is no choice of the factor

∆ that allows us to conserve all the three vector currents at the same time. Because of

permutation symmetry of the three identical external currents, we should choose ∆ so that

the anomaly is symmetric under the exchange of any of the three currents, as required by

Bose symmetry. This is achieved by taking

∆ = −1

3
(k1 − k2) , (9.2.4)

which gives an anomaly one-third smaller than the anomaly (9.1.21):

⟨∂µJµ⟩ = −1

2

g2

48π2
ϵµνρσFµνFρσ . (9.2.5)

This is the simplest form of a gauge anomaly. Such an anomaly is deadly for a theory.

The WI derived in section 4.4.3 no longer hold. In particular, the violation of eq.(4.4.44)

does not allow the decoupling of unphysical states. In scattering amplitudes the factor

Γµνρ(k1, k2) is multiplied either by polarizations of the external photons or by internal
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photon propagators when the triangular graph is embedded within a more complicated

Feynman graph. For external photons the computation of the divergence of one of the

gauge currents is equivalent to replace the photon polarization vector by its momentum,

i.e. to consider longitudinal photons. A non-vanishing result implies that these states do

not decouple. If the line is internal, the longitudinal photon runs into the loop, yet we

have a problem, because unitarity (the optical theorem) would imply their non-decoupling

and a violation of unitarity (at any scale). In other words, minimally coupling a U(1)

gauge field to a chiral fermion is quantum mechanically inconsistent.

Similar considerations can be generalized to multiple fermions and to non-abelian gauge

theories. We will not enter into the details of non-abelian gauge anomalies. It is sufficient

here to say that the key coefficient governing the anomaly is the factor Dαβγ defined in

eq.(9.1.28). When we have several fermions transforming in different representations r

of a gauge group G, the trace in Dαβγ should be taken over all fermions, each in the

corresponding representation r. Crucially, left-handed and right-handed fermions con-

tribute with an opposite sign to Dαβγ , due to the chiral nature of the gauge anomaly. A

gauge theory is non-anomalous if and only if in total Dαβγ = 0. The explicit form of the

non-abelian anomaly can be significantly constrained by demanding consistency with the

structure of the gauge group (see section 9.5 for some other detail) and cannot be written

in a covariant way in terms of field strengths only.

So far, we have only considered massless fermions. Fermion mass terms explicitly break

the axial symmetry (9.1.3), but it can easily be shown that they do not change the form

of the axial anomaly (9.1.30). In fact, left-handed and right-handed fermions contribute

the same to the axial anomaly, because the sign change due to the different chirality

of the fermions compensate their opposite charge with respect to the axial symmetry.

This explains why we got a non-vanishing axial anomaly starting from vector-like Dirac

fermions. The situation is different for gauge anomalies, that can receive a non-vanishing

contribution only from massless fermions. This is proved as follows. It is convenient to

consider all fermions as left-handed by defining, for each right-handed component ψR its

left-handed counterpart

ψc
L = Cψ⋆R , (9.2.6)

C being the matrix of charge conjugation in spinor space. If ψR transforms under a

representation rR of a gauge group G, ψc
L will transform as r⋆R. In the basis of left-handed

two-components spinors χi, a generic mass term reads

Lm = χt
iσ

2M̂ijχj + h.c. (9.2.7)

where i run over all the fermions in the theory and M̂ is a symmetric mass matrix. Let
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us focus on a subset of terms in eq. (9.2.7) coupling two left-handed fermion multiplets χ1

and χ2 in irreducible representations r1 and r2 of the group G, with dimr1 = dimr2:

Lm ⊃ χt
1σ

2Mχ2 + h.c. (9.2.8)

where M is a non-singular mass matrix. The term (9.2.8) is gauge-invariant if

− T t
1M = MT2 , (9.2.9)

where T1 and T2 are the generators in the representations r1 and r2. Eq. (9.2.9) implies

that −T t
1 and T2 are related by a similarity transformation, since −T t

1 = MT2M−1. Then

D1
αβγ =

1

2
tr{T1α, T1β}T1γ = (−1)3 1

2
tr{T t

2α, T
t
2β}T t

2γ = −D2
αβγ . (9.2.10)

The contribution to the gauge anomaly given by χ1 is then exactly cancelled by that of χ2.

Let us clarify this result with a couple of simple examples. Consider a U(1) gauge theory

with a Dirac fermion with charge q. In terms of left-handed fields, the Dirac fermion

consists of one left-handed fermion χ1 with charge q and its conjugate χ2 with charge −q
and admits the mass term mχ1σ2χ2 + h.c.. The total gauge anomaly is proportional to

+ q3 + (−q)3 = 0 . (9.2.11)

Similarly, Dirac fermions in any representation Tr of a gauge group consist of one left-

handed fermion multiplet in the representation Tr and its conjugate in the complex con-

jugate representation Tr̄ = −T t
r and thus do not lead to anomalies. In manifestly parity-

invariant theories the absence of anomalies is obvious since all currents are manifestly

vector-like (i.e no γ5 appears in a 4-component Dirac notation). Non-trivial anomalies can

only arise in non-parity-invariant theories, namely in so called chiral gauge theories, where

a fermion and its complex conjugate transform in representations of the gauge group that

are not complex conjugate of each other. The absence of anomalies in chiral gauge theories

requires a non-trivial cancellation between different fermion multiplets. The most impor-

tant example of a theory of this sort is the SM, where gauge anomalies cancel between

quarks and leptons, as we will see in the next section.

We can now come back to the fate of the U(1)A symmetry in QCD, mentioned at the

end of section 8.7. QCD with nf massless quarks has actually an SU(nf )V × SU(nf )A ×
U(1)V ×U(1)A global symmetry, spontaneously broken to SU(nf )V ×U(1)V by the quark

condensate. Let us compute the possible anomalies that we can have by looking at the

Dαβγ coefficients associated to the various groups. Since quarks are vector-like, the gauge

SU(3)3 anomalies all cancel. Anomalies with one SU(N) non-abelian current of any kind
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also manifestly vanish, because trT = 0. The only possible non-vanishing anomalies are

of the form SU(3)2×U(1)V and SU(3)2×U(1)A. In terms of left-handed quarks, a quark

and its conjugate have opposite charges with respect to U(1)V and equal charges with

respect to U(1)A, thus the SU(3)2 ×U(1)V anomaly vanishes while SU(3)2 ×U(1)A does

not. This is nothing else than the anomaly considered before in eq.(9.1.31), with Fα
µν

identified with the gluon field strengths. In QCD, then, the U(1)A symmetry, in addition

of being spontaneously broken by the condensate, is also explicitly broken by the anomaly.

The latter breaking is large when the theory becomes strongly coupled (due to instantons)

and is responsible for the absence of a light η′ in the QCD scalar meson spectrum.

Summarizing, we can have three qualitatively different scenarios:

• An anomaly involving three global currents → The theory is consistent, no real

effect, the global symmetry is preserved.

• An anomaly involving one global and two local currents→ The theory is consistent,

the global symmetry is broken.

• An anomaly involving three local currents → The theory is inconsistent.

9.3 A Relevant Example: Cancellation of Gauge Anomalies in the SM⋆

The SM gauge group is GSM = SU(3)×SU(2)×U(1). Its fermion content, in terms of left-

handed fields, is composed by three copies (generations) of the following representations:

(3,2) 1
6
+ (3̄,1)− 2

3
+ (3̄,1) 1

3
+ (1,2)− 1

2
+ (1,1)1 (9.3.1)

corresponding to the quark doublet, up quark singlet, down quark singlet, lepton doublet

and charged lepton singlet, respectively. In principle there can be ten possible kinds of

gauge anomalies, associated to all possible combinations of SU(3) SU(2) and U(1) currents

in the trangular graph. Five of them, where a non-abelian group factor (SU(3) or SU(2))

appears only once, SU(3)2×SU(2), SU(3)×SU(2)2, SU(3)×SU(2)×U(1), SU(3)×U(1)2

and SU(2) × U(1)2 are trivially vanishing, since for SU(n) groups the generators are

traceless: trT = 0. The SU(2)3 anomaly is also manifestly vanishing because for SU(2)

the symmetric factor Dαβγ vanishes. In the case at hand, with doublets only, this is easily

seen: Dαβγ = 1/2tr{tα, tβ}tγ = δαβtr tγ = 0. In the general case, Dαβγ vanishes because

all SU(2) representations are equivalent to their complex conjugates, namely there exists

a matrix A such that T t = T ⋆ = −ATA−1. Using this relation, one immediately sees that

Dαβγ = 0 for any representation.
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The remaining combinations SU(3)3, SU(3)2×U(1), SU(2)2×U(1) and U(1)3 have to

be checked. Let us then compute the values of the symmetric coefficients Dαβγ in each of

the above 4 cases and show that they always vanish. In order to distinguish the different

coefficients, we denote by a subscript c, w and Y the SU(3), SU(2) and U(1) factors,

respectively. It is enough to consider a single generation of quarks and doublets, because

the cancellation occurs generation per generation. Let us start with the SU(3)3 anomaly.

Only quarks contribute to it. We get

Dαβγ
ccc = 2Dαβγ

3
+Dαβγ

3̄
+Dαβγ

3̄
= 2Dαβγ

3
−Dαβγ

3
−Dαβγ

3
= 0 , (9.3.2)

using that Dαβγ
3̄

= −Dαβγ
3

. For SU(3)2 × U(1) we have

Dαβ
ccY = 2tr3 t

αtβ× 1

6
+tr3̄ t

αtβ×
(
− 2

3

)
+tr3̄ t

αtβ× 1

3
= tr3 t

αtβ
(1
3
− 2

3
+

1

3

)
= 0 , (9.3.3)

with tr3 tαtβ = tr3̄ t
αtβ. For SU(2)2 × U(1), only doublets contribute. We get

Dαβ
wwY = 3tr2 t

αtβ × 1

6
+ tr2 t

αtβ ×
(
− 1

2

)
= tr2 t

αtβ
(1
2
− 1

2

)
= 0 . (9.3.4)

For U(1)3 anomalies all quarks and leptons contribute and one gets

DY Y Y = 3× 2×
(1
6

)3
+ 3×

(
− 2

3

)3
+ 3×

(1
3

)3
+ 2×

(
− 1

2

)3
+ (1)3 = 0 . (9.3.5)

There is actually a fifth non-trivial anomaly to check, that arises when we couple the SM to

gravity. It is an anomaly involving a U(1) current and two energy-momentum tensors, and

it is called a mixed U(1)-gravitational anomaly.2 This anomaly is proportional to
∑

n qn,

where n runs over all fermions with charges qn. In the SM, the mixed U(1)-gravitational

anomaly is proportional to

3× 2× 1

6
+ 3×

(
− 2

3

)
+ 3× 1

3
+ 2×

(
− 1

2

)
+ 1 = 0 . (9.3.6)

Notice how the fermion charges nicely combine to give a vanishing result for all the anoma-

lies, in particular the U(1)3 and the mixed U(1)-gravitational ones.

The SM is then a chiral, anomaly-free gauge theory. More precisely, we have shown

that the SM is anomaly-free in the unbroken phase where all the gauge group is linearly

realized (i.e. no Higgs mechanism is at work). Since the anomaly does not depend on

the Higgs field, our results automatically imply that the SM is anomaly-free in the broken

phase as well. In particular, the unbroken gauge group SU(3) × U(1)EM is manifestly

anomaly-free being all currents vector-like.

2There also exist pure gravitational anomalies. These are vanishing in 4 space-time dimensions, but

can occur in 4n + 2 dimensions (n a non-negative integer). We will not discuss these anomalies, that are

beyond our course.
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9.4 Path Integral Derivation of the Chiral Anomaly⋆⋆

In the path-integral formulation of field theory, anomalies arise from the transformation

of the measure used to define the fermion path integral. We will consider in what follows

path-integral in euclidean space-time.

Let ψA(x) be a massless Dirac fermion defined on R4, in an arbitrary representation

R of a gauge group G (A = 1, . . . ,dimR). The minimal coupling of the fermion to the

gauge fields is described by the Lagrangian

L = ψ̄(x)Aiγ
µDA

µ B ψ
B(x) . (9.4.1)

The covariant derivative is given by

DA
µ B = ∂µδ

A
B +Aαµ T

A
α B , (9.4.2)

in terms of the gauge connection Aαµ and the anti-Hermitian generators TA
α B of the group

G in the representation R (α = 1, . . . ,dimG), with γµ satisfying the anticommutation

relations {γµ, γν} = 2δµν (µ, ν = 1, 2, 3, 4).

The classical Lagrangian (9.4.1) is invariant under the global chiral transformation

ψ → eiαγ5ψ, (9.4.3)

where γ5 =
∏4

µ=1 γµ, normalized so that γ25 = I, and α is a constant parameter. The

chiral current

Jµ
5 = ψ̄Aγ

µγ5ψ
A (9.4.4)

is classically conserved. At the quantum level, however, this conservation law can be

violated and turns into an anomalous WT identity. To derive it, we consider the quantum

effective action Γ defined by

e−Γ(A) =

∫
DψDψ̄ e−

∫
d4xL , (9.4.5)

and study its behavior under an infinitesimal chiral transformation of the fermions, with

a space-time-dependent parameter α(x), given by3

δαψ = iαγ5ψ , δαψ̄ = iαψ̄γ5 . (9.4.6)

Since the external gauge fields A are inert, the transformation (9.4.6) represents a redefi-

nition of dummy integration variables, and should not affect the effective action: δαΓ = 0.

3For simplicity of the notation, we omit the gauge index A in the following equations. It will be

reintroduced later on in this section.
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This statement carries however a non-trivial piece of information, since neither the clas-

sical action nor the integration measure is invariant under (9.4.6). The variation of the

classical action under (9.4.6) is non-vanishing only for non-constant α, and has the form

δα
∫
L =

∫
Jµ
5 ∂µα. The variation of the measure is instead always non-vanishing, be-

cause the transformation (9.4.6) leads to a non-trivial Jacobian factor, which has the

form δα[DψDψ̄] = exp{i
∫
αA}DψDψ̄, as we will see below. In total, the effective action

therefore transforms as

δαΓ =

∫
d4xα(x)

[
iA(x) + ⟨∂µJµ

5 (x)⟩
]
. (9.4.7)

The condition δαΓ = 0 then implies the anomalous WT identity:

⟨∂µJµ
5 ⟩ = −iA . (9.4.8)

In order to compute the anomaly A, we need to define the integration measure more

precisely. This is best done by considering the eigenfunctions of the Dirac operator i/D ≡
iγµDµ. Since the latter is Hermitian, the set of its eigenfunctions ψk(x) with eigenvalues

λk, defined by i/Dψn = λnψn, form an orthonormal and complete basis of spinor modes:
∫

d4xψ†a
k (x)ψa

l (x) = δk,l ,
∑

k

ψ†a
k (x)ψb

k(y) = δabδ(4)(x− y) , (9.4.9)

where we have made explicit the spinor indices a and b. The fermion fields ψ and ψ̄, which

are independent from each other in Euclidean space, can be decomposed as

ψ =
∑

k

akψk , ψ̄ =
∑

k

b̄kψ
†
k , (9.4.10)

so that the measure becomes

DψDψ̄ =
∏

k,l

dakdb̄l . (9.4.11)

Under the chiral transformation (9.4.6), we have

δαak = i

∫
d4x

∑

l

ψ†
kαγ5ψlal , δαb̄k = i

∫
d4x

∑

l

b̄lψ
†
l αγ5ψk , (9.4.12)

and the measure (9.4.11) transforms as

δα
[
DψDψ̄

]
=DψDψ̄ det(δkl + i

∫
d4xψ†

kαγ5ψl)
−2

=DψDψ̄ exp

{
− 2i

∑

k

∫
d4xψ†

kαγ5ψk +O(α2)

}
.

(9.4.13)
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For simplicity we can take α to be constant. This formal expression is ill-defined as it

stands, since it decomposes into a vanishing trace over spinor indices (tr γ5 = 0) times

an infinite sum over the modes (
∑

k 1 = ∞). A convenient way of regularizing it is to

introduce a gauge-invariant Gaussian cut-off. The anomaly A can then be defined as

A = −2 lim
β→0

∑

k

ψ†
kγ5e

−β(i/D)2ψk . (9.4.14)

Using the completeness relation in eq. (9.4.9), we can write

A = −2 lim
β→0

lim
y→x

Tr
[
γ5e
−β(i/D)2

]
δ(4)(x− y) = −2 lim

β→0

∫
d4k

(2π)4
Tr
[
γ5e
−β(/k+i/D)2

]
, (9.4.15)

where the trace is over the spinor and the gauge indices. By using the commutator

properties of the γ matrices, we can rewrite

(/k + i/D)2 = (k + iD)2 − 1

4
Fµν [γµ, γν ] . (9.4.16)

Rescaling the momentum k → k/
√
β, we get

A = −2 lim
β→0

1

β2

∫
d4k

(2π)4
Tr γ5e

−(k2+2i
√
βD·k−βD2−βF ) , (9.4.17)

where F ≡ Fµν [γµ, γν ]/4. The trace over spinor indices is vanishing unless at least two

factors of F (i.e. 4 γ’s) are included in the trace. In this way, we get two powers of β that

compensate for the overall factor 1/β2 in eq. (9.4.17). Hence, in the limit β → 0, we can

safely neglect the terms proportional to D · k and D2 in the exponential. In this way, we

finally get

A = − 1

16π2
ϵµνρσFα

µνF
β
ρσtr(TαTβ) . (9.4.18)

In Minkowski space, with ∂4 = −i∂0, and in terms of hermitian (rather than anti-

hermitian) generators and canonically normalized gauge fields (AT → −igAT ) the non-

conservation of the axial current takes the form

⟨∂µJµ
5 ⟩ = −

g2

16π2
ϵµνρσFα

µνF
β
ρσtr(TαTβ) . (9.4.19)

Anomalies in the chiral transformation (9.4.3) occur in any number of even space-

time dimensions (in odd-dimensional space-times, chirality is not defined, since there is

no analogue of the matrix γ5). The derivation of the anomaly reviewed here, due to

Fujikawa, is easily generalized to any number of dimensions. In 2n dimensions, we define

the chiral matrix γ2n+1 as γ2n+1 = in
∏2n

µ=1 γµ so that γ22n+1 = I for any n. All the steps

are essentially identical to the 4d case and we get the generalization of eq. (9.4.17):

A = 2 lim
β→0

1

βn

∫
d2nk

(2π)2n
Tr γ2n+1e

−(k2+2i
√
βD·k−βD2−iβF ) . (9.4.20)
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In 2n dimensions, spinors have 2n components, so we get for the anomaly

A = − 2

(4π)nn!
ϵµ1...µ2nFα1

µ1µ2
. . . Fαn

µ2n−1µ2n
tr(Tα1 . . . Tαn) . (9.4.21)

The anomaly (9.4.21) can more elegantly be rewritten in a compact form in terms of

differential two-forms. Let us introduce auxiliary anticommuting variables φ1, . . . ,φ2n

and define

F =
1

2
Fµνφ

µ ∧ φν . (9.4.22)

Then eq. (9.4.21) becomes simply

A = −2
∫
d2nφ tr eF/(2π) , (9.4.23)

where the integration over the auxiliary fermion variables φµ automatically selects the

correct number of field strengths F . In evaluating the integrated form of the anomaly,
∫
d2nxA, we can replace the auxiliary fermion variables φ by the differentials dxµ, so that

we have ∫
d2nxA = −2

∫
d2nx ch(F ) , (9.4.24)

where

ch(F ) = tr eF/(2π) (9.4.25)

is the so-called Chern character of the gauge connection. There is a deep connection

between anomalies and certain mathematical results that will not be discussed here.

9.5 The Wess-Zumino Consistency Conditions⋆⋆

In this section we will consider some more formal developments about anomalies. It is

convenient in this context to consider the effective action Γ(A) arising upon integration

of the fermions:

e−Γ(A) =

∫
DψDψ̄e−S(ψ,ψ̄,A) . (9.5.1)

In presence of an anomaly, Γ(A) is not gauge invariant. Indeed, under an infinitesimal

gauge transformation A→ A+Dϵ1

δϵ1Γ(A) =

∫
d4x

δΓ(A)

δAαµ
Dµϵ

α
1 = −

∫
d4xDµJ

µ
αϵ

α
1 ≡ −

∫
d4xAαϵ

α
1 = −

∫
d4x ϵα1FαΓ(A) ,

(9.5.2)

where the third equality defines the anomaly term Aα and we have defined the functional

operator

Fα = ∂µ
δ

δAαµ
+CαβγA

β
µ
δ

δAγµ
. (9.5.3)
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Under a further infinitesimal transformations, we have

δϵ2δϵ1Γ(A) =

∫
d4x

∫
d4y ϵβ2 (y)ϵ

α
1 (x)Fβ(y)Fα(x)Γ(A) . (9.5.4)

Due to the group structure, performing the commutators of the two infinitesimal transfor-

mations parametrized by ϵ1 and ϵ2 should be equivalent to perform a single infinitesimal

transformation with parameter [ϵ1, ϵ2], where ϵ1,2 = ϵα1,2Tα. In other words, we should

have

[δϵ1 , δϵ2 ]Γ(A) = δ[ϵ1,ϵ2]Γ(A) , (9.5.5)

identity that can easily be verified to hold in general. The relation (9.5.5) implies a

non-trivial condition for the anomaly, known as the Wess-Zumino consistency conditions:

Fα(x)Aβ(y)− Fβ(y)Aα(x) = −CαβγAγ(x)δ(x − y) . (9.5.6)

These conditions can be more conveniently expressed in terms of BRST transformations

by defining

G(ω, A) ≡
∫
d4xωα(x)Aα(x) . (9.5.7)

Equations (9.5.6) imply that G is BRST-invariant, namely

sG(ω, A) = 0 . (9.5.8)

This is easily shown by recalling the BRST transformations (6.3.3) of ω and A, according

to which

sG(ω, A) =

∫
d4x

(
− 1

2
Cαβγωβ(x)ωγ(x)Aα(x)

−ωα(x)
∫
d4y

δAα(x)

δAβµ(y)
(∂µωβ(y) + CβγδA

γ
µ(y)ωδ(y)

)
(9.5.9)

=

∫
d4xd4y

(
− 1

2
ωα(x)ωβ(y)

)[
δ(x− y)CαβγAγ(x) + Fα(x)Aβ(y)− Fβ(x)Aα(y)

]
,

which vanishes if eq. (9.5.6) is satisfied.

We have extensively seen in the previous sections that there is some arbitrariness in

computing anomalies, related to the fact that we can shift the latter from one current to

another. From an effective action point of view, this shift corresponds to the possibility of

adding local, non-gauge invariant, counter-terms to Γ(A) that change δϵΓ(A) and hence

the anomaly. The impossibility of keeping all currents conserved corresponds to the im-
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possibility of finding a local4 counter-term such that δϵΓ(A) = 0. We can now be more

precise exploiting eq. (9.5.8). If there existed a local functional of the gauge fields F (A),

such that G(ω, A) = sF (A), namely suppose that G(ω, A) would be BRST-exact, then the

anomaly would be cancelled by adding to Γ(A) the counter-term −F (A). Anomalies then

form an equivalence class. Two anomalies related by the addition of a local functional

F (A) are equivalent and belong to the same cohomology of the BRST operator s. Thanks

to the Wess-Zumino consistency conditions, it is possible to reconstruct the whole form

of the non-abelian anomaly by only knowing the terms quadratic in the gauge fields. The

procedure does not uniquely fix the anomaly since, as we have just said, the latter can be

changed by adding local counter-terms to the action.

We finally mention about the existence of an elegant formalism, known as the Stora-

Zumino descent equations, that allows, in any number of even dimensions, to get anomaly

functionals Aα that automatically satisfy the conditions (9.5.6). The descent equations

make also manifest the close relationship between chiral anomalies in 2n + 2 dimensions

and gauge anomalies in 2n dimensions.

9.6 ’t Hooft Anomaly Matching and the Wess-Zumino-Witten Term⋆

Asymptotically free gauge theories are strongly coupled in the IR and can give rise to con-

finement of its fermion constituents, like quarks in QCD. At low energies the propagating

degrees of freedom are bound states of the elementary high energy (UV) states, such as

mesons and hadrons in QCD. What is the fate at low energies of possible global anomalies

coming from the elementary constituents at high energy? t’Hooft has answered to this

question by arguing that anomalies must arise in the low energy effective theory as well.

For concreteness, let us consider a gauge theory coupled to fermions with local symmetry

Gs and global symmetry Gf and denote schematically by Dabc the associated anomaly

coefficients, where a, b, c = s, f . We assume that the theory in the IR becomes strongly

coupled. For the theory to be consistent Dsss = 0 so that no gauge anomalies arise. We

also have Dfss = 0, which means that we keep in Gf only the quantum global symmetries

of the theory, not the classical ones. For instance, in QCD we should not include U(1)A

in Gf . We can however have Dfff ≠ 0 since, as we have seen, no real effect occurs for

anomalies involving purely global currents. Although these anomalies do not lead to any

4Locality is crucial. By using non-local functionals, any anomaly can be cancelled. For instance, a

gauge U(1)3 anomaly would be cancelled by adding to Γ(A) the non-local functional

− F (A) =
g2

96π2

1
✷
∂µAµϵ

αβγδFαβFγδ . (9.5.10)

.
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effect, ’t Hooft has shown that they should appear in the IR description of the theory and

might then be useful to put constraints on the IR theory. Such anomalies are sometimes

called ’t Hooft anomalies.

The ’t Hooft anomaly matching condition states that if in the UV theory Dfff ≠ 0

then the same anomaly should appear in the IR theory. While the UV anomaly is induced

by the elementary UV fermion fields, the IR one should be given by the appearance of

massless fermion bound states with suitable quantum numbers to have the same Dfff ≠ 0.

If Gf is spontaneously broken (like chiral symmetries in QCD), the NG bosons can replace

the role of the massless fermion bound states that are no longer required. ’t Hooft’s

argument is very simple. Let us assume of (weakly) gauging the group Gf (or a subgroup

of it) of the UV theory. In this way the innocuous global anomalies turn into deadly

gauge anomalies making the theory inconsistent. We might cancel the gauge anomaly

Dfff by adding suitable additional massless “spectator” fermions that give a contribution

Dspect.
fff = −Dfff to the anomaly. Crucially, these spectators can be taken neutral under

Gs and charged only under the weakly gauged symmetries Gf . At low energies, when

the strong gauge group Gs confines, the spectrum of the theory will include IR bound

states plus the “spectator” fermions that, being neutral under Gs, are unaffected by the

condensation of Gs. The UV theory with the spectators is, by construction, consistent and

it has to remain so for all values of the gauge coupling constant. Hence, at low energies,

there must be an anomaly contribution equal to −Dspect.
fff = Dfff , canceling that of the

fermion spectators. The argument is valid for an arbitrarily weak gauging and thus has

to also apply in the original theory where Gf is a global symmetry.

Given the quantum numbers of the elementary constituents, the possible quantum

numbers of the massless fermion bound states can be argued. It might happen that there

is no choice of quantum numbers for the bound states to reproduce the anomaly of the

constituents. In this case, the ’t Hooft anomaly matching conditions can be used to prove

that our original assumption of unbroken global symmetries is necessarily violated, and

some global symmetries are spontaneously broken. Notably, one can show in this way that

in QCD the SU(3)V × SU(3)A × U(1)V global symmetry must be spontaneously broken,

see e.g. section 22.5 of ref.[2].5

As we mentioned, when Gf is spontaneously broken the anomaly of the UV fermions

can be reproduced by the effective action of the (pseudo) Goldstone bosons. The latter

situation is actually realized in Nature in QCD, in which case the weak gauging used

in ’t Hooft argument can be identified with the electromagnetic interactions. Consider

5The argument requires nf = 3. Solutions for the bound states quantum numbers can instead be found

when nf = 2.
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for simplicity nf = 2 (up and down quarks only). The quantum global symmetry group

is Gf = SU(2)V × SU(2)A × U(1)V . This is explicitly broken by the electromagnetic

interactions to Hf = U(1)V × U(1)EM × Ũ(1)A, where Ũ(1)A ⊂ SUA(2) is the abelian

subgroup generated by t3. Consider now the U(1)2EM × Ũ(1)A axial anomaly. We get

∂µJ
µ
A = − Nc

16π2
ϵµνρσFµνFρσ

[(2e
3

)2
× 1 +

(−e
3

)2
× (−1)

]

= −Nce2

48π2
ϵµνρσFµνFρσ . (9.6.1)

Anomaly matching requires that a similar anomaly should show up in the IR. Since no

massless fermion bound states occur Nature, this should appear in the low-energy effective

chiral Lagrangian Lπ describing the dynamics of the π mesons interacting with photons.

Under the Ũ(1)A chiral transformation above, δϵLπ should then not vanish, but rather

reproduce the axial anomaly (9.6.1). Considering that δϵπ0 = ϵfπ, Lπ should include the

coupling

Lπ ⊃ −
Nce2

48π2fπ
ϵµνρσFµνFρσπ

0 . (9.6.2)

The axial anomaly (9.6.1) has allowed to resolve the puzzle of the π0 → 2γ decay. In

absence of any anomaly, the term (9.6.2) would still appear in the chiral Lagrangian Lπ but

with a much more suppressed coupling. On the contrary, anomaly considerations uniquely

fix its coefficient and it turns out that the experimental rate Γ(π0 → 2γ) is successfully

reproduced with Nc = 3. We have seen in section 8.7 that the chiral Lagrangian Lπ should

be described in terms of the matrix of fields U = exp(2iπata/fπ), rather than by the π’s

mesons themselves. The anomalous term (9.6.2) should then be rewritten in terms of the

U ’s. This rewriting is not totally straightforward and will not be done here. The ending

result goes under the name of the gauged version of the Wess-Zumino-Witten term. The

latter includes many other couplings, including the term (9.6.2).

9.7 Anomalous Breaking of Scale Invariance⋆

As we have mentioned at the beginning of this chapter, in most QFT’s the symmetry

under scale transformations, if present at tree level, is broken by quantum effects due to

the energy dependence of the couplings.6 Let us formalize a bit better this observation.

We know that the energy-momentum tensor is the conserved tensor associated to the

translational symmetries. In general, under an infinitesimal symmetry transformation of

the action, the Lagrangian density is not necessarily invariant, but can change by a total

6The analysis in this section closely follows section 19.5 of ref. [1].
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derivative: L → L+ ϵ∂µJ µ, with J µ a given tensor.7 The associated conserved Noether

current in this case is given by

Jµ =
δL
δ∂µφ

δφ − J µ . (9.7.1)

Under an infinitesimal translation xµ → xµ+ϵµ, the Lagrangian, being a scalar, transforms

as L→ L+ ϵµ∂µL. The Noether energy-momentum tensor reads

T µν =
δL
δ∂µφ

∂νφ− ηµνL , (9.7.2)

and is conserved: ∂µT µν = 0. In general, the Noether energy-momentum tensor T µν is not

symmetric, T µν ≠ T νµ. A new, symmetric, energy-momentum tensor θµν can be defined

by adding a trivially conserved term to T µν :

θµν = T µν + ∂ρM
µνρ , (9.7.3)

where Mµνρ is a tensor antisymmetric in µ and ρ, so that ∂µ∂ρMµνρ automatically van-

ishes. The symmetric energy-momentum tensor θµν can directly be derived by coupling

the QFT to gravity and noticing that θµν minimally couples to gravity. We have

θµν =
2√
−g

δS

δgµν

∣∣∣∣
gµν=ηµν

, (9.7.4)

where gµν is the metric and g = det gµν .

Let us see this how this works for the massless φ4 theory. In this case we have

T µν = θµν = ∂µφ∂νφ− ηµνL . (9.7.5)

Coupling to gravity we have

S =

∫
d4x
√
−g
(1
2
gµν∂

µφ∂νφ− λ

4!
φ4
)
. (9.7.6)

Noticing that
δ
√
−g

δgµν
=

δ

δgµν
e1/2Tr log(−g)µν = −1

2
gµν
√
−g , (9.7.7)

we immediately recover eq. (9.7.5).

A QFT is (classically) scale invariant if its Lagrangian density L(x)→ e−4σL(x) when
xµ → eσxµ, with σ a real constant parameter, so that the action S =

∫
d4xL remains

invariant. The transformations of fields are dictated by their classical dimension ∆:

φ(x)→ e−σ∆φ(x) . (9.7.8)

7In fact, this is not the most general possibility. A conterexample is provided by the transformation of

the Lagrangian density under scale transformations considered below.
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The classical scaling dimension ∆ coincides with the power counting dimension of a field,

∆ = +1 for scalars and vectors, and ∆ = 3/2 for fermions in four space-time dimensions.

Given the action on the coordinates, each derivative acting on a field increases by one the

scaling dimension of the operator:

∂µ1 . . . ∂µnφ(x)→ e−σ(∆+n)∂µ1 . . . ∂µnφ(x) . (9.7.9)

A QFT is classically scale invariant if only marginal operators appear in its Lagrangian

density. In particular, any mass term explicitly breaks the symmetry. The current asso-

ciated to scaling transformations is called the dilatation current Dµ. Finding its explicit

form with the Noether method is non-trivial, because the Lagrangian density is not in-

variant, even up to total derivatives. On the other hand, it is easy to find Dµ by using the

same trick used before of coupling the QFT to gravity. In this way, we can reinterpret the

scaling transformation xµ → eσxµ as a rescaling of the metric gµν → e−2σgµν . Multiplying

eq. (9.7.4) by δgµν = −2ϵgµν , we get that the action variation vanishes if and only if

θµµ = 0 . (9.7.10)

The dilatation current is

Dµ = xνθ
µν , (9.7.11)

and is in fact conserved if θµν is traceless. Notice that θµν entering eq. (9.7.11) does not in

general coincide with the θµν in eq. (9.7.4), but is related to it by a total derivative of the

form (9.7.3). This is the case even in the simplest theories. For instance, in the massless

φ4 theory,

θµµ = (∂µφ)
2 − 4L = −(∂µφ)2 +

λ

3!
φ4 ≠ 0. (9.7.12)

We can fix this problem by redefining the energy-momentum tensor. By adding a mani-

festly conserved tensor, we have for the λφ4 theory

θµν → θµν − 1

6
(∂µ∂ν − ηµν✷)φ2 . (9.7.13)

The trace of the redefined energy-momentum tensor reads

θµµ = −(∂µφ)2 +
λ

3!
φ4 + (∂µφ)

2 + φ✷φ = φ
(
✷φ+

λ

3!
φ3
)
= 0 , (9.7.14)

where in the last equality we used the equation of motion of φ. One can easily show that

by adding a mass term to the φ4 theory, one gets

θµµ = m2φ2 . (9.7.15)
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No redefinition of θµν can get rid of the mass term, which is in fact a genuine source of

explicit violation of the scale symmetry. Alternatively, we can keep the energy-momentum

tensor as defined in eq. (9.7.4) and change the definition of the dilatation current as

Dµ = xνθ
µν + V µ . (9.7.16)

The field V µ is denoted the field virial. For the φ4 theory V µ = φ∂µφ.

At the quantum level, scale invariance is typically broken by quantum effects. The

“would-be” WT identities implied by scale invariance are

⟨θµµ(q)φ1(p1) . . . φn(pn)⟩ = −
n∑

r=1

∆r⟨φ1(p1) . . . φr(pr + q) . . . φn(pn)⟩ , (9.7.17)

where ∆r is the scaling dimension of the field φr. Quantum corrections responsible of the

anomalous dimensions of the field do not violate the WT identities (9.7.17), that continue

to hold with a redefinition of ∆r that includes the anomalous dimension contribution.

The actual breaking arises from the energy-dependence of couplings, namely from their

β-function. Invariance of the quantum action under scaling transformations would imply

that
∫

d4xL(φ(x), ∂µφ(x),λ(x)) =
∫

d4xL(e−σ∆φ(e−σx), e−σ(∆+1)∂µφ(e
−σx),λ(x))

=

∫
d4x e4σL(e−σ∆φ(x), e−σ(∆+1)∂µφ(x),λ(e

σx)) ,
(9.7.18)

where λ denotes a coupling constant and in the last equality we have redefined the coordi-

nates xµ → eσxµ. For a classically scale invariant theory L(e−σ∆φ(x), e−σ(∆+1)∂µφ(x),λ) =

e−4σL(φ(x), ∂µφ(x),λ). Under an infinitesimal transformation,

λ(x+ ϵx) = λ(x) + ϵβ(λ) , (9.7.19)

and the violation of the scaling symmetry is given by

δS =

∫
d4x
(
L(φ(x), ∂µφ(x),λ(x + ϵx))− L(φ(x), ∂µφ(x),λ(x))

)
= ϵ

∫
d4x

∂L
∂λ

β(λ) .

(9.7.20)

Correspondingly, the divergence of the dilatation current is anomalous, with the anomaly

given by β:

∂µD
µ = β(λ)

∂L
∂λ

. (9.7.21)

Let us see how this explicitly works for the usual φ4 theory. We work in DR with d = 4−ϵ.
First of all, since we are no longer in 4 dimensions, we have to reconsider how to redefine

θµν , like in eq. (9.7.13). Let

θµνB → θµνB + α(∂µ∂ν − ηµν✷)φ2B , (9.7.22)
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where the subscript B stands for bare quantities. On-shell, the trace of the redefined

energy-momentum tensor reads

θµBµ =
(
1− d

2
+ 2α(1 − d)

)
(∂µφB)

2 −
(
d+ 8α(1 − d)

)λB
4!
φ4B . (9.7.23)

Let us choose α so that the term proportional to (∂µφB)2 vanishes:

α =
(1− d

2)

2(d − 1)
. (9.7.24)

We get

θµBµ = (d− 4)
λB
4!
φ4B . (9.7.25)

We now have

λBφ
4
B = Zλλφ

4 , (9.7.26)

with

Zλ = 1 +
3λ

16π2
1

ϵ
(9.7.27)

at one-loop level. Substituting in eq. (9.7.25) gives

θµµ = θµBµ = − 3λ2

16π2
1

4!
φ4 = β(λ)

∂L
∂λ

, (9.7.28)

which is the expected result. Notice that θµµ eventually is finite with no need of any wave

function renormalization, in agreement to the general result that conserved currents do

not renormalize, ZJ = 1, and correspondingly have vanishing anomalous dimensions.

9.8 The Strong CP Problem and a Possible Solution: Axions

Strong interactions seem to respect to a high degree of accuracy invariance under parity

P, charge conjugation C and time reversal T. On the other hand, the QCD Lagrangian

might contain a gauge and Lorentz invariant dimension four operator of the form

θ

64π2

∫
d4xϵµνρσG

µν
a (x)Gρσ

a (x) (9.8.1)

where Gµν
a are the (non-canonically normalized) gluon field-strengths and θ is a real pa-

rameter. The parameter θ in eq.(9.8.1) is actually not physical. Under a chiral rotation

of the quark fields

Qf → eiαfγ5Qf , (9.8.2)

where f is a flavour index, the QCD action is not invariant due to the global anomaly

(9.1.31). The non-invariance of the action corresponds to a redefinition of the parameter

θ:

θ → θ + 2
∑

f

αf . (9.8.3)
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The chiral transformation (9.8.2) affects also the quark masses:

mf → e2iαfmf . (9.8.4)

Hence the invariant parameter θ̄ is the combination

θ̄ = θ + i log
∏

f

mf . (9.8.5)

If any of the quark masses was zero, the parameter θ would not be observable, since we

will always have the freedom to set it to zero by rotating the massless quark. If mf ≠ 0,

as it appears to be in the real world, θ̄ is a genuine physical source of parity and time

reversal violation (and hence also of CP by the CPT theorem) in the strong interactions.

The term (9.8.1) can be shown to be a total derivative and is completely irrelevant at

the perturbative level.8 Yet, at low energies, when QCD confines, it is expected to give

rise to CP violating operators. A particularly relevant CP odd operators is the neutron

electric dipole moment operator,

idN N̄σµνγ5NFµν , (9.8.6)

where N is the neutron fermion field. Needless to say, computing dN from first principles

is an hard task, considering also that the neutron has a mass of order ΛQCD and cannot

be straightforwardly included in the meson low energy action described in section 8.7. A

rough simple estimate of the order of magnitude of dN is however possible. Since dN has

to vanish if any quark mass is zero, eq.(8.7.9) and dimensional analysis suggest that

|dN | ∼ e|θ̄|m
2
π

m3
N

(9.8.7)

The current experimental upper bounds on the neutron electric dipole moment is |dN | ≤
2.9× 10−26 e cm. Using the theoretical guess (9.8.7) gives the bound

|θ̄| ! 10−10 . (9.8.8)

More refined estimates confirm the order of magnitude bound given in eq.(9.8.8).

According to the naturalness criterium reviewed in section 7.5, a dimensionless coupling

can be very small if a symmetry is restored in the limit it vanishes. This would indeed be

the case for θ̄ in QCD, in isolation. In the real world, however, the electroweak interactions

break both P and CP and the naturalness of a small θ̄ is not guaranteed. We are left with

8This term plays an important role when studying non-perturbative configurations in QCD, instantons.

We will not consider such effects in these lectures.
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the question: why is θ̄ so small?9 This naturalness problem is often denoted strong CP

problem.

An elegant solution is achieved by introducing a new field a(x), called the axion, that

is supposed to be the NBG of a spontaneously broken U(1) symmetry (at energies much

larger than ΛQCD). The original formulation of this idea was due to Peccei and Quinn

and for this reason this U(1) symmetry is often denoted Peccei-Quinn (PQ) symmetry.

Under a U(1)PQ transformation parametrized by ω, the axion shifts

a(x)→ a(x) + faω , (9.8.9)

where fa is the axion decay constant. According to the analysis made in sections 8.6 and

8.9, the non-linear realization of the U(1)PQ symmetry requires the axion to have only

derivative interactions. The only allowed non-derivative term is an interaction of the form

1

64π2fa

∫
d4x a(x)ϵµνρσG

µν
a (x)Gρσ

a (x) . (9.8.10)

From the discussion above, it is clear that the coupling (9.8.10) breaks U(1)PQ only at the

non-perturbative level. In presence of this interaction, the θ term (9.8.1) can trivially be

reabsorbed in eq.(9.8.10) by the U(1)PQ symmetry (9.8.9). We have essentially promoted

θ to be a field, so the problem of the value of θ becomes now a dynamical one. We have

to compute the low-energy effective potential for the axion a(x) and find its minima. The

best way to study the axion potential is by exploiting the QCD NGB Lagrangian already

introduced in section 8.7. For simplicity consider nf = 2, keeping only the up and down

quarks. By a chiral rotation, we can eliminate the VEV of a(x) from eq.(9.8.10) and

reabsorb it in, say, the up quark mass term. As we have seen, quark mass terms are

sources of explicit violation of the chiral symmetry, responsible for the pion masses and,

more generally, for a pion potential. The leading terms are given in eq.(8.7.8). When the

axion VEV is reabsorbed into M , this term can be seen as the leading axion-pion effective

potential term:

V (a,π) = −cf3
πtr(UM +M †U †) (9.8.11)

where U = exp(iσaπa/fπ) and

M =

(
mue

−i a
fa 0

0 md

)

. (9.8.12)

9Notice that this naturalness problem is qualitatively different from the one affecting the Higgs mass

(or more generally, relevant operators). There, a delicate cancellation (or fine-tuning) has to occur to get

a small number out of big ones, induced by quantum corrections. Here θ̄ is radiatively stable and we have

“simply” to understand the smallness of its classical value.
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In eq.(9.8.12), a is the axion VEV. By setting π± = 0, the explicit form of V reads

V (a,π0) = −2cf3
π

(
md cos

(π0
fπ

)
+mu cos

( a

fa
− π0

fπ

))
. (9.8.13)

The extrema of V are found at a = 0 mod πfa and π0 = 0 mod πfπ. A straightforward

computation shows that the minimum is at

a = π0 = 0 . (9.8.14)

Hence the θ angle dynamically vanishes, providing a solution to the strong CP problem.

From the potential (9.8.13) we can easily compute the axion mass. Expanding for fa ≫
fπ,mu,md we get (assuming a canonical kinetic term for a)

m2
a =

f2
π

f2
a

mumd

(mu +md)2
m2
π . (9.8.15)

Once again, we see the power of an effective description of NGB, that has allowed us to

compute the axion mass in a few simple steps. The axion decay constant fa governs all the

derivative interactions that the axion can possibly have in the UV theory with quarks and

gauge fields, and with mesons, baryons and photons in the IR. Astrophysical constraints

coming from red giant cooling puts a lower bound on fa:

fa > 109 GeV . (9.8.16)

Given eq.(9.8.15) and the above bound, we conclude that the axion must be an extremely

light particle:

ma ! 10−3 eV . (9.8.17)

The axion has the added virtue of being also a viable dark matter candidate. Upper

bounds, coming mainly from cosmological considerations, also exist. They depend on

some details about the early evolution of the universe, and will not be discussed here.
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Chapter 10

Some Formal Developments⋆

10.1 Asymptotic Nature of Perturbation Theory⋆

Most of the considerations made in these notes are based on perturbation theory. It is

natural at this stage to ask what are the convergent properties of the associated series.

Perturbative expansions in QFT give rise to power series in some coupling constant λ or

to !, if we consider the analogous loopwise expansion. It is useful to recall here some basic

mathematical properties of power series of holomorphic functions. If f(λ) is analytic at a

point λ0, in a small disc around λ0 the function is given by the power series

f(λ) =
∞∑

n=0

fn(λ) , fn(λ) = cn(λ− λ0)n . (10.1.1)

The radius of convergence R of the series (10.1.1) is given, e.g., by

R = lim
n→∞

∣∣∣∣
cn
cn+1

∣∣∣∣ . (10.1.2)

If λ0 is a regular point of f(λ), R is non-vanishing and is given by the distance of λ0 from

the closest singularity of f(λ). Viceversa, if R is non-vanishing, necessarily λ0 is a regular

point of the function f . The power series (10.1.1) is uniformly convergent for any |λ| < R

and divergent for |λ| > R. The convergence at |λ| = R depends on the particular cases,

but necessarily there is at least a point where the series diverges, corresponding to the

singular point of f(λ) closest to λ0.

F. Dyson in 1952 presented an argument that led to the conclusion that the pertur-

bative series expansion in QED has zero radius of convergence. It is worth to sketch here

Dyson’s original simple and brilliant argument. Recall that the QED expansion is a power

series in α ∝ e2 and not in the charge e. Suppose now that the QED expansion has a

non-vanishing radius of convergence. This would imply that the point α = 0 should be a
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regular point of a physical observable O(α), seen as an analytic function of α. As we re-

called, this would imply that O(α) has a finite radius of convergence where the function is

analytic, including regions where α < 0. A world with α < 0 is however unstable, because

electrons and positrons would repel each other destroying any vacuum in an uncontrolled

production of electron-positron pairs.1 We conclude that sensible physical observables

cannot be analytic for α < 0 and thus the point α = 0 itself cannot be analytic. In turn,

this implies that the series around α = 0 has zero radius of convergence.

A modern and more general version of Dyson’s argument can be obtained by consid-

ering the euclidean path integral formulation in QFT. Consider a generic n-point function

G(n)(x1, x2, . . . xn; !) =

∫
Dφφ(x1)φ(x2) . . . φ(xn) e−S(φ)/! , (10.1.3)

where we denote collectively all the fields in the action by φ.2 In euclidean space the action

is positive definite and the path integral converges.3 Consider now the loopwise expansion,

that is the expansion of G(n) in powers of !. The point ! = 0 is necessarily non-analytic

because for any value of ! < 0 the Green function G(n) blows up. We conclude that

loopwise perturbative expansions in QFT have generically zero radius of convergence and

are divergent. A similar conclusion applies for the coupling constant expansion, that upon

rescaling of the fields is equivalent to the loopwise expansion. Considering for simplicity

a single coupling constant λ, we write the action as S = S0 + λ∆S, where S0 is the free

theory and ∆S the interaction term. Simplifying the notation, we have

G(n) =

∫
Dφφ1 . . . φn

∞∑

p=0

(−∆S)pλp

p!
e−S0 ?

=
∞∑

p=0

λp
∫

Dφφ1 . . .φn
(−∆S)p

p!
e−S0

=
∞∑

p=0

λpG(n)
p .

(10.1.4)

What we typically compute in perturbation theory are the correction terms G(n)
p to the

exact Green function G(n). But since the power series in λ is never uniformly convergent,

having zero radius of convergence, we are not allowed to exchange the order of sum and

integration in the second identity above. Despite we know this is an improper step, this

is often the only thing we can do to make concrete computations and is indeed what we

1A similar event occurs for α > 0 in presence of a constant electric field. We will study in some quite

detail this phenomenon in the subsequent sections of this chapter.
2This argument works also in presence of fermions. We integrate them out and identify the resulting

effective action with S in eq.(10.1.3).
3With an appropriate measure and upon renormalization. Strictly speaking a full non-perturbative

definition of the path integral requires a lattice discretization of space-time.

216



have tacitly done all the times so far. The divergent power series appearing in the second

row of eq.(10.1.4) is generally an asymptotic series. For sufficiently small values of the

coupling such series reproduces quite accurately the exact result G(n) and this explains

why perturbation theory in QFT is useful, despite being divergent.

10.1.1 Asymptotic Series and Optimal Truncation⋆

A series expansion associated to a function Z(λ) is asymptotic if, at any fixed order N ,

Z(λ)−
N−1∑

n=0

Znλ
n = O(λN ) , as λ→ 0 . (10.1.5)

Notice the crucial difference with respect to convergent series where for N →∞ the sum
∑N

n=0 Znλn approaches Z(λ) for any λ within the domain of convergence. For convergent

series different functions lead to different series. This is not the case for asymptotic

expansions, where different functions can have the same asymptotic expansion. Indeed, if

Z(λ) has the asymptotic expansion (10.1.5), any other function of the form, say,

Z̃(λ) = Z(λ) + e−1/λa(λ) , (10.1.6)

with a(λ) sufficiently regular, will have exactly the same expansion as Z(λ). Asymptotic

series are anyhow useful because they approximate the true result with an accuracy that

depends on the value of the coupling λ and on the behaviour of the series coefficients Zn

for n ≫ 1. Contrary to convergent series, where the more terms are added in the series

and the more accurate is the result, in asymptotic series there is an optimal number of

terms one should keep, after which adding more terms results in worse and worse accuracy.

This is called optimal truncation. Suppose that for n≫ 1

Zn ∼ n!annc , (10.1.7)

for some real parameters a and c.4 The best accuracy for Z(λ) is obtained by finding the

value N = NBest that minimizes the error, estimated as the value of the last term not

included in the expansion (10.1.5):

∆Z ∼ ZNλ
N . (10.1.8)

Recalling Stirling approximation

n! =
√
2πnnne−n

(
1 +O

( 1
n

))
, (10.1.9)

4The analysis that follows can easily be generalized for large-order behaviours of the kind Zn ∼

(n!)kannc.
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one has

ZNλN ∼ ef(N) , f(N) = −N +N log(aλN) +
(
c+

1

2

)
logN . (10.1.10)

Since by assumption N ≫ 1, the minimal error will be given by the minimum of the

function f(N):

∂Nf(N) = log(aλN) +
(
c+

1

2

) 1

N
= 0 =⇒ NBest =

1

aλ

(
1 +O

( 1

N

))
. (10.1.11)

Plugging back in eq.(10.1.8) we find

∆Z ∼ e−
1
aλ , (10.1.12)

independently of c at leading order. We see that the smaller is the coupling and the smaller

(exponentially) is the error, but no matter how many terms we compute in perturbation

theory, asymptotic series fail to reproduce the exact function by (at best) exponentially

suppressed terms. This is consistent with the intrinsic ambiguity related to asymptotic

series shown in eq.(10.1.6). Keeping more than NBest terms in the asymptotic series would

lead to an increase in the error.

It has been shown that generally the coefficients of the perturbative expansion in QFT

behave at parametrically large order as in eq.(10.1.7), due to the exponentially growing

number of Feynman diagrams as the number of loops increases.

10.1.2 Borel Summation⋆

Borel summation is a summation method for asymptotic series. Suppose that a function

Z(λ) admits an asymptotic expansion of the form (10.1.5) with coefficients Zn that at large

order goes like in eq.(10.1.7). We define the Borel transform as the function obtained by

dividing the original series by a factorially growing factor:

BZ(t) ≡
∞∑

n=0

Zn

n!
tn . (10.1.13)

Thanks to the division by n!, the series in eq.(10.1.13) has a non-zero radius of convergence

where it defines an analytic function BZ(t). If the analytic continuation of BZ(t) over the

complex t plane is free of singularities for t > 0, the integral

ZB(λ) =

∫ ∞

0
dt e−tBZ(tλ) (10.1.14)

defines a function of λ that is said to be the Borel resum of the original asymptotic series.

Recalling the definition of Gamma function

Γ(x) =

∫ ∞

0
dt e−t tx−1 , (10.1.15)
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it is immediate to verify that ZB(λ) has the same asymptotic expansion as Z(λ). On the

other hand, it is also clear that if we approximate the series defining BZ(t) in eq.(10.1.13)

with its truncated version, ZB(λ) boils down to the original asymptotic expansion of Z(λ)

and no progress is achieved. The Borel resummation method works when we can resum the

whole series (10.1.13) or estimate the function BZ(t) by some other means. In general the

Borel resummed function ZB(λ) is not guaranteed to coincide with the original function

Z(λ). Indeed, if different functions can admit the same asymptotic series, it is clear that

manipulating the latter cannot be enough to uniquely fix Z(λ). The uniqueness (and hence

the condition ZB(λ) = Z(λ)) is ensured by a theorem provided that certain analyticity

properties of Z(λ) near the origin are assumed. When BZ(t) is free of singularities and

gives rise to a well-defined ZB(λ) we say that the associated asymptotic series is Borel

resummable. When ZB(λ) = Z(λ) we say that the asymtptotic series is Borel resummable

to the exact result.

We can get some intuition on Borel functions by working out the Borel transform of

an asymptotic series with coefficients as in eq.(10.1.7), with c = 0. The Borel series in this

case collapses to a simple power series and gives

BZ(t) =
1

1− at
, (10.1.16)

that has a simple pole at t = 1/a. The radius of convergence of the Borel series is given

by R = 1/|a|, but the function can be analytically continued over the whole t-plane.

Borel summability depends on the sign of a. If a > 0 (same sign series) the singularity is

on the positive real t axis, the integral (10.1.14) is divergent and the series is not Borel

resummable. If a < 0 (alternating series), the singularity is over the negative real t axis,

the integral (10.1.14) is finite and the Borel resummed series is given by ZB(λ). More in

general, eq.(10.1.7) gives only the asymptotic form of the coefficients of the series, while

the precise form of the latter might be unavailable. When the exact Borel function BZ(t)

is not known, some information on its analytic structure can still be deduced, because the

large order behaviour of the asymptotic series determines the position of the singularity

closest to the origin. If a < 0 the series is no longer guaranteed to be Borel resummable,

because further singularities on the positive real axis might occur, depending on the next

to leading large order behaviour of the series coefficients. On the other hand, for a > 0

the series is certainly not Borel resummable.

The order of sum and integration in the Borel function cannot be inverted because

the Borel series expansion has generally a finite radius of convergence while the integral

is taken over the whole positive t axis. Indeed, if we erroneously interchange the two
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operations, we get back the asymptotic divergent series we started with:

ZB(λ) =

∫ ∞

0
dt e−t BZ(λt) ≠

∞∑

n=0

Zn

n!
λn
∫ ∞

0
dt tne−t =

∞∑

n=0

Znλ
n . (10.1.17)

Unfortunately the asymptotic series in the coupling in four dimensional gauge theories

in four space-time dimensional are generally not Borel resummable. Examples of Borel

resummable series include the λφ4 theories in two and three space-time dimensions, im-

portant in the study of critical phenomena in statistical physics.

10.2 Vacuum Decay in the Presence of External Fields⋆

In this section we discuss the issue of the stability of the quantum vacuum in the presence

of external static and constant electric and magnetic fields. Heuristically, the various

fields in the quantum vacuum fluctuate around their (vanishing) mean values and these

fluctuations are responsible for some measurable effects, which are particularly important

in QED: (i) the Lamb shift in atomic physics, due to the quantum corrections to the

vacuum polarization, (ii) the Casimir effect due to the spatial confinement of fluctuations

imposed (at the semiclassical level) by conducting bodies, and (iii) pair production due to

applied external electric fields. Here we focus on this last case, also known as Schwinger

effect. In particular, one can think of this phenomenon as the analogous of the ionization

of a neutral atom: in vacuum the virtual pairs of particles (of mass m) form “bound”

pairs of energy Eb = 2m and are confined within a potential well of a typical extension set

by the Compton length λc = 1/m. In order for an electric field of strength E to unbound

this pair and make the constituent particle “real”, it is necessary that it makes the bound

pair overcome the energy barrier, such that λceE ≥ Eb, i.e., E has to exceed the critical

value Ecr = Eb/(λce) = 2m2/e which, for electrons, turn out to be Ecr ≃ 2 × 1017 V/m.

In a sense, this phenomenon requires a tunneling of that potential barrier and therefore it

is expected that in the expression for the occurrence probability of such a tunneling the

field strength E will appear in the denominator of an exponential law, as it happens for

thermally activated processes. Still on this heuristic intuition, one expects the phenomenon

to be controlled by E/Ecr. Note that this pair production implies the decay of the vacuum,

which we are going to study in the rest of the section. However, before discussing in details

this issue in Sec. 10.2.2, we consider first a seemingly unrelated problem.
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10.2.1 Landau Levels by Path Integral⋆

Consider a charged particle of mass m in the presence of a magnetic field. Its classical

Lagrangian is

L =
m

2
˙⃗q
2
+ e ˙⃗q · A⃗(q⃗) (10.2.1)

where q⃗(t) is the particle coordinate and ˙⃗q = dq⃗/dt. The corresponding Hamiltonian H is

given by

H ≡ p⃗ · ˙⃗q − L =
(p⃗− eA⃗(q⃗))2

2m
, (10.2.2)

where H has been expressed in terms of the momentum p⃗ ≡ δL/δ ˙⃗q = m ˙⃗q + e A⃗(q⃗).

A classical problem in quantum mechanics is the determination of the energy levels of a quan-

tum particle when it is confined in the x-y-plane while being subject to a constant magnetic field

B⃗ = Be⃗z (where e⃗i is the unit vector along direction i). Given that B⃗ = ∇⃗ × A⃗, one can choose

A⃗ = Bxe⃗y, such that eq. (10.2.1) in terms of operators becomes

Ĥ =
p̂2x
2m

+
(p̂y − eBx̂)2

2m
. (10.2.3)

Translation invariance of Ĥ along e⃗y implies [Ĥ, p̂y] = 0 and therefore one can look for the eigen-

states of Ĥ in the form of plane waves with definite momentum py = !ky, for which

Ĥ =
p̂2x
2m

+
(!ky − eBx̂)2

2m
=

p̂2x
2m

+
mω2

c

2
(x̂ − x0)

2, (10.2.4)

where

ωc =
eB

m
(10.2.5)

is the cyclotron frequency and the harmonic oscillator is centered around x0 = !ky/(eB). For a

given ky , the energy levels of this harmonic oscillator are given by En = !ωc(n + 1/2) with n =

0, 1, . . . (Landau levels). Each of these levels has a degeneracy g determined by the corresponding

possible values of ky. In order to determine g consider a two-dimensional rectangular area with

edges of length Lx and Ly. Assuming periodic boundary conditions, one finds that ky = 2πny/Ly,

with ny = 0, 1, . . ., each corresponding to an harmonic oscillator centered at x0 = !2πny/(eBLy).

Requiring that x0 is within the rectangle 0 ≤ x0 ≤ Lx, one finds that ny ≤ eBLxLy/(2π!) and

therefore g = eBA/(2π!), where A = LxLy is the area of the surface across which B⃗ flows. The

fact that g is an integer implies a magnetic flux quantization in multiple integers of the quantum

of flux 2π!/e. Below we recover this result via a path-integral approach.

Consider a gas of non-interacting particles with Hamiltonian given by eq. (10.2.2) and

at temperature β−1. The corresponding single-particle partition function is given by

Z(β) = Tr e−βH =

∫
dq⃗a ⟨q⃗a |e−βH |q⃗a ⟩. (10.2.6)
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The matrix element ⟨q⃗a |e−βH |q⃗a ⟩ can be obtained via a Wick’s rotation of the standard

propagator of quantum mechanics ⟨q⃗b |e−iH(tb−ta)|q⃗a ⟩ which quantifies the probability am-

plitude for a particle with Hamiltonian H to propagate from the position q⃗a at time ta

to the position q⃗b at time tb. This propagator can be represented as a Feynman path-

integral with an exponential weight determined by the action associated to Lagrangian L

in eq. (10.2.1):

⟨q⃗b |e−iH(tb−ta)|q⃗a ⟩ = N
∫

q⃗(ta) = q⃗a
q⃗(tb) = q⃗b

Dq⃗(t) ei
∫ tb
ta

dt L. (10.2.7)

By setting ta = 0 and by continuing tb → −iτ , with ˙⃗q → idq⃗/dτ one gets

Z = Tr e−βH = N
∫
dq⃗a

∫

q⃗(β)=q⃗(0)=q⃗a

Dq⃗(τ) e−
∫ β
0 dτ LE , (10.2.8)

where the Euclidean Lagrangian LE is given by

LE = −L| ˙⃗q +→idq⃗/dτ =
m

2

(
dq⃗

dτ

)2

− ie
dq⃗

dτ
· A⃗(q⃗(τ)). (10.2.9)

The path integral in eq. (10.2.8) is calculated by summing over all closed paths originating

in a certain point q⃗a = q⃗(0) = q⃗(β), over which one eventually integrates. These paths are

in a one-to-one correspondence with periodic functions of period β and therefore can be

expressed in terms of their Fourier transforms:

q⃗(τ) = q⃗0 +
∞∑

n=1

√
2

β

(
c⃗n cos

2πnτ

β
+ s⃗n sin

2πnτ

β

)
, (10.2.10)

where s⃗n = (sx,n, sy,n, sz,n) and c⃗n = (cx,n, cy,n, cz,n) are the vector coefficients of the

transform which can be obtained by inverting it, i.e.,

q⃗0 =
1

β

∫ β

0
dτ q⃗(τ),

c⃗n

s⃗n

}

=

∫ β

0
dτ q⃗(τ)

√
2

β

{
cos(2πnτ/β)

sin(2πnτ/β)
. (10.2.11)

Note that because the Fourier transform is a unitary transformation, one has

∫

q⃗(0)=q⃗(β)
Dq⃗(τ) =

∫ +∞

−∞
dq⃗0

∞∏

n=1

dc⃗nds⃗n. (10.2.12)

Assume now that this gas of particles is constrained to move on the x-y-plane with

qz(τ) = 0 (and therefore cz,n = sz,n = 0) subject to a constant magnetic field B⃗ = Be⃗z, as

in the case of the Landau levels discussed above. As before, we can choose A⃗ = Bxe⃗y and,

by representing the trajectories as in eq. (10.2.10), one can easily express the (Euclidean)
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action SE =
∫ β
0 dτLE associated with the (Euclidean) Lagrangian in eq. (10.2.8) in terms

of the coefficients c⃗n and s⃗n. In particular, it is useful to note that

∫ β

0
dτ

dq⃗

dτ
· A⃗(q⃗) = B

∫ β

0
dτ

dqy
dτ

qx = B
∞∑

n=1

2πn

β
(−cx,nsy,n + sx,ncy,n), (10.2.13)

∫ β

0
dτ

(
dq⃗

dτ

)2

=
∞∑

n=1

(
2πn

β

)2

(c2x,n + c2y,n + s2x,n + s2y,n), (10.2.14)

and therefore

SE =
∞∑

n=1

{
m

2

(
2πn

β

)2

(c2x,n + c2y,n + s2x,n + s2y,n)− ieB
2πn

β
(sx,ncy,n − cx,nsy,n)

}

=
∞∑

n=1

{
m

2

(
2πn

β

)2

(c2y,n + s2x,n)− ieB
2πn

β
sx,ncy,n

}

+
∞∑

n=1

{
m

2

(
2πn

β

)2

(c2x,n + s2y,n) + ieB
2πn

β
cx,nsy,n

}

=
∞∑

n=1

1

2
(cy,n, sx,n)M

∗
n

(
cy,n

sx,n

)

+
∞∑

n=1

1

2
(cx,n, sy,n)Mn

(
cx,n

sy,n

)

,

(10.2.15)

where

Mn ≡
(

m(2πn/β)2 ieB(2πn/β)

ieB(2πn/β) m(2πn/β)2

)

. (10.2.16)

As expected, SE is independent of q⃗0. Accordingly, eq. (10.2.8) becomes

Z = N
∫ +∞

−∞
dqx,0dqy,0

∞∏

n=1

dcx,ndcy,ndsx,ndsy,n e
−SE

= NA
∞∏

n=1

π√
detMn

π√
detM∗n

= N ′A
∞∏

n=1

[

1 +

(
βωc

2πn

)2
]−1

,

(10.2.17)

where ωc is defined in eq.(10.2.5), we used the fact that the integral over q⃗0 renders the

area A, and

detMn = m2

(
2πn

β

)4
[

1 +

(
βωc

2πn

)2
]

(10.2.18)

(see eq. (10.2.5)), while we included all the factors which do not depend on B in the overall

normalization N ′ of the path integral. In turn, this constant can be easily calculated by

considering the same problem for B = 0, i.e., by calculating the partition function Z0(β)
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of a free quantum particle with Hamiltonian H0 = p⃗ 2/(2m) which is confined in a d-

dimensional space with volume A:

Z0(β) =

∫
dq⃗dp⃗

(2π!)d
e−βH0 = A

(
m

2π!β

)d/2

. (10.2.19)

By requiring that Z in eq. (10.2.5) reduces to Z0 for ωc = 0 (with d = 2), one fixes the

value of N ′ and finds that

Z(β) = A m

2π!β

βωc/2

sinh(βωc/2)
=

AeB

2π!

∞∑

n=0

e−βωc(n+1/2), (10.2.20)

where we used the identity

∞∏

n=1

(
1 +

x2

π2n2

)
=

sinhx

x
, (10.2.21)

and the expansion of sinh in terms of exponentials. Recalling the definition of Z(β) in

eq. (10.2.6) one can alternatively calculate it in the basis of the eigenstate of the energy H

(with eigenvalues En and degeneracy gn), finding that Z(β) =
∑

n gne
−βEn . By comparing

this general expansion with eq. (10.2.20) it is possible to identify En = !ωc(n+ 1/2) and

gn = AeB/(2π!), which are readily recognized to be the Landau levels that we discussed

before. Note that, due to the fact that gn has to be an integer, one concludes that the flux

AB of a magnetic field trough a certain surface of area A has to be a multiple integer of

the elementary flux 2π/e. This is nothing but the Dirac quantization condition for a flux

of B through a (large) close surface enclosing a magnetic monopole.

10.2.2 Vacuum Instability for a Constant Electric Field⋆

In order to address the issue of the vacuum instability in the presence of external fields,

we consider first the case of a scalar field, i.e., the scalar QED with Lagrangian

L = −1

4
FµνF

µν + (Dµφ)
†Dµφ−m2φ2, (10.2.22)

where Dµ = ∂µ − ieAµ is the covariant derivative and the field Aµ is assumed to be

assigned from the outset. (We neglect here the self-interaction of the scalar field as it only

provides a small correction to the phenomenon of vacuum instability.) Denoting by |0⟩
the vacuum of the system (of large volume V ), its decay rate in the presence of the field

can be determined by looking at the effective action SQ[A] obtained by integrating out

the fluctuations of φ, i.e.,

eiSQ[A] = ⟨0|e−iHT |0⟩ =
∫

DφDφ∗ei
∫
d4xL. (10.2.23)

224



In fact, as long as the vacuum is stable, the probability amplitude ⟨0|e−iHT |0⟩ has unit

modulus and therefore

SQ[A] = −
1

4

∫
d4xFµνF

µν +∆SQ[A] (10.2.24)

is real, whereas if ∆SQ acquires an imaginary part, the vacuum decays with a rate per

unit volume given by

Γ ≡
2 Im∆SQ[A]

V T
; (10.2.25)

the same relationship applies to the case of QED, discussed further below. Let us mention

that according to the heuristic picture of the Schwinger effect provided at the beginning

of this section, the rate Γ can be interpreted as the rate (per volume) of production of real

pairs from the virtual ones of the vacuum.

Most of the results presented hereafter were originally derived by J. Schwinger in

ref. [28].

10.2.3 Instability of a Scalar Field Vacuum⋆

The one-loop contribution ∆SQ[A] to the quantum action SQ[A] due to the interaction of

the complex scalar field with the background field Aµ is given, according to eqs. (10.2.22)

and (10.2.23), by

i∆SQ[A] = ln

{
N
∫
DφDφ∗ ei

∫
d4x φ∗(−D2−m2)φ

}
. (10.2.26)

In order to calculate the Gaussian integral on the r.h.s. it is convenient to perform a

Wick’s rotation by introducing a coordinate x4 such that x0 = −ix4 and correspondingly

by replacing the temporal component A0 of the vector potential by iA4. As a result,

D0 = ∂0 − ieA0 = iD4 with D4 ≡ ∂4 − ieA4 and D2 = D2
0 − D⃗ 2 = −(D2

4 + D⃗ 2) ≡
−D2

E , where we define DE,µ = ∂µ − ieAE,µ with µ = 1, 2, 3, 4, and Euclidean metric.

Correspondingly, one defines A⃗E = A⃗ and AE,4 = −iA0. As a result, i
∫
d4x φ∗(−D2 −

m2)φ = −
∫
d4xE φ∗(−D2

E + m2)φ and the Gaussian integral can be easily calculated,

leading to

i∆SQ[A] = −Tr ln
−D2

E +m2

µ2
+ . . . , (10.2.27)

where henceforth we neglect irrelevant constants and we introduce a convenient momentum

scale µ. Note that the operator D2
E cannot be trivially diagonalized in momentum space,

due to the spatial dependence of Aµ. However, the problem of calculating Tr ln(· · · ) can
be conveniently related to the one we discussed in Sec. 10.2.1, i.e., to the calculation of
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Tr e−(··· ), by noticing that

ln
a

b
= −

∫ ∞

0

dt

t

(
e−at − e−bt

)
. (10.2.28)

By using eq. (10.2.28) we get

i∆SQ[A] =

∫ ∞

0

dβ

β
e−βm

2
Tr e−β(−D

2
E) + const. . (10.2.29)

The constant term in eq. (10.2.29) is independent of A. It simply provides a regularization

of the first term and can be neglected in what follows. The connection with the problem

discussed in Sec. 10.2.1 is apparent by noticing that

−D2
E = (−i∂⃗ − eA⃗E)

2 (10.2.30)

formally coincides with the Hamiltonian reported in eq. (10.2.2) of a quantum particle in 4

spatial dimensions, with momentum p⃗ = −i∂⃗, massm = 1/2, in the presence of an external

field A⃗E . Accordingly, Tr e−β(−D
2
E) can be identified with the partition function Z(β) of

this particle and it can be calculated as explained in Sec. 10.2.1 (see eqs. (10.2.8) and

(10.2.9)), where now the position vector q⃗(τ) of the fictitious particle has 4 components

instead of 2. This fact introduces a slight complication in the calculation, which we

discuss here. In order to carry out the calculation we need to specify the form of the

vector potential A⃗E . Assuming that the corresponding Euclidean field FE,µν = ∂µAE,ν −
∂νAE,µ = −FE,νµ is constant in space and time, a possible choice of the vector potential

is

AE,µ(q⃗ ) =
1

2
FE,µνqν , (10.2.31)

such that the Euclidean Lagrangian (see eq. (10.2.9)) of this particle becomes

LE =
m

2

(
dq⃗

dτ

)2

− ie

(
dq⃗

dτ

)T FE

2
q⃗(τ), (10.2.32)

where FE is the (antisymmetric) matrix of the field and T indicates the transposition.

With this LE , the path integral in eq. (10.2.8) can be calculated by decomposing q⃗ as in

eq. (10.2.10) and by expressing the corresponding Euclidean action SE in terms of the

coefficients s⃗n and c⃗n, taking into account the natural generalizations of eqs. (10.2.13) and

(10.2.14), i.e.,

∫ β

0
dτ

dqµ
dτ

qν(τ) =
∞∑

n=1

2πn

β
(−cµ,nsν,n + sµ,ncν,n), (10.2.33)

∫ β

0
dτ

(
dqµ
dτ

)2

=
∞∑

n=1

(
2πn

β

)2

(c2µ,n + s2µ,n). (10.2.34)
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As the term on the l.h.s. of the first equation is contracted in SE with the antisymmetric

matrix FE , the two terms on the r.h.s. eventually give the same contribution and therefore

SE =
∞∑

n=1

⎧
⎨

⎩
m

2

(
2πn

β

)2 4∑

µ=1

(c2µ,n + s2µ,n)− ie

(
2πn

β

) 4∑

µ,ν=1

sµ,nFE,µνcν,n

⎫
⎬

⎭ . (10.2.35)

Accordingly, the partition function can be written as

Z = N
∫ 4∏

µ=1

(

dqµ,0

∞∏

n=1

dcµ,ndsµ,n

)

e−SE (10.2.36)

where the integral over q⃗0 renders the Euclidean space-time volume iTV , while the integral

over each single sµ,n is a Gaussian integral in the presence of a linear term of the form

∫
dsµ,ne

−αs2µ,n+iγsµ,n =

√
π

α
e−γ

2/(4α), (10.2.37)

with α = (πn/β)2 (withm = 1/2), and γ = e(2πn/β)FE,νµcµ,n. After this first integration,

one finds (up to irrelevant constants which are absorbed in the definition of N ′ and then

N ′′)

Z = N ′iTV
∫ ∞∏

n=1

⎛

⎝
4∏

µ=1

dcµ,n exp
{
−(πn/β)2cµ,nMµνcν,n

}
⎞

⎠

= N ′′iTV
∞∏

n=1

(detMn)
−1/2

(10.2.38)

where we introduced the 4× 4 matrix

Mn,µν ≡ δµν −
(
eβ

πn

)2

(F 2
E)µν . (10.2.39)

As in the case discussed in Sec. 10.2.1, the normalization constant N ′′ can be fixed by

comparing this result with the one in the absence of the coupling to the field AE,µ, i.e.,

for e = 0, which reduces to the partition function of a free particle (with mass m = 1/2)

calculated in eq. (10.2.19) for generic dimension d, with an area A given by the Euclidean

volume iV T . Accordingly,

Z(β) = iTV (4πβ)−2
∞∏

n=1

(detMn)
−1/2. (10.2.40)

In order to proceed further we have to specify the fields E⃗ and B⃗, which enter the tensor

Fµν as F0j = Ej with j = 1, 2, and 3, while Fjk = ϵjklBl. Accordingly, the components
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of the Euclidean tensor are given by FE,4j = −iF0j = −iEj and FE,jk = Fjk = ϵjklBl.

Without loss of generality, we consider here the case in which the electric field E⃗ = Ee⃗x is

directed along the x-axis, while the magnetic field B⃗ = Bxe⃗x + Bye⃗y is on the x-y-plane,

which result in the Euclidean field

FE =

⎛

⎜⎜⎜⎜⎝

0 0 −By iE

0 0 Bx 0

By −Bx 0 0

−iE 0 0 0

⎞

⎟⎟⎟⎟⎠
, (10.2.41)

with

F 2
E =

⎛

⎜⎜⎜⎜⎝

−B2
y + E2 BxBy 0 0

BxBy −B2
x 0 0

0 0 −B2
y −B2

x iByE

0 0 iByE E2

⎞

⎟⎟⎟⎟⎠
. (10.2.42)

Due to the block-diagonal structure of F 2
E , the 4 eigenvalues of this matrix are given by

the 2 eigenvalues of the upper left 2×2 matrix and by those of the lower right 2×2 matrix.

However it is easy to see that these two 2× 2 matrices have the same eigenvalues, which

therefore have multiplicity two and which are solutions of the equation

λ2 + (B⃗2 − E⃗2)λ− (B⃗ · E⃗)2 = 0, (10.2.43)

i.e.,

λ± =
1

2

[
E⃗2 − B⃗2 ±

√
(B⃗2 − E⃗2)2 + 4(B⃗ · E⃗)2

]
≡ ±a2±. (10.2.44)

Accordingly

detMn =

(
1− e2β2

π2n2
a2+

)2(
1 +

e2β2

π2n2
a2−

)2

, (10.2.45)

and Z in eq. (10.2.40) can be calculated by using eq. (10.2.21):

Z(β) = Tr e−β(−D
2
E) =

iTV

(4πβ)2
eβa+

sin(eβa+)

eβa−
sinh(eβa−)

. (10.2.46)

Note that

Z(β → 0) =
iTV

(4πβ)2

[
1 +

e2β2

6
(E⃗2 − B⃗2) +O(β4)

]
, (10.2.47)

and therefore the integral over β in eq. (10.2.29) (which defines i∆SQ[A]) displays a leading

divergence ∼ β−2 for β → 0 which is independent of the field and therefore of the coupling

constant e and which is cured by the regularizing term that was omitted in that equation.

The next, subleading logarithmic divergence is proportional to E2− B⃗2, i.e., it depends on

the fields and therefore it cannot be taken care of by the additive counter-terms mentioned
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above. In order to understand the origin of this divergence it is convenient to generalize the

present analysis to generic dimensionality d close to 4. The primary effect of having d ≠ 4

is to change the determination of the normalization constant N ′′ by comparison with the

case of a free particle. Going back to eq. (10.2.19) one concludes that this generalization

amounts at multiplying the r.h.s. of eq. (10.2.46) by the factor (4πβ)2−d/2, while V T

has to be understood as the volume of space-time in the corresponding dimensionality.

Accordingly, from eq. (10.2.29), one finds

∆SQ[A] = V T

∫ ∞

0

dβ

β
e−βm

2
(4πβ)−d/2

[
1 +

e2β2

6
(E⃗2 − B⃗2) +O(β4)

]
+ const. (10.2.48)

which contains a dimensional pole for ϵ = 4− d→ 0, as expected. In particular, the part

proportional to the fields turn out to be

∆SQ[A] = V T
e2

6(4π)2
(E⃗2 − B⃗2)× 2

ϵ
+ . . . (10.2.49)

and we expect this dimensional pole to be cured by a suitable renormalization of the field

amplitude. In fact, by introducing the field-strength renormalization constant Z3, the

quantum action in eq. (10.2.24) for spatially and temporally constant fields can be written

as

SQ[A] = V T
E⃗2 − B⃗2

2
Z3 + V T

e2

6(4π)2
(E⃗2 − B⃗2)× 2

ϵ
+ . . . (10.2.50)

where we used the fact that FµνFµν = −FµνF νµ = −FE,µνFE,νµ = −Tr F 2
E = 2(B⃗2− E⃗2)

(see eq. (10.2.42)) on the field configuration that we are discussing. Accordingly, within

the minimal subtraction scheme, one can remove the divergence by fixing

Z3 = 1− e2

(4π)2
2

3ϵ
+O(e4), (10.2.51)

which is indeed the field-strength renormalization constant that one determines by a di-

rect renormalization of the photon propagator in scalar QED. Accordingly, the expression

of SQ[A] which follows from eqs. (10.2.29) and (10.2.46) can be made finite with suit-

able renormalizations. Having established this, let us focus on the one-loop contribution

directly in d = 4:

∆SQ[A] =
V T

16π2

∫ ∞

0

du

u
e−u

ea+
sin(eua+/m2)

ea−
sinh(eua−/m2)

, (10.2.52)

where the integral has been expressed in terms of the variable u = βm2. Even after

renormalization, a close inspection of this integral reveals that it does not converge be-

cause of the presence of zeros of the denominator also for u > 0 and corresponding to
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u = un ≡ m2πn/(ea+). However, one should remember of the Feynman prescription for

regularizing the path integral (as when calculating propagators), which effectively amounts

at substituting m2 → m2 − iε with ε→ 0+. With this prescription, the singularities just

mentioned move out of the real axis and the integral can be safely calculated. However

— as it is the case when studying the decay of unstable particles — this also implies the

emergence of an imaginary part in ∆SQ[A], which is eventually responsible for the vac-

uum decay. In particular 1/ sin x ≃ (−1)n/(x − πn) for x → πn and taking into account

eq. (2.1.26) one concludes that

Im
1

sin(x+ iε)
= −π

∞∑

n=0

(−1)nδ(x − πn). (10.2.53)

Accordingly,

Im ∆SQ[A] =
V T

(4π)2
e2a+a−

∞∑

n=1

(−1)n+1

n

e−nπm
2/(ea+)

sinh(nπa−/a+)
, (10.2.54)

(where the contribution due to n = 0 is discarded, being cancelled by the renormalization

discussed above) and, according to eq. (10.2.25), we find that the decay rate of the vacuum

is

Γ =
e2a+a−
8π2

∞∑

n=1

(−1)n+1

n

e−nπm
2/(ea+)

sinh(nπa−/a+)
. (10.2.55)

Note that this expression is non-perturbative in the coupling constant e, due to the es-

sential singularity associated with the exponential factor. Consider now the two relevant

cases in which either field (a) E⃗ or (b) B⃗ is present: from eq. (10.2.44) one concludes that

a+ = |E⃗| and a− = 0 in the former case, whereas a+ = 0 and a− = |B⃗| in the latter.

As a consequence of the vanishing of a+, the decay rate Γ of the vacuum vanishes in the

presence of B⃗ alone, as it could have been expected on the basis of the fact that a mag-

netic field does not do any work on a charged particle and therefore it cannot provide the

necessary energy to transform virtual pairs into real ones. On the other hand, an electric

field E⃗ induces a decay of the vacuum even in the absence of a magnetic field B⃗ and, in

fact, eq. (10.2.55) becomes

Γ =
e2|E⃗|2

8π3

∞∑

n=1

(−1)n+1

n2
e−nπm

2/(e|E⃗|) (10.2.56)

for B⃗ = 0. As expected from the heuristic discussion presented in the introduction to the

issue of vacuum instability, Γ/m4 in this equation is a function |E⃗|/Ecr with Ecr = 2m2/e.

Figure 10.1, presented at the end of next section, provides a plot of Γ/(e|E⃗|)2 as a function

of |E⃗|/Ecr and compares it with the case of QED which we discuss next.
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10.2.4 Instability of a Fermion Field Vacuum⋆⋆

Consider now the case in which the vacuum is that one of fermions, i.e., the case of

QED with fermions of mass m. Following the same line of argument as in the previous

subsection, the decay rate is determined by the effective quantum action

i∆SQ[A] = ln

{
N
∫
DψDψ̄ exp

[
i

∫
d4x ψ̄(i/D −m)ψ

]}

= Tr ln

(
i/D −m

µ

)
+ . . . .

(10.2.57)

Here we note that in taking the trace TrD over Dirac matrices of a generic scalar func-

tion f of /D one has that TrDf(i/D) = TrDf(−i/D) because TrD(i/D)n = TrDγ5(i/D)nγ5 =

TrD(γ5i/Dγ5)n = TrD(−i/D)n (being (γ5)2 = I and γ5, γµ = 0). Accordingly,

Tr ln

(
i/D −m

µ

)
=

1

2
Tr ln

(
i/D −m

µ

−i/D −m

µ

)
=

1

2
Tr ln

(
/D2 +m2

µ2

)
, (10.2.58)

which renders an expression quite similar to eq. (10.2.27). Using the facts that {γµ, γν} =

2ηµν , [γµ, γν ] ≡ −2iσµν , and that the convariant derivative satisfies [Dµ,Dν ] = ieFµν , we

can write

/D2 =
1

2
({γµ, γν}+ [γµ, γν ])D

µDν = D2 +
e

2
σµνF

µν . (10.2.59)

As in the case discussed in Sec. 10.2.3, it is convenient to perform a Wick’s rotation by

introducing, in addition to the Euclidean coordinates and fields discussed right before

eq. (10.2.27), also a set of Euclidean γ matrices γE such that γi = γE,i with i = 1, 2,

3, while γ0 = iγE,4. As a result, /∂ = γ0∂0 − γ⃗ · ∂⃗ = −(γE,4∂4 + γ⃗ · ∂⃗) ≡ −/∂E with

Euclidean metric. In addition, we introduce [γE,µ, γE,ν ] ≡ −2iσE,µν with σE,4k = −iσ0k
and σE,lk = σlk, with l, k ∈ {1, 2, 3}, such that Fµνσµν = FE,µνσE,µν . Using the chiral

representation for the γ matrices one has, in terms of Pauli matrices {σl}l=1, 2, 3,

γ0 =

(
0 1

1 0

)

, γl =

(
0 σl

−σl 0

)

, σ0l = i

(
−σl 0

0 σl

)

, σij = ϵijk

(
σk 0

0 σk

)

,

(10.2.60)

and therefore

FE,µνσE,µν = 2

(
σ⃗ · (−iE⃗ + B⃗) 0

0 σ⃗ · (iE⃗ + B⃗)

)

. (10.2.61)

Now it is possible to express the quantum action ∆SQ with the help of eqs. (10.2.57),

(10.2.58), (10.2.59), and (10.2.28), as

i∆SQ[A] =
1

2
Tr ln

(
−D2

E + (e/2)FEσE +m2

µ2

)

= −1

2

∫ ∞

0

dβ

β
e−βm

2
Tr
[
e−β(−D

2
E)e−(βe/2)FEσE

]
+ const.

(10.2.62)
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The trace in the integrand involves a differential operator e−β(−D
2
E) acting on the coor-

dinate space which is the same as the one discussed in Sec. 10.2.3 and which does not

affect the spinorial structure; the operator e−(βe/2)FEσE , instead, acts only on the spino-

rial structure while it does not affect the coordinate space. As a result, the trace factorizes

into the traces over these two different spaces and the only new element in the analysis

compared to the case of scalar QED is the calculation of TrD e−(βe/2)FEσE . This can be

easily done because of the simple structure of FEσE (see eq. (10.2.61)), which yields

Tr exp

(
σ⃗ · x⃗ 0

0 σ⃗ · y⃗

)

= Tr

(
eσ⃗·x⃗ 0

0 eσ⃗·y⃗

)

= 2(cosh |x⃗|+ cosh |y⃗|), (10.2.63)

where we used the facts that eσ⃗·x⃗ = I cosh |x⃗|− (x⃗ · σ⃗/|x⃗|) sinh |x⃗| and TrPauli σl = 0, with

TrPauli I = 2. (In the previous relation |x⃗| =
√
x⃗ · x⃗.) Accordingly, using eq. (10.2.63) in

eq. (10.2.61), we find

TrD e−(βe/2)FEσE = 2
[
cosh(βe|− iE⃗ + B⃗|) + cosh(βe|iE⃗ + B⃗|)

]

= 4cosh

(

βe
|− iE⃗ + B⃗|+ |iE⃗ + B⃗|

2

)

cosh

(

βe
|− iE⃗ + B⃗|− |iE⃗ + B⃗|

2

)

= 4cos(βea+) cosh(βea−),

(10.2.64)

where a± were introduced in eq. (10.2.44).5

Accordingly, on the basis of eqs. (10.2.46) and (10.2.64), one can express eq. (10.2.62)

as

∆SQ[A] = −
V T

8π2

∫ ∞

0

dβ

β

1

(4πβ)d/2−2
e−βm

2 e2a+a−
tanh(βea−) tan(βea+)

. (10.2.65)

As in the case of the analogous expression for the scalar vacuum, the last factor in the

integrand behaves as ≃ β−2+(B⃗2−E⃗2)/3+O(β2) for β → 0, the leading field-independent

term of which is regularized by additional additive terms that we have omitted; the next

term of the expansion, instead, is responsible for the emergence of a field-dependent loga-

rithmic divergence (equivalently, of a dimensional pole in DR) which can be cancelled by

a suitable renormalization of the field. Repeating the analysis presented in Sec. 10.2.3 for

the scalar case it is not difficult to recover in this way the field-strength renormalization

constant of QED

Z3 = 1− e2

(4π)2
8

3ϵ
+O(e4), (10.2.66)

5Indeed, indicating by q± = [| − iE⃗ + B⃗| ± |iE⃗ + B⃗|]/2 = {[|B⃗|2 − |E⃗|2 − 2iE⃗ · B⃗]1/2 ± [|B⃗|2 − |E⃗|2 +

2iE⃗ · B⃗]1/2}/2 the factors in the arguments of cosh on the second line of eq. (10.2.64), the last equality in

that equation follows from the fact that a comparison with eq. (10.2.44) yields the equality q2± = ∓a2
± and

therefore q+ = ia+ and q− = a− (a possible ambiguity in the overall sign does not affect the final result).
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Figure 10.1: Vacuum decay rate Γ per unit volume as a function of the strength E of the

electric field (in the absence of a magnetic field), for scalar QED (sQED, red lines) and

QED (blue lines). The solid curves correspond to eqs. (10.2.56) and (10.2.68) for sQED and

QED, respectively, while the dashed lines indicate the corresponding asymptotic values

for E ≫ Ecr, with Ecr = 2m2/e.

as the reader can easily verify. Once these divergent terms have been properly subtracted

from eq. (10.2.65), its renormalized expression can be used in order to calculate the vacuum

decay rate Γ (via eqs. (10.2.25) and (10.2.53)), which turns out to be given by the expres-

sion in eq. (10.2.55) corrected by an overall factor −2 (compare eq. (10.2.65) for d = 4

to eq. (10.2.52)) times the residue of the factors cos(eua+/m2) cosh(eua−/m2) at u = un

(see after eq. (10.2.52)) introduced by the trace over the spinorial structure; accordingly,

Γ =
e2a+a−
4π2

∞∑

n=1

1

n

e−nπm
2/(ea+)

tanh(nπa−/a+)
. (10.2.67)

As in the case of Γ in eq. (10.2.55) one can easily verify that the presence of a sole magnetic

field B⃗ is not sufficient to give a non-vanishing Γ. On the other hand a finite electric field

E⃗, with B⃗ = 0, is responsible for a decay rate Γ which can be easily determined according

to the discussion reported after eq. (10.2.55) and which is given by

Γ =
e2|E⃗|2

4π3

∞∑

n=1

e−nπm
2/(e|E⃗|)

n2
. (10.2.68)

Figure 10.1 compares, as a function of E/Ecr the vacuum decay rate Γ per unit vol-

ume (normalized as Γ/(eE)2) with E⃗ ≠ 0 and B⃗ = 0 of QED (blue lines, given by the

equation above) with that one of scalar QED (red lines, see eq. (10.2.56)). Due to its

non-perturbative nature, the Schwinger effect is practically absent as long as E does not
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exceed ≃ Ecr (as it is clearly shown by the behavior of the solid curves in Fig. 10.1 for

E ! Ecr), which makes its observation a long-standing experimental challenge. Consider,

for example, the typical electric field within an atom, i.e., Ea = e/a20 ≃ 6 ·1011V/m (where

a0 ≃ 5 · 10−11m is Bohr’s radius): its ratio to the critical field Ecr is Ea/Ecr ≃ 3 · 10−6 and

eq. (10.2.68) would render the Γ/m4 ≃ 10−10
6
: the pair creation rate γ from the vacuum

surrounding an atom of volume a30 would therefore be γ = Γa30 ≃ 10−10
6
s−1 which results

in a number of produced pairs that is surely negligible even for an observation time of the

order of the age of the universe (≃ 4 · 1017s).
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Chapter 11

Final Project: The Abelian Higgs

Model⋆

In this last chapter we study the abelian Higgs model, along the lines of ref. [10]. This

chapter should be seen as a sort of long exercise in which many of the notions and tech-

niques introduced in these notes (effective potential, background field method, ghosts,

gauge-fixing, CS equations, β-functions and anomalous dimensions) are considered to-

gether.

The Lagrangian is

L = −1

4
FµνF

µν + |DµΦ|2 −
λ

6
(Φ†Φ)2 , (11.0.1)

where DµΦ = ∂µΦ − ieAµΦ. Our aim will be to understand the vacuum of this theory,

namely whether the U(1) gauge symmetry is broken or not, and the RG flows of the two

couplings e and λ. First of all, we have to gauge fix the theory. Since we want to study

the effective potential as a function of the VEV of Φ, it is convenient to use a generalized

ξ-gauge which is valid for any value of ⟨Φ⟩:

Lg.f. = −
1

2ξ

[
∂µA

µ + ieξ(φ†φ0 − φφ†0)
]2

, (11.0.2)

where Φ = φ0 + φ, with φ0 the VEV of Φ and φ its quantum fluctuation. It is straight-

forward to verify that the quadratic mixing terms between φ and Aµ vanish when Lg.f. is

added to the Lagrangian (11.0.1). Even if the local symmetry is abelian, the ghosts do

not decouple in the ξ-gauge we have chosen. The ghost Lagrangian, as usual, is derived

by taking the infinitesimal variation of Lg.f. with respect to a U(1) transformation. One

gets

Lghosts = ∂µω
⋆∂µω − e2ξω⋆ω

[
2|φ0|2 + (φ†φ0 + φ†0φ)

]
. (11.0.3)
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In the Landau gauge ∂µAµ = 0, reached for ξ → 0, the ghosts are free and decouple,

whereas in the unitary gauge ξ →∞ they are infinitely massive and decouple again. We

will not fix in the following a specific value of ξ, so that the ghosts should be taken into

account. The total Lagrangian is

Ltot = L+ Lg.f. + Lghosts. (11.0.4)

11.1 One-loop Effective Potential⋆

The 1-loop effective potential is completely determined by the terms in Ltot quadratic in

the field fluctuations. In momentum space, we have

Ltot,quad(p) = −
1

2
Aµ(−p)Aν(p)L(A)

µν (p) + ω⋆(−p)L(ω)(p)ω(p) +
1

2
φi(−p)L(φ)

ij (p)φj(p) ,

(11.1.1)

where φ = (φ1 + iφ2)/
√
2, and

L(A)
µν (p) = ηµν(p

2 − 2e2|φ0|2)−
(
1− 1

ξ

)
pµpν ,

L(ω)(p) = p2 − 2ξe2|φ0|2 , (11.1.2)

L(φ)
ij (p) =

(
p2 − |φ0|2(e2ξ + 2λ

3 ) + (φ20 + φ⋆20 )(e
2ξ
2 −

λ
6 ) i(φ20 − φ⋆20 )(e

2ξ
2 −

λ
6 )

i(φ20 − φ⋆20 )(e
2ξ
2 −

λ
6 ) p2 − |φ0|2(e2ξ + 2λ

3 )− (φ20 + φ⋆20 )(e
2ξ
2 −

λ
6 )

)

.

Modulo irrelevant factors,

detL(A)
µν (p) = (p2 − 2e2|φ0|2)3(p2 − 2e2ξ|φ0|2) ,

detL(φ)
ij (p) = (p2 − λ|φ0|2)

[
p2 − |φ0|2(2e2ξ +

λ

3
)
]
. (11.1.3)

Summing over all contributions (gauge, ghosts and scalar fields), we get

V1−loop(ρ) =
1

2

∫
d4pE
(2π)4

[
3 log(p2E + e2ρ2)− log(p2E + ξe2ρ2)

+ log(p2E +
λ

2
ρ2) + log

(
p2E +

(
ξe2 +

λ

6

)
ρ2
)]

, (11.1.4)

where ρ2 = 2|φ0|2. We renormalize V1−loop by demanding that

d2V1−loop
dρ2

∣∣∣∣
ρ=0

= 0 ,
d4V1−loop

dρ4

∣∣∣∣
ρ=µ

= 0 . (11.1.5)

After some simple algebra, we obtain

Veff (ρ) = Vtree(ρ)+V1−loop(ρ) =
λ

4!
ρ4+

ρ4

64π2

(
3e4+

5

18
λ2+

1

3
ξλe2

)(
log

ρ2

µ2
−25

6

)
. (11.1.6)
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Figure 11.1: One-loop graph leading to a λρ4 coupling.

Let us study the minima of Veff , assuming that λ ∼ e4, so that at leading order we can

neglect the λ2 and ξλe2 terms in eq. (11.1.6). It is important to emphasize here that at

tree-level (or, alternatively, at any given energy scale) we can assume any relation we like

of the form λ ∼ en for any n, but such relations at the quantum level cannot generally hold

at any energy scale for any n. Indeed, radiative corrections will nevertheless generate the

λρ4 coupling in the theory. The leading one-loop correction arises from virtual photons as

illustrated in fig. 11.1. Being this correction of O(e4), we see that λ ∼ en, with n ≤ 4, are

the only radiatively stable assumptions we can make. The extrema of Veff are

dVeff

dρ
= ρ3

(
λ

6
+

e4

16π2

(
3 log

ρ2

µ2
− 11

))
= 0 . (11.1.7)

Taking µ = ⟨ρ⟩ in eq. (11.1.7), we get ρ = 0 and

λ(⟨ρ⟩) = 33

8π2
e4(⟨ρ⟩) . (11.1.8)

Equation (11.1.8) is an instance of dimensional transmutation: we have traded the VEV

of ρ for the coupling λ. Plugging back in Veff gives

Veff ≃
3e4

64π2
ρ4
(
log

ρ2

⟨ρ⟩2 −
1

2

)
. (11.1.9)

The extremum (11.1.8) is a minimum. The photon and scalar masses are

m2
γ = e2⟨ρ⟩2 , m2

ρ =
3e4

8π2
⟨ρ⟩4 . (11.1.10)

We conclude that in this theory a dynamical spontaneous symmetry breaking of the U(1)

gauge symmetry can occur. In order to firmly establish that, we have to compute the RG

evolutions of λ and of the charge e to check the existence of an energy scale ⟨ρ⟩ where
eq. (11.1.8) is valid. This computation will be the subjects of the following sections.
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11.2 The Quantum Effective Action⋆

An instructive way of computing the β-functions of λ and e, as well as the anomalous

dimensions of Aµ and φ, makes use of a functional form of the CS equations (5.4.3), which

reads:

µ
dΓ

dµ
=

(
µ
∂

∂µ
+ β

∂

∂λ
− γ

∫
d4xφ(x)

δ

δφ(x)

)
Γ(φ) = 0 , (11.2.1)

where Γ(φ) is the quantum effective action. For a single real scalar field, keeping up to

two derivative terms, the latter reads

Γ(φ) =

∫
d4x

(1
2
Z(φ)(∂µφ)

2 − Veff (φ)
)
, (11.2.2)

where Veff is the Coleman-Weinberg potential and Z is the radiative correction to the

kinetic term. Once Γ is known, eq. (11.2.1) gives us β and γ. It is straightforward to see

that eq. (11.2.1) encodes all eqs. (5.4.3) for any n, by recalling that

Γ(φ) =
∞∑

n=0

1

n!

∫
d4x1 . . . d

4xnΓ
(n)(x1, . . . , xn)φ(x1) . . .φ(xn) . (11.2.3)

In the case at hand, with two fields and two couplings, eq. (11.2.1) generalizes to

(
µ
∂

∂µ
+ βλ

∂

∂λ
+ βe

∂

∂e
− γA

∫
d4xAµ,0(x)

δ

δAµ,0(x)

−γφ
∫

d4x
(
φ0(x)

δ

δφ0(x)
+ φ†0(x)

δ

δφ†0(x)

))
Γ(φ0, Aµ,0) = 0 , (11.2.4)

where φ0, φ
†
0 and Aµ,0 are the background field configurations. Invariance under the

background U(1) gauge invariance implies that the lowest dimensional operators appearing

in Γ are of the form

Γ(φ0, Aµ,0) =

∫
d4x

[
− 1

4
H(ρ)F 2

µν,0 + Z(ρ)|Dµφ0|2 − Veff (ρ)

]
. (11.2.5)

The effective potential Veff has been already computed and is given by eq. (11.1.6). We

have then to determine H and Z only. This can be done by decomposing the gauge field

as well in terms of background and fluctuation fields: Aµ → A0
µ +Aµ.

Let us start by computing H, in which case we can take φ0 = constant. The relevant

interaction terms are

L ⊃ ieAµ
0 (φ

†∂µφ− ∂µφ†φ) , (11.2.6)

and H is determined by the contraction of the two scalar currents. The contractions of the

form ⟨φφ⟩ or ⟨φ†φ†⟩, although non-vanishing for φ0 ≠ 0 due to mass terms of the form φ2
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and (φ†)2, give only rise to irrelevant divergent contact terms. In DR, for instance, they

all trivially vanish. The only relevant contraction is the usual one, of the form ⟨φ†φ⟩. The
computation essentially boils down to the one-loop photon vacuum polarization in scalar

QED. Two diagrams contribute. The first reads

q

p+ q

A0
µ, p A0

ν ,−p
= iΠ1

µν(p) = (ie)2µϵ
∫

ddq

(2π)d
i2(p+ 2q)µ(p + 2q)ν

(q2 −m2)[(p + q)2 −m2]
, (11.2.7)

where, according to eq. (11.1.2),

m2 = m2(ρ) = ρ2
(2λ

3
+

e2ξ

2

)
. (11.2.8)

By performing the usual manipulations (introduce the Feynman parameter x, shift q →
q − xp and Wick rotate to euclidean momentum), we get

iΠ1
µν(p) = (ie)2µϵ

∫
ddq

(2π)d
i2(p+ 2q)µ(p + 2q)ν

(q2 −m2)[(p + q)2 −m2]
=

ie2µϵ

(4π)d/2

∫ 1

0
dx [m2 − p2x(1− x)]

d−4
2

× Γ
(4− d

2

)(
pµpν(1− 2x)2 − 4

2− d
ηµν [m

2 − p2x(1− x)]
)
. (11.2.9)

The second diagram is a tadpole, that does not depend on the external momentum p. It

can be cast in a form close to eq. (11.2.9) by multiplying and dividing it by (p+ q)2−m2.

Using the same manipulations as before, we get

q

A0
µ, p A0

ν ,−p

= iΠ2
µν(p) = 2ie2µϵηµν

∫
ddq

(2π)d
i

q2 −m2

(p+ q)2 −m2

(p+ q)2 −m2
= − 2ie2µϵ

(4π)d/2
ηµν

(11.2.10)

×
∫ 1

0
dx [m2 − p2x(1− x)]

d−4
2 Γ
(4− d

2

)(
(1− x)2p2 −m2 − d

2− d
[m2 − p2x(1− x)]

)
.

Summing the two contributions, we have

iΠµν = iΠ1
µν + iΠ2

µν =
ie2

24π2
(pµpν − ηµνp2)

(1
ϵ
+ const.

)
− ie2

16π2

∫ 1

0
dx log

m2 − p2x(1− x)

µ2

×
(
pµpν(1− 2x)2 − ηµνp2(4x2 − 6x+ 2)

)
. (11.2.11)

We are interested in computing H, which is the coefficient of the F 2 term, quadratic in

the external momentum p. The last term in eq. (11.2.11) is already quadratic in p, so we
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can safely neglect the p2 term inside the log and keep only the mass term m2. In this way

we get

iΠµν =
ie2

24π2
(pµpν − ηµνp2)

(1
ϵ
+ const.− log(ρ/µ)

)
, (11.2.12)

where we have reabsorbed in the arbitrary constant the ρ-independent factors coming from

eq. (11.2.8). As expected, Πµν is transverse. We now perform a non-minimal subtraction,

i.e. we add the counter-term1 i(Z − 1)(pµpν − ηµνp2) and require that

iΠµν + i(Z − 1)(pµpν − ηµνp2) = 0, at ρ = µ . (11.2.13)

The renormalized one-loop photon vacuum polarization is then

iΠR
µν =

ie2

24π2
(ηµνp

2 − pµpν) log
ρ

µ
≡ iAp2Pµν , (11.2.14)

where A = e2/(24π2) log φ/µ and we have defined the projector

Pµν = ηµν −
pµpν
p2

. (11.2.15)

The tree-level photon propagator is

Gµν(p) = −
i

p2

(
Pµν + ξ

pµpν
p2

)
. (11.2.16)

Iterating the one-loop correction (11.2.14) in the tree-level expression (11.2.16) we get

Gµν(p)→
−iPµν

p2(1−A)
− i

p2
ξpµpν
p2

(11.2.17)

from which we see that

− 1

4
F 2
µν,0 → −

1

4
(1−A)F 2

µν,0 (11.2.18)

finally giving the desired H(ρ):

H(ρ) = 1−A(ρ) = 1− e2

24π2
log

ρ

µ
. (11.2.19)

Let us now determine Z, the wave-function renormalization of φ0. In this case we can

set Aµ,0 = 0 but of course φ0 can no longer be taken constant. The tadpole graph given

by the quartic scalar interaction induces only a mass renormalization, so we need only to

consider the contribution induced by the gauge interactions. These are of the form Aµφφ0,

given by

L ⊃ 2ieAµ(φ†∂µφ0 − ∂µφ†0φ) . (11.2.20)

1Of course, the counter-term Z should not be confused with the finite Z(ρ) appearing in the effective

action (11.2.5).
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We have
q

p p+ q
= iΣ(p) = (2ie)2µϵpµpν

∫
ddq

(2π)d
Gµν(q)

i

(p + q)2 −m2
,(11.2.21)

where Gµν(q) is the photon propagator in the generically broken phase, as given by in

eq.(8.4.13), with µ2
γ = e2ρ2.2 For ξ ≠ 1, up to three denominators appear in eq. (11.2.21)

and the computation is a bit involved. We can greatly simplify it by noticing that i)

the log µ (and hence the log ρ) terms we are looking for can be detected by finding the

residues of the appropriate 1/q4 poles in the integrand, as explained in section 3.4 and

ii) we can set p = 0 in the scalar propagator since we already have two powers of the

external momentum coming from the vertices. After Wick rotating to euclidean momenta

and using SO(d) invariance of the integrand, we get

iΣ(p) = −4ie2µϵp2
∫

ddqE
(2π)d

(
1

q2E + µ2
γ
−

(1− ξ)q2E
d(q2E + ξµ2

γ)(q
2
E + µ2

γ)

)
1

q2E +m2

= (−4ie2)p2 1

8π2

(1
ϵ
+ log µ+ . . .

)ξ + 3

4
, (11.2.22)

where the . . . include the ρ-dependent terms we are looking for plus additional finite pieces.

The renormalized scalar two-point function reads then

iΣR(p) =
ie2

8π2
(3 + ξ)p2 log

ρ

µ
≡ ip2B , (11.2.23)

where, as before, we demand that ΣR(p) = 0 when ρ = µ. Iterating the one-loop correction

in the tree-level scalar propagator, as in the photon case, gives

i

p2
→ i

p2(1 +B)
, (11.2.24)

from which we extract Z(ρ):

Z(ρ) = 1 +B(ρ) = 1 +
e2

8π2
(3 + ξ) log

ρ

µ
. (11.2.25)

The form of the effective action (11.2.5) is finally determined and we can proceed to use

it to compute the RG evolution of the couplings e and λ. It is worth to emphasize that

the effective action (11.2.5) should be gauge invariant, but on the contrary it seems gauge-

dependent, since ξ enters in both Z(ρ) and in Veff (ρ). This apparent paradox is explained

by noticing that φ0 is not a canonically normalized field and the rescaling

φ0 →
1√
Z(ρ)

φ0 (11.2.26)

2Pay attention in not confusing the photon mass µγ with the sliding scale µ!
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is needed. The potential (11.1.6) is then rescaled by a factor 1/Z(ρ)2 and we have

1

Z(ρ)2
Veff (ρ) =

λ

4!
ρ4
(
1− e2

4π2
(3 + ξ) log

ρ

µ

)
+

ρ4

32π2

(
3e4 +

5

18
λ2 +

1

3
ξλe2

)
log

ρ

µ

=
λ

4!
ρ4 +

ρ4

32π2

(
3e4 +

5

18
λ2 − e2λ

)
log

ρ

µ
, (11.2.27)

and the ξ-dependence cancels. In eq. (11.2.27) we have focused on the log terms only, since

the constant term is scheme-dependent and we have not been careful in systematically

using a given scheme.

11.3 RG equations and Their Solutions⋆

For a single real scalar field, the functional RG equation (11.2.1) splits into two ordinary

differential equations for Z and V :
(
µ
∂

∂µ
+ β

∂

∂λ
− γφ ∂

∂φ
− 2γ

)
Z = 0 ,

(
µ
∂

∂µ
+ β

∂

∂λ
− γφ ∂

∂φ

)
Veff = 0 . (11.3.1)

In dealing with quartic potentials, like in our case, it is actually convenient to write an

RG equation for V (4) ≡ ∂4Veff/∂φ4 rather than Veff itself. Given that ∂4φ(γφ∂φ) =

4γ∂4φ + γφ∂φ∂4φ, we have

(
µ
∂

∂µ
+ β

∂

∂λ
− 4γ − γφ ∂

∂φ

)
V (4) = 0 . (11.3.2)

The RG equation (11.3.2) can further be simplified by noting that V (4) depends on φ only

through the dimensionless combination φ/µ. Then φ∂φV (4) = −µ∂µV (4) = ∂tV (4), where

t = log φ/µ and thus we get
(
− ∂

∂t
+ β̄

∂

∂λ
− 4γ̄

)
V (4) = 0 . (11.3.3)

where

β̄ =
β

1 + γ
, γ̄ =

γ

1 + γ
. (11.3.4)

Using the same manipulations, the RG equation for Z becomes
(
− ∂

∂t
+ β̄

∂

∂λ
− 2γ̄

)
Z = 0 . (11.3.5)

In the situation at hand, the functional RG equation is given by eq. (11.2.4). It is clear

that there can be no cancellations between the three terms (11.2.5) appearing in Γ, so
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eq. (11.2.4) splits into three independent equations. Let us first focus on the scalar kinetic

term |Dφ0|2:

|Dµφ0|2
(
− ∂

∂t
+ βe

∂

∂e
− γφρ∂ρ

)
Z + Z

(
βe

∂

∂e
|Dµφ0|2 − γA

∫
d4xAν,0(x)

δ|Dµφ0|2

δAν,0(x)

−γφ
∫

d4x
(
φ0(x)

δ

δφ0(x)
+ φ†0(x)

δ

δφ†0(x)

))
|Dµφ0|2 = 0 , (11.3.6)

where we have used the fact that Z depends on constant ρ only, with φ∂φ + φ†∂φ† = ρ∂ρ.

The term in the second line of eq. (11.3.6) equals −2γφ|Dµφ0|2, while the last two terms

in the first line of eq. (11.3.6) gives rise to a different operator. As such, two independent

equations arise from eq. (11.3.6). Requiring the vanishing of the coefficient proportional

to |Dµφ0|2 gives (
− ∂

∂t
+ β̄e

∂

∂e
− 2γ̄φ

)
Z = 0, (11.3.7)

with

β̄e =
βe

1 + γφ
, γ̄φ =

γφ
1 + γφ

. (11.3.8)

It is straightforward to see that

∫
d4xAν,0(x)

δ|Dµφ0|2

δAν,0(x)
= e

∂

∂e
|Dµφ0|2 (11.3.9)

and hence the vanishing of the coefficient multiplying ∂|Dµφ0|2/∂e gives

βe = eγA . (11.3.10)

Consider now the gauge kinetic term F 2
µν,0. We get

− 1

4
F 2
µν,0

(
− ∂

∂t
+ βe

∂

∂e
− γφρ∂ρ

)
H − 2γAH

(
− 1

4
F 2
µν,0

)
= 0 , (11.3.11)

that gives rise to (
− ∂

∂t
+ β̄e

∂

∂e
− 2γ̄A

)
H = 0, γ̄A =

γA
1 + γφ

. (11.3.12)

Finally we have the potential term. As explained before, we write an RG equation for

V (4) rather than Veff , which is the obvious generalization of eq. (11.3.3):

(
− ∂

∂t
+ β̄λ

∂

∂λ
+ β̄e

∂

∂e
− 4γ̄φ

)
V (4) = 0 . (11.3.13)

Equations (11.3.7), (11.3.10), (11.3.12) and (11.3.13) are enough to determine βe, βλ, γA

and γφ. Let us recall below the explicit form of Z, H and V (4), the latter computed from
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eq. (11.1.6):

Z(t) = 1 +
e2

8π2
(ξ + 3)t

H(t) = 1− e2

24π2
t (11.3.14)

V (4)(t) = λ+
1

4π2

(
9e4 +

5

6
λ2 + ξλe2

)
t

One immediately gets from eqs. (11.3.7), (11.3.10) and (11.3.12)

γφ = γ̄φ +O(e4) = − e2

16π2
(ξ + 3) +O(e4) ,

γA = γ̄A +O(e4) =
e2

48π2
+O(e4) ,

βe = β̄e +O(e5) =
e3

48π2
+O(e5) , (11.3.15)

Plugging the values (11.3.15) in eq. (11.3.13) allows us to determine βλ:

βλ = β̄λ +O(e6, e4λ, e2λ2) =
1

4π2

(
9e4 +

5

6
λ2 − 3λe2

)
+O(e6, e4λ, e2λ2) . (11.3.16)

Notice how all ξ-dependent factors have cancelled in βλ as it should be, being the latter

gauge invariant, like βe (and γA). The scalar field anomalous dimension γφ, instead, does

depend on ξ. This is expected since φ changes by a phase under a gauge transformation

and at the quantum level there is no gauge invariant notion of γφ.

The RG flow of e is easily computed from βe. We get

e2(t) =
e20

1− e20
24π2 t

. (11.3.17)

The RG flow of λ requires some more work. It is convenient to define R(t) = λ(t)/e2(t)

and write an RG equation for R. One gets

e2(t)Ṙ(t) =
e4(t)

4π2

(5
6
R2(t)− 19

6
R(t) + 9

)
, (11.3.18)

which is further simplified by considering R = R(e2), so that

Ṙ =
dR

de2
2eė =

e4

24π2
dR

de2
. (11.3.19)

Our desired final equation reads

e2
dR(e2)

de2
= 5R2(e2)− 19R(e2) + 54 , (11.3.20)
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Figure 11.2: Comparison between the RG behaviour of e2(t) (red line) and λ(t) (blue line)

over 100 orders of magnitude. We have taken e2(0) = λ(0) = 1/10.

whose solution is

R(e2) =
1

10

(
19 +

√
719 tan

(1
2

√
719 log e2 + θ

))
(11.3.21)

giving

λ(t) =
e2(t)

10

(
19 +

√
719 tan

(1
2

√
719 log e2(t) + θ

))
, (11.3.22)

where θ is an integration constant. Both e and λ grow in the UV but, as explicitly

shown in fig. 11.2, the quartic coupling λ varies significantly over a range in which the

electric charge remains essentially constant. We can then conclude that for a wide range

of initial conditions for e and λ there exists an energy scale where λ ∼ e4, and in particular

eq. (11.1.8) is valid.
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