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Connections with you and an illuminated quotation!

e Arima -> necessity of simple models

e Leviatan -> partial «solvability»

*  Wolf -> symplectic (and non-compact) has important solutions, many of
which are still lacking applications

* Dukelsky, Kirchbach, Garcia-Ramos -> mentioned su(1,1)

* Draayer -> uses symplectic, mentioned both Rowe and Bahri

e Vitturi -> 1D three-body models are excersises for students (gosh, I’'m one
of his students). BUT 3D is difficult...

L. Fortunato



Personal history of this work

e 2002: fundamental work by Rowe and Bahri, JPA 31 (1998) 4947-4961

e 2003-2010: Used sp(2) techniques to solve Bohr hamiltonian with Coulomb
and Kratzer potentials and a variety of other potentials (lachello docet)

e 2004 (while in Belgium): got the idea to extend to two coordinates ->sp(4)

e 2005-2006: tried to calculate matrix elements following E. De Souza Bernardes
and failed... (but with finite dim. rep. !)

e 2007: talked with Rowe in Seattle and he said: «Could you formulate your idea
in mathematical terms? »

e 2011: at the ECT* discussions with W.de Graaf (Univ. Trento) on finite
dimensional representations of sp(4)

e 2012: finally understood the infinite dimensional representations of sp(4) and
found an easy way to calculate matrix elements by generalizing a method that
is contained in Wybourne’s book!
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2Body: Rowe —Bahri

Infinitesimal generators of Sp(1, R) are given by
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Rowe —Bahri continued

Positive discrete series wreps for su(l, 1) are characterized by a lowest weight A with
positive real values. Orthonormal bases for these irreps are given by states {|nA);n =

0,1, 2, ...} which satisfy the equations -
X |nd) = \/(l—l—n)(n + 1)n+1,4)

J?_|n +1.A) = \/(l +n)(n+ 1)|ni)

Xolna) = L(a + 2n)[nA)

A=+ dim/2
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Davidson potential in both cases
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Example: quartic potential

X n2) =V +n)n+ Din+ 1, ) Zimn = (MA[Zy | nA)
X n+1,2) =0+ )+ 1)ni) Zomn = (MA| Zz2 | nA)
Xolnr) = 100+ 2n)[n2) Z3mn = (MA| Z3 | nl)
Example: consider hamiltonians of the form:
- 1 1 - .
H = §p2 + ar?M = EZI + aZM,

we take M = 2. Then H = %Zl —|—ﬂ:Z§ and
Hon = (mA | H | 0} :%(mh\il\n}.)+a2(mh\22\M}(kk\ﬁ’ﬂn).}
k

Then diagonalize the matrix (truncated at a certain n-max) and find the spectrum!
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Example: van Roosmalen potential
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From Camerino
workshop 2005.
Work inspired by
Franco’s E(5)
solution and the
thesis of one of his
students (O. van
Roosmalen).
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Genenralization to two coordinates

=r3 Zﬂ=——(P2'F2+I‘2'p2)

Z7 =p1-P2
Zg =1ip1 -T2
sp(4)

1

? ZSZ__(pl'rl‘l'rl'pl)
2- \9 sp(2) EBsp(Q)é)

1

2

Zgzrl-l'g

Zio =iry - P2

re =| ri —ry |=

= /r? + 717 —2r; - ra.

Interparticle distance !
This allows to introduce
mutual interactions
between particles!
Think to the possibilities!
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They close into the sp(4) Lie algebra

Zl ZE Zﬂ Zf-l- ZE Zﬁ Z'? ZE ZQ ZIU
Z1| 0 —4iZy —2i7, 0 0 0 0 —279 0 27
Zo 0 212 0 0 0 2Zw 0 —275 0
£ 0 0 0 0 i —i45 (VA —i410
yn 0 —4ide —2iZy 0 —2710 27 0
VA 0 2i/y 279 0 0 —275
Ze 0 iz —iZ5 —iZg iZ10
Y 0 —iZs—ids 21 24
Zg 0 —ZE —ZE
Za 0 —iZfs+iZes

Commutation relations [row, col|

Commutators of the type [Z~i, Zi| are found by antisymmetry.

The structure constants and root system are those of the sp(4) ~ so(5) Lie algebra: this is
checked also with the GAP computer program that allows for symbolic calculations.
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1° mapping to Cartan-Weyl form and root diagram

]
|

1
Zr = (T +T 4 + T4 +T4y)

1
Zy = Z(T__ +T_ + T —Tyy)

1
Zg = Z(T__ +T_ 4 T4 +T4y)

1
\Zi = 3T 4T 4T

ﬂzzxu+x++}{_ Z4:21@+Y++Y\
Zy = 2Xg—Xo —X_  Zs=2p—Y, -Y_

Zs = i(X_ —X.) Zs=i(Y_ —Y,)

o = [1,—1]pys
az = [0,2]py g
as = [1,1]pws
Qg = [QJD]FWS

C, roots in the
fundamental weight
system FWS
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2° Mapping to bosonic operators

Loty _pt Lty
Xo = 9 (bi‘b? - blbl) Yo = ) (b4b4 - bSbS) 4 bosonic modes
X, = —ibib, Y, = —iblbs
X_ = —iblb, Y_ = —iblb,
1 1
T = 5 (—blbl ~ bgbg) T, = 5(-&{&.4 - bgbg)
T = 5 (blbg n b{bg) T = (—5564 - .a,g.al)
| a, b? ¢ d> — N({I, b= C, d)g?égéggg bt — 8/861

i — ¢
Monomials in the 4 variables L t

a4>n b+ —A—n cé&m d4+ —p—m

Obtained from the comparison of Casimir operators (there are dual relationships, but

these are simpler) L. Fortuwnato



Action of the operators on the basis states

Xo | nAmp) = (n+ A/2) | nAmp)
Xy | ndmp) = V(AN +n)(n+1) | n+1,\mpu)
X_|ndmp) = V(A +n—1)n|n—1, mpy)

The corresponding action of the Y operators is obtained
by replacing A < p and n < m.

Tyy [ nhmp) = ——\/,qum Jn+1)|n+1,A- 1mu+1)+%\/()\+n)(m+1)\n,)\+1,m+1,u—1)
T__ | nkmp) = ——\/,qum Dnn=1, +1m,p- 1>+§\/(J\+n—1)m\n,)\—l,m—l,ﬁl)
T_4 [ nAmp) = ——\/)\Jrn— e +m) | nA=1,m,p+1) ——\/ner Jn=1A+1Lm+1p-1)

_lnAmp) = = +n)lp+m-— n.A+1.m, - n+1l)m+1)|n+ m -
T+)\u2)\u A1u12 ILA=Lm-1pu+1

L. Fortunato



Action of T++
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p? and r? Z-operators X-operators Bosonic oper.
PHYSICS ALGEBRA ROOT DIAGRAM ACTION
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This is how you set up hamiltonian-matrices

30000 00O
/05000000\
0 05 000 0 0
0 00 4 00 0 0| =H=0E+2Z,+Z,+Z5)/2
000 05 0 0 0
000 0 0 4 0 0
\00000050/ 23
0 00 00 0 0 5 /3—«/8000000\
81
—x/Eg 0O 0 0 0 O
43
0o 0 — 0 0 0 0
8
47
0 0 0 — 0 0 0 0
H'=(21+Zz+Z4+Zs*Zs)/2 75
00005000
35
00000300
55
00000030
43
\000000 =



Trivial application: two indep. H.O.

H=(pl+pi+r2+12)/2=(Z1+Zo+Z4+7Z5)/2

,uE"":" ‘Eﬂlmy,
' " 6
1/ —=2 . 4 . 9
1 0
! I %1 oFrh 1To4 o503 003 oFo}
721 4 0 — l
4 — —
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0

3/21 - 31 I53 }
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a/2 5/2 T/2 972 11/2 A
This probes only the sp(2)®sp(2) part of the algebra (it’s a double copy of Rowe’s)
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More challenging test of the sp(4) m.e.

H = (D%JFD%—?IH-P2+I‘%+I‘§—21‘1'I‘2)/’2
1 o 1 2
= E(Dl—pz) +§(1‘1—1‘2)

= (Zl + A9 — 277+ Ay + A5 — QZg)fQ

A A

This hamiltonian probes the genuine sp(4) part of the algebra. A subset of the spectrum
must brew up to give a harmonic oscillator pattern:

Eigenvalues={13.,, 13,13, 13,13, 13,13, 13,13, 13,13, 13,13, 13,13, 13,,
13,13, 13,13, 13,11, 11.,11.,11,,11,, 11, 12., 12,11, 11, 11, 11, 11,, 11,,
11.,,9.,9,9,9,9,9,9,9.,9,9.,7.,7.,7.,7.,7.,7.,5.,5,5., 3.}

Matrices here are just 56 x 56 having used all the A=u=0 states up to 10 quanta
One gets exact energies and exact degeneration patterns.
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Lowest eigenstates
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A new 3D analytic solution!

2 2 2 2 2
Pi P2 Iy r's r 712
H-= —4+ —1tlb—e1l s} —
2m ™ 2m T 2 i 2 T 2

Z1/2m+ Zy/2m+ kZy /2 + kZ5/2 + k'r3, /2

Now, please guess the energy of the ground state of this hamiltonian!
Take 7i=k=k’=m=1 for simplicity.

Come on, time’s ticking away! E;s. = 3v2

A subset of the eigenstates has nice mathematical expressions.
Numerical solution gives: 4.24264, 7.07107, 9.89949, ...

that are nothing but : 3v/2 ) 5\/5, 7\/2

| have now an analytic proof of this fact based on a 6D argument.
This is a generalization to 3D of known 1D models (Morse-Feshbach)
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An interesting model for pairing interaction

Choose a Landau-type potential for the mutual interaction between particles

Viria)

P
& ]

1
H = (0 +0}+1 +13)/2+ (5 —a)rd +arl,

= (Z] + ZE.?)/? T (% — Di) (Zg + Z5) + (Df — 1)27 + Dﬂ(Zg + 75— 227)2

* There is no reason why this should be a phase transition, V(ri2) is only part of
the total potential felt by the two particles.

* Eigenstates will be mixtures of states with good quantum numbers |nAmp >

Do we need projection on states of good total angular momentum?

* Clebsch-Gordan coefficients for su(1,1)
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Reduced energies

(]

[—

Clebsch-Gordan coefficients
come into play. | still have to
work it out (Thanks Piet for
nice conversation on this ).

preliminary
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Very general problems become tractable :

- Let’s say 20 quanta

- Matrix element calculation time about 1 min

- Diagonalization of ‘reasonable’ hamiltonians in 5 seconds or so...

2

H= + + Va(rf) + Vg (rs) + Ve (rfa)

2m

One could treat equally well operators with higher powers of p? or with velocity
dependent terms (remember 7; - p_]’ are also elements of the algebra).
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Summary: 3 whole new approach

* A useful realization of the sp(4) Lie algebra has been introduced that contains
important scalar operators made up with positions and momenta of two
coordinates

* This algebra has been mapped to Cartan-Weyl form (to identify step and weight
operators) and then mapped to Bosonic operators (to easily calculate matrix
elements)

* Alarge class of three-body hamiltonians can be written as polynomials in the
elements of sp(4) and then diagonalized in a properly truncated doubly-infinite
basis

* [Do you have suggestions for important/useful applications? Atomic physics?
Quantum dots? Molecular physics? Ab initio calculations?]

Extensions and developments are in sight:

1. 3D Calogero-Sutherland models (!)

2. Isomorphical S.G.A. for the Helium atom — exact treatment (!!!)

3. 3 coordinates very general exact four-body problems based on sp(6) (!!!)
4. etc.sp(2n)
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Thanks FRANCO for stirring the course of our field of
studies with a firm hand into such a beatiful se3 of
symmetries in physics

and
thank you for your attention



