sp(4) S.G.A. for a large class of three-body problems

Lorenzo Fortunato - Univ. Padova \& INFN (Italy)

lachello's students complex plane

- Arima -> necessity of simple models
- Leviatan -> partial «solvability»
- Wolf -> symplectic (and non-compact) has important solutions, many of which are still lacking applications
- Dukelsky, Kirchbach, Garcia-Ramos -> mentioned su(1,1)
- Draayer -> uses symplectic, mentioned both Rowe and Bahri
- Vitturi -> 1D three-body models are excersises for students (gosh, I'm one of his students). BUT 3D is difficult...

Personal history of this work

- 2002: fundamental work by Rowe and Bahri, JPA 31 (1998) 4947-4961
- 2003-2010: Used sp(2) techniques to solve Bohr hamiltonian with Coulomb and Kratzer potentials and a variety of other potentials (lachello docet)
- 2004 (while in Belgium): got the idea to extend to two coordinates ->sp(4)
- 2005-2006: tried to calculate matrix elements following E. De Souza Bernardes and failed... (but with finite dim. rep. !)
- 2007: talked with Rowe in Seattle and he said: «Could you formulate your idea in mathematical terms? »
- 2011: at the ECT* discussions with W.de Graaf (Univ. Trento) on finite dimensional representations of sp(4)
- 2012: finally understood the infinite dimensional representations of $\operatorname{sp(4)}$ and found an easy way to calculate matrix elements by generalizing a method that is contained in Wybourne's book!

2Body: Rowe -Bahri JPA 31 (1998) 4947-4961

Infinitesimal generators of $\operatorname{Sp}(1, \mathbb{R})$ are given by
$\left[\hat{x}_{j}, \hat{p}_{k}\right]=\mathrm{i} \bar{h} \delta_{j k} \hat{I}$.

$$
\begin{aligned}
& \hat{Z}_{1}=p^{2}=\sum_{i} p_{i}^{2} \quad \hat{Z}_{2}=r^{2}=\sum_{i} x_{i}^{2} \\
& \hat{Z}_{3}=\frac{1}{2}(r \cdot p+p \cdot r)=\frac{1}{2} \sum_{i}\left(x_{i} p_{i}+p_{i} x_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\hat{Z}_{1}, \hat{Z}_{2}\right]=-4 \mathrm{i} \bar{h} \hat{Z}_{3} \quad\left[\hat{Z}_{3}, \hat{Z}_{1}\right]=2 \mathrm{i} \bar{h} \hat{Z}_{1}} \\
& {\left[\hat{Z}_{3}, \hat{Z}_{2}\right]=-2 \mathrm{i} \bar{h} \hat{Z}_{2}}
\end{aligned}
$$

$\hat{X}_{1}=\frac{1}{4 \bar{h}}\left(\hat{Z}_{1}-\hat{Z}_{2}\right)$

$$
\hat{X}_{ \pm}=\hat{X}_{1} \pm i \hat{X}_{2} \quad \hat{X}_{0}=\hat{X}_{3}
$$

$\hat{X}_{2}=\frac{1}{2 \bar{h}} \hat{Z}_{3} \quad \hat{X}_{3}=\frac{1}{4 \bar{h}}\left(\hat{Z}_{1}+\hat{Z}_{2}\right)$
$\left[\hat{X}_{1}, \hat{X}_{2}\right]=-\mathrm{i} \hbar \hat{X}_{3} \quad\left[\hat{X}_{2}, \hat{X}_{3}\right]=\mathrm{i} \hbar \hat{X}_{1}$
$\left[\hat{X}_{3}, \hat{X}_{1}\right]=\mathrm{i} \hbar \hat{X}_{2}$.

$$
\left[\hat{X}_{-}, \hat{X}_{+}\right]=2 \hat{X}_{0} \quad\left[\hat{X}_{0}, \hat{X}_{ \pm}\right]= \pm \hat{X}_{ \pm}
$$

Rowe - Bahri continued

Positive discrete series irreps for $\mathfrak{s u}(1,1)$ are characterized by a lowest weight λ with positive real values. Orthonormal bases for these irreps are given by states $\{|n \lambda\rangle ; n=$ $0,1,2, \ldots\}$ which satisfy the equations

$$
\lambda=\ell+\operatorname{dim} / 2
$$

$$
\begin{aligned}
& \hat{X}_{+}|n \lambda\rangle=\sqrt{(\lambda+n)(n+1)}|n+1, \lambda\rangle \\
& \hat{X}_{-}|n+1, \lambda\rangle=\sqrt{(\lambda+n)(n+1)}|n \lambda\rangle \\
& \hat{X}_{0}|n \lambda\rangle=\frac{1}{2}(\lambda+2 n)|n \lambda\rangle
\end{aligned}
$$

$$
\begin{array}{ll}
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2}\left(r^{2}+\frac{\varepsilon}{r^{2}}\right) & E_{n l}=\left[2 n+1+\sqrt{\left(l+\frac{1}{2}\right)^{2}+\varepsilon}\right] \bar{h} \omega . \\
H_{\varepsilon}=\frac{1}{2} \bar{h} \omega\left(-\nabla^{2}+\beta^{2}+\frac{\varepsilon}{\beta^{2}}\right) & E_{n v}(\varepsilon)=\left[2 n+1+\sqrt{\left(v+\frac{3}{2}\right)^{2}+\varepsilon}\right] \bar{h} \omega .
\end{array}
$$

Davidson potential in both cases

Example: quartic potential

$$
\begin{aligned}
& \hat{X}_{+}|n \lambda\rangle=\sqrt{(\lambda+n)(n+1)}|n+1, \lambda\rangle \\
& \hat{X}_{-}|n+1, \lambda\rangle=\sqrt{(\lambda+n)(n+1)}|n \lambda\rangle \\
& \hat{X}_{0}|n \lambda\rangle=\frac{1}{2}(\lambda+2 n)|n \lambda\rangle
\end{aligned} \quad \begin{array}{ll}
\mathcal{Z}_{1 m n}=\langle m \lambda| \hat{Z}_{1}|n \lambda\rangle \\
\mathcal{Z}_{2 m n}=\langle m \lambda| \hat{Z}_{2}|n \lambda\rangle \\
\mathcal{Z}_{3 m n}=\langle m \lambda| \hat{Z}_{3}|n \lambda\rangle
\end{array}
$$

Example: consider hamiltonians of the form:

$$
\hat{H}=\frac{1}{2} \mathbf{p}^{2}+\alpha \mathbf{r}^{2 M}=\frac{1}{2} \hat{Z}_{1}+\alpha \hat{Z}_{2}^{2 M}
$$

we take $M=2$. Then $\hat{H}=\frac{1}{2} Z_{1}+\alpha Z_{2}^{2}$ and

$$
H_{m n}=\langle m \lambda| \hat{H}|n \lambda\rangle=\frac{1}{2}\langle m \lambda| \hat{Z}_{1}|n \lambda\rangle+\alpha \sum_{k}\langle m \lambda| \hat{Z}_{2}|k \lambda\rangle\langle k \lambda| \hat{Z}_{2}|n \lambda\rangle
$$

Then diagonalize the matrix (truncated at a certain n-max) and find the spectrum!

Example: van Roosmalen potential

From Camerino workshop 2005. Work inspired by Franco's E(5) solution and the thesis of one of his students (O. van Roosmalen).

Generalization to two coordinates

They close into the sp(4) Lie algebra

	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}	Z_{6}	Z_{7}	Z_{8}	Z_{9}	Z_{10}
Z_{1}	0	$-4 i Z_{3}$	$-2 i Z_{1}$	0	0	0	0	$-2 Z_{9}$	0	$2 Z_{7}$
Z_{2}		0	$2 i Z_{2}$	0	0	0	$2 Z_{10}$	0	$-2 Z_{8}$	0
Z_{3}			0	0	0	0	$i Z_{7}$	$-i Z_{8}$	$i Z_{9}$	$-i Z_{10}$
Z_{4}				0	$-4 i Z_{6}$	$-2 i Z_{4}$	0	$-2 Z_{10}$	$2 Z_{7}$	0
Z_{5}					0	$2 i Z_{5}$	$2 Z_{9}$	0	0	$-2 Z_{8}$
Z_{6}						0	$i Z_{7}$	$-i Z_{8}$	$-i Z_{9}$	$i Z_{10}$
Z_{7}							0	$-i Z_{3}-i Z_{6}$	Z_{1}	Z_{4}
Z_{8}								0	$-Z_{5}$	$-Z_{2}$
Z_{9}									0	$-i Z_{3}+i Z_{6}$

Commutation relations [row, col]
Commutators of the type $\left[Z_{>i}, Z_{i}\right]$ are found by antisymmetry.
The structure constants and root system are those of the $\mathrm{sp}(4) \sim \mathrm{so}(5)$ Lie algebra: this is checked also with the GAP computer program that allows for symbolic calculations.

1 mapping to Cartan-Weyl form and root diagram

$$
\begin{aligned}
& Z_{1}=2 X_{0}+X_{+}+X_{-} Z_{4}=2 Y_{0}+Y_{+}+Y_{-} \\
& Z_{2}=2 X_{0}-X_{+}-X_{-} Z_{5}=2 Y_{0}-Y_{+}-Y_{-} \\
& Z_{3}=i\left(X_{-}-X_{+}\right) \\
& Z_{6}=i\left(Y_{-}-Y_{+}\right) \\
& Z_{7}=\frac{1}{4}\left(-T_{--}+T_{-+}+T_{+-}+T_{++}\right) \\
& Z_{8}=\frac{1}{4}\left(T_{--}+T_{-+}+T_{+-}-T_{++}\right) \\
& Z_{9}=\frac{1}{4}\left(T_{--}+T_{-+}-T_{+-}+T_{++}\right) \\
& Z_{10}=\frac{1}{4}\left(T_{--}-T_{-+}+T_{+-}+T_{++}\right)
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{1} & =[1,-1]_{F W S} \\
\alpha_{2} & =[0,2]_{F W S} \\
\alpha_{3} & =[1,1]_{F W S} \\
\alpha_{4} & =[2,0]_{F W S}
\end{aligned}
$$

C_{2} roots in the fundamental weight system FWS

2° Mapping to bosonic operators

$$
\begin{array}{rlr}
X_{0}=\frac{1}{2}\left(b_{2}^{\dagger} b_{2}-b_{1}^{\dagger} b_{1}\right) & Y_{0}=\frac{1}{2}\left(b_{4}^{\dagger} b_{4}-b_{3}^{\dagger} b_{3}\right) & 4 \text { bosonic modes } \\
X_{+} & =-i b_{2}^{\dagger} b_{1} & Y_{+}=-i b_{4}^{\dagger} b_{3} \\
X_{-} & =-i b_{1}^{\dagger} b_{2} & Y_{-}=-i b_{3}^{\dagger} b_{4} \\
T_{--} & =\frac{1}{2}\left(-b_{4}^{\dagger} b_{1}-b_{2}^{\dagger} b_{3}\right) & T_{++}=\frac{1}{2}\left(-b_{1}^{\dagger} b_{4}-b_{3}^{\dagger} b_{2}\right)
\end{array}
$$

$$
a \leftrightarrow n \quad b \leftrightarrow-\lambda-n \quad c \leftrightarrow m \quad d \leftrightarrow-\mu-m
$$

Obtained from the comparison of Casimir operators (there are dual relationships, but these are simpler)

Action of the operators on the basis states

$$
\begin{aligned}
X_{0}|n \lambda m \mu\rangle & =(n+\lambda / 2)|n \lambda m \mu\rangle \\
X_{+}|n \lambda m \mu\rangle & =\sqrt{(\lambda+n)(n+1)}|n+1, \lambda, m \mu\rangle \\
X_{-}|n \lambda m \mu\rangle & =\sqrt{(\lambda+n-1) n}|n-1, \lambda m \mu\rangle
\end{aligned}
$$

The corresponding action of the Y operators is obtained by replacing $\lambda \leftrightarrow \mu$ and $n \leftrightarrow m$.

$$
\begin{aligned}
& T_{++}|n \lambda m \mu\rangle=-\frac{i}{2} \sqrt{(\mu+m)(n+1)}|n+1, \lambda-1, m, \mu+1\rangle+\frac{i}{2} \sqrt{(\lambda+n)(m+1)}|n, \lambda+1, m+1, \mu-1\rangle \\
& T_{--}|n \lambda m \mu\rangle=-\frac{i}{2} \sqrt{(\mu+m-1) n}|n-1, \lambda+1, m, \mu-1\rangle+\frac{i}{2} \sqrt{(\lambda+n-1) m}|n, \lambda-1, m-1, \mu+1\rangle \\
& T_{-+}|n \lambda m \mu\rangle=-\frac{i}{2} \sqrt{(\lambda+n-1)(\mu+m)}|n, \lambda-1, m, \mu+1\rangle-\frac{i}{2} \sqrt{n(m+1)}|n-1, \lambda+1, m+1, \mu-1\rangle \\
& T_{+-}|n \lambda m \mu\rangle=\frac{i}{2} \sqrt{(\lambda+n)(\mu+m-1)}|n, \lambda+1, m, \mu-1\rangle+\frac{i}{2} \sqrt{(n+1)(m+1)}|n+1, \lambda-1, m-1, \mu+1\rangle
\end{aligned}
$$

L. Fortunato

$$
Z_{1}=\left(\begin{array}{cccccccc}
\frac{3}{2} & 0 & \sqrt{\frac{3}{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{3}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{\frac{3}{2}} & 0 & \frac{7}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{3}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{3}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{5}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{5}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{7}{2}
\end{array}\right)
$$

$$
Z_{2}=\left(\begin{array}{cccccccc}
\frac{3}{2} & 0 & -\sqrt{\frac{3}{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{3}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
-\sqrt{\frac{3}{2}} & 0 & \frac{7}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{3}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{3}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{5}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{5}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{7}{2}
\end{array}\right)
$$

This is how you set up hamiltonian-matrices

$$
\begin{aligned}
& \left(\begin{array}{llllllll}
3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 0
\end{array}\right)=\mathrm{H}=\left(Z_{1}+Z_{2}+Z_{4}+Z_{5}\right) / 2 \\
& \left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 5
\end{array}\right) \\
& \left(\begin{array}{cccccccc}
\frac{33}{8} & -\sqrt{6} & 0 & 0 & 0 & 0 & 0 & 0 \\
-\sqrt{6} & \frac{81}{8} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{43}{8} & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& 0 \quad 0 \quad 0 \quad \frac{47}{8} \quad 0 \quad 0 \quad 0 \quad 0 \\
& 0 \quad 0 \quad 0 \quad 0 \quad \frac{75}{8} \quad 0 \quad 0 \quad 0 \\
& \begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & \frac{35}{8} & 0 & 0
\end{array} \\
& \begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & \frac{55}{8} & 0
\end{array} \\
& \left.0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad \frac{43}{8}\right)
\end{aligned}
$$

$$
H=\left(\mathbf{p}_{1}^{2}+\mathbf{p}_{2}^{2}+\mathbf{r}_{1}^{2}+\mathbf{r}_{2}^{2}\right) / 2=\left(Z_{1}+Z_{2}+Z_{4}+Z_{5}\right) / 2
$$

This probes only the $\operatorname{sp}(2) \oplus \operatorname{sp}(2)$ part of the algebra (it's a double copy of Rowe's)

More challenging test of the $\mathrm{sp}(4) \mathrm{m} . \mathrm{e}$.

$$
\begin{aligned}
H & =\left(\mathbf{p}_{1}^{2}+\mathbf{p}_{2}^{2}-2 \mathbf{p}_{1} \cdot \mathbf{p}_{2}+\mathbf{r}_{1}^{2}+\mathbf{r}_{2}^{2}-2 \mathbf{r}_{1} \cdot \mathbf{r}_{2}\right) / 2 \\
& =\frac{1}{2}\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right)^{2}+\frac{1}{2}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)^{2} \\
& =\left(Z_{1}+Z_{2}-2 Z_{7}+Z_{4}+Z_{5}-2 Z_{8}\right) / 2
\end{aligned}
$$

This hamiltonian probes the genuine $\operatorname{sp(4)}$ part of the algebra. A subset of the spectrum must brew up to give a harmonic oscillator pattern:

> Eigenvalues = \{ 13., 13., 13., 13., 13., 13., 13., 13., 13., 13., 13., 13., 13., 13., 13., 13. , 13., 13., 13., 13., 13., 11., 11., 11., 11., 11., 11., 11., 11., 11., 11., 11., 11., 11., 11., 11., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 7., 7., 7., 7., 7., 7., 5., 5., 5., 3.\}

Matrices here are just 56×56 having used all the $\lambda=\mu=0$ states up to 10 quanta One gets exact energies and exact degeneration patterns.

Lowest eigenstates

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(-i\left|0 \frac{3}{2} 0 \frac{5}{2}>+\right| 0 \frac{5}{2} 0 \frac{3}{2}>\right) \quad \frac{1}{\sqrt{2}}\left(\left|0 \frac{7}{2} 0 \frac{3}{2}\right\rangle+\left|0 \frac{3}{2} 0 \frac{7}{2}\right\rangle\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(\left|0 \frac{3}{2} 0 \frac{5}{2}>-i\right| 0 \frac{5}{2} 0 \frac{3}{2}>\right) \\
& \left.\frac{i}{2}\left|0 \frac{7}{2} 0 \frac{3}{2}>+\frac{1}{\sqrt{2}}\right| 0 \frac{5}{2} 0 \frac{5}{2}>-\frac{i}{2} \right\rvert\, 0 \frac{3}{2} 0 \frac{7}{2}>
\end{aligned}
$$

$$
\begin{aligned}
H & =\frac{\mathbf{p}_{1}^{2}}{2 m}+\frac{\mathbf{p}_{2}^{2}}{2 m}+k \frac{\mathbf{r}_{1}^{2}}{2}+k \frac{\mathbf{r}_{2}^{2}}{2}+k^{\prime} \frac{r_{12}^{2}}{2} \\
& =Z_{1} / 2 m+Z_{4} / 2 m+k Z_{2} / 2+k Z_{5} / 2+k^{\prime} r_{12}^{2} / 2
\end{aligned}
$$

Now, please guess the energy of the ground state of this hamiltonian! Take $\hbar=k=k^{\prime}=m=1$ for simplicity.
Come on, time's ticking away!

$$
E_{g . s .}=3 \sqrt{2}
$$

A subset of the eigenstates has nice mathematical expressions. Numerical solution gives: 4.24264, 7.07107, 9.89949, ... that are nothing but : $\quad 3 \sqrt{2}, \quad 5 \sqrt{2}, \quad 7 \sqrt{2}, \ldots$

I have now an analytic proof of this fact based on a 6D argument. This is a generalization to 3D of known 1D models (Morse-Feshbach)

An interesting model for pairing interaction

Choose a Landau-type potential for the mutual interaction between particles

$$
\begin{aligned}
H & =\left(\mathrm{p}_{1}^{2}+\mathrm{p}_{2}^{2}+\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}\right) / 2+\overbrace{\left(\frac{1}{2}-\alpha\right) r_{12}^{2}+\alpha r_{12}^{4}}^{V\left(r_{12}\right)} \\
& =\left(Z_{1}+Z_{2}\right) / 2+\left(\frac{3}{2}-\alpha\right)\left(Z_{2}+Z_{5}\right)+(\alpha-1) Z_{7}+\alpha\left(Z_{2}+Z_{5}-2 Z_{7}\right)^{2}
\end{aligned}
$$

- There is no reason why this should be a phase transition, $\mathrm{V}\left(\mathrm{r}_{12}\right)$ is only part of the total potential felt by the two particles.
- Eigenstates will be mixtures of states with good quantum numbers $\mid \mathrm{n} \lambda \mathrm{m} \mu>$
- Do we need projection on states of good total angular momentum?
- Clebsch-Gordan coefficients for su(1,1)

Spectrum

Perspective

Very general problems become tractable :

- Let's say 20 quanta
- Matrix element calculation time about 1 min
- Diagonalization of 'reasonable' hamiltonians in 5 seconds or so...

$$
\mathrm{H}=\frac{p_{1}^{2}}{2 m}+\frac{p_{2}^{2}}{2 m}+V_{A}\left(r_{1}^{2}\right)+V_{B}\left(r_{2}^{2}\right)+V_{C}\left(r_{12}^{2}\right)
$$

One could treat equally well operators with higher powers of p^{2} or with velocity dependent terms (remember $\overrightarrow{r_{i}} \cdot \overrightarrow{p_{j}}$ are also elements of the algebra).

Summary: a whole new approach

- A useful realization of the $\mathrm{sp}(4)$ Lie algebra has been introduced that contains important scalar operators made up with positions and momenta of two coordinates
- This algebra has been mapped to Cartan-Weyl form (to identify step and weight operators) and then mapped to Bosonic operators (to easily calculate matrix elements)
- A large class of three-body hamiltonians can be written as polynomials in the elements of $\operatorname{sp}(4)$ and then diagonalized in a properly truncated doubly-infinite basis
- [Do you have suggestions for important/useful applications? Atomic physics? Quantum dots? Molecular physics? Ab initio calculations?]

Extensions and developments are in sight:

1. 3D Calogero-Sutherland models (!)
2. Isomorphical S.G.A. for the Helium atom - exact treatment (!!!)
3. 3 coordinates very general exact four-body problems based on $\mathrm{sp}(6)$ (!!!)
4. etc. $\operatorname{sp}(2 n)$

Thanks FRANCO for stirring the course of our field of studies with a firm hand into such a beatiful sea of symmetries in physics
and
thank you for your attention

