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Mini-cycle of lectures given at
Oslo University Jan. - Feb. 2009

Programme Tor the lectures’ cycle

e Introduction to Lie algebras, properties ,
classification, Casimir operators (reperita uvanT)

e Dynamical simmetries and spectrum generating
algebra. Rigid rotor (SO(3)). Examples in Particle,
Atomic and Molecular physics (fun for everybody!)

e IBM-1: U(6) algebra, branching and subalgebra
chains, Casten’s triangle, examples of spectra and
B(E2), selection rules.

e IBM-2, etc.; IBFM and fermionic models,
supersymmetry in nuclear physics, example (Au-Pt)

e Seminar: Shape phase transitions and critical point
symmetries




1 - Mathematical introduction ot Lie algebras

e Lie algebras, subalgebras and Cartan

classific

e Commutator and structure constants

e Representations and reducibility

e Rank,

ation

order, Casimir operators

e Spectrum Generating Algebra

e Dynamical symmetries

SophusLie
norwegian
mathematician

e Rotor, angular momentum and SO(3)
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Lie Algebra G={g,, g9, ,

v, gt

such that:

°[9;, 9] = 2c;9c 0g.0G
efa,b]=-[b,a] [OablG
e [ada+pBb,c] =alac]+p[b,c]
e [a,[b,c]]+[b,[c,a]l+[c,[a,b]]=0

—

Vetorial space of dimension n, the elements of which
are operators (infinitesimal), endowed with an
operation, called Lie product or commutator /.. , ..]

Closure [g; ,9;]
Antisymmetry
Bilinear

id. Jacobi

n»q. are the structure constants

I

algebra

They completely specify the Lie

L. Fortunato




Abelian Algebra, Invariant Subalgebra

An algebra is Abelian, or commutative, if
[a, b]=0 [Ja,b[JG < null struct.const. ck,=0

A Subalgebra G’ of a given Lie algebra G is a subset
G [JG’ of the elements of G that is also an algebra on
its own:

e it is said proper, if at least one element G is not
contained in G’

e it is said invariant, if [a,b]O0G" »bJaldG” e Ob[O
G (Invariant Subalgebra = Ideal)
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Direct Sum of Lie Algebras

G is the direct sum of two Lie alg. G=G;0 G, if:

4

e the vect.sp. G is direct sum of two spaces G, ,G, or
better if al/G, and bl G, than c[JG can be written
in a unique way as c=a+b. Said another way G, ,G,
have in common only the null element (i.e. they are
othogonal vector spaces)

e [JallG, and [Ob G, it must be that [a, b] =0

And also
B={a, a, _a; ar,; .. a,}t isa basisof G
G, G,

From which you get dim(G) = dim(G,)+dim(G,)
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Simple, Semisimple, etc.

An algebra is called simple if it is not abelian and it has
no proper invariant subalgebras.

An algebra is called semisimple if it doesn’t have any
abelian invariant subalgebra.

Coroll.: simple = semisimple

Cartan Criterion : An algebra G is semisimple if and
only if its Killing form (the metric tensor) is non-
degenerate, det(g)Z 0

@ S\Y = ﬁ.th OQ<Q
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Representations of a Lie algebra

Suppose that /7a/J G there exists a matrix dxd, M(a)
such that :

e M(aa+pb)= aM(a)+LM(b)
* M([a,b])=[M(a),M(b)]

Then these matrices form a representation

(matricial in this specific case) d-dimensional of G.

If M/(a) = S /M(a)S

with S=matrix dxd non-singular, then M,M” are
equivalent representations

L. Fortunato




Reducibility

A given representation M(a) of the algebra G is
reducible if it is equivalent a representation that might
be written, 7a/7 G, in the form:

M;i(a) Myy(a)
0 M,,(a)

Viceversa it is called irreducible if it’s not reducible.
It is instead completely reducible if, for example,

My (@) O 0 .. 0
0 M@ 0 .. 0
0 0 0

L o 0 0 .. M) _]
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Cartan Classfication

All semisimple Lie algebras have been
classified:

TABLE 1. Cartan classification of classical Lie algebras.

Name Label Cartan  Order()  Rank(f) .
_ o 7 Elie Joseph Cartan
Special Unitary su(n) 4 n-—1 n-1 French mat.
(Special) Orthogonal ~ so(n),n=o0dd B, n(n-1)/2 (n-1)/2
Symplectic sp(n).n=even  C, n(n+1)/2  n/2
(Special) Orthogonal = so(n),n=even D,  n(n—1)/2 nf2
Exceptional G, G, 14 2
F, F, 52 4
E, E, 78 6
E, E, 133 7
E, E, 248 3
Non-semisimple
Unitary u(n) e n
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Casimir Operators and Rank

For each algebra one can
costruct a set of operators,

called Casimir operators or
invariants, C, such that

[C, X.]=0, OX,0G

Hendrik Casimir (1909-2000) dutch physicist

The number of independent invariants is called rank of
the algebra, namely #C.

The order is the number of operators (generators) that
form the algebra, namely #Xi [JG.
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Example: Anqular Momentum - so(3)

L=rxp - L,,L,, L, aregenerators of so(3)

[Ly, L, ]=IL, +cyclic permutations over indices

Cl[so(3)] =L?=L2+ L2+ L7
is the quadratic Casimir operator (rank 1)
[C,L ]=0, 0L [SO(3)

so(3) O so(2) Branching problem
l l
L M Branching rules: -L<sM <L

L. Fortunato




... continues ...

One must specify the action of the generators on a
given orthonormal basis |LM)

L.|LM) = [(L=M)(LE£M+1)]2|LM+1) L.=L, %Il
L,|LM) = M|LM)
L2|LM) = L(L+1)|LM)

Application in the rigid rotor:
H=k L2 - E=kL(L+1)
with k=(h2/2I)

L. Fortunato

n_:mi:S rotors

ROTATIONAL ENERGY LEVELS AND
TRANSITIONS OF A DIATOMIC MOLECULE

H
J Ejy O 2

6 42B

_, HCl,
CO, etc.
b] ry 30B
Enerey
Levels 4 I 20B m.._” m .._A.._n_n”_.v
3 ) 12B Dm.._” NWAHlTHV
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Spettro 3 Microonde (Lontano IR)

0 20 40 60 80
Numeri d’onda cm?

Intensita /unita arbitrarie

E,= B J(J+1)
AE,= 2B(J+1) Ov

100
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Spectrum Generating Algebra (SGA)

When, in general, one can write an hamiltonian

as a polynomial in the elements of an algebra

subalgebras of G G JG” [7..

I” mQ + MQ\AX\A + MQ\A\X\AX\ +... E_H—J X\A Qm

then G is called spectrum generating algebra (SGA)
for H, because it is always possible to diagonalize

(numerically) H in the ONC basis labelled by all the
quantum numbers of a Complete Set of Commuting
Operators (CSCO) dof any of the possible chains of

Once the action of the X, on |a) is given, then one

can calculate the matrix elements (a|H|a")
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Example of SGA

The non-compact algebra SO(2,1) can be realized
with the following differential operators:

Z;=p*> Zy=r? Zz;=Kk(rp + p-r)

These operators close under commutation with the
structure constants typical of the SO(2,1) algebra.

Once the action of the Z, on some |a) is given, then
one can calculate the matrix elements (a|H|a") of
hamiltonians, for example the harmonic oscillator :

H = 2p2 + Var?

(a part from some constants)

L. Fortunato

Dynamical Symmetry

In some cases

we have only some terms that correspond to
invariant operators of the algebras in the chain:

GOG OG” ... chain of subalgebras
! U l
ﬁw h.\,\ h.\,\\ (one or more for each subalgebra)

H=E, + aC + a’C’"+a”C” +...

in these cases we speak of a dynamical symmetry
and we have

E=E, + a(C) +a’(C) +a”(C" +...

ool
t—Fortito




Consequences of 3 DS -1

1) All the states are soluble and we have analytic
expressions for energy and other observables

E=E, + a(C) +a’(C) +a”(C" +...

2) All the states are characterized by quantum
numbers that “label” the irreducible representations
(IRREPS) of the chain of subalgebras

la,a,...0,)

3) The structure of the wavefunctions is dictated by
symmetry and it's independent from the details of the
hamiltonian
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Consequences of DS -2

Assume that H commutes with a set of operators

that form a given Lie algebra:
Vg €G: [Hg]=0

If |y) is eigenstate of H, then
Hly) = Ely)= Hgly) = g.Hly )= Eglr)
also g;|y ) is an eigenstate of H and we have

degeneration.

At the very origin of degeneration ther is a conseved
quantity, an invariant, that is the Casimir operator pf
some group.

L. Fortunato




Multiplets, degeneration and splitting.

B={|Apv )} \
ONC basis states | —— <~

A I Vv

The dynamical symmetry splits, but do not admix
the states of a basis!
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Magnetic Degeneration

0(3) 0 0(2)

States with a definite total angular momentum contain
a multiplet of substates with different third component
component: these are called magnetic substates
because can be separated with a magnetic field
(Zeeman effect)

Said another way, the magnetic interaction -uB
breaks the symmetry of the hamiltonian

L. Fortunato




Not easy to digest...let’s go through it once aqain

Do their commu- Can you solve
tators close? the branching
[Xi,Xj]|==Xk problem?

Chain of
nested Lie
algebras

Xi i=1,...,n
O_um_‘m.ﬁo_‘w
(generators)

»/ Lie Algebra \ If yes

of some rank

\

|

all classified so(3) must be
known properties: contained as a
- invariant op. subalgebra

- matrix elements

Can H can be expressed
as a lin.comb. of Casimir
operators of the chain ?

Can H can be expressed
in terms of the generators?

Ifyes If yes
v v
The matrix elements of H is already diagonal in
the hamiltonain can be ] the O.N. basis defined
calculated and then H by the chain. Spectrum
can be diagonalized can be read off directly
L. Fortunato

Example: hydrogen atom - so(4)

Mo~

2

HY (r0,0)=- W (6,

m"hlm __\E:A ﬁv Nmmx_\t ::._M.ﬁ Qv
M1 withn=12...:1=01...n=Lm=~L...+

The states of the hamiltonian of the H atom are
clearly invariant with respect to SO(3), but...

(lassification scheme SRS - oredicd spectrun
L & ﬁCHm
S0(4) 2 50(3) 2 50(2) ) 0 —b it —4 T = =g = -
t ' v z | —=x—mn —5 —1p W=
e 1 + Wt e
w [ m g ~ =l
(1]
-1k h
Fwtl w=0.1....,00 - —r “t— =0
~15
[=ww-1.....1.0
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The spectrum shows a further degeneration in /.
Where does it come from ?

Degeneration = Conserved Quantity

panL r , 2H ,

Runge-Lenz vector: A= -a—, A'=—0L +a°
M I M
L L |=ihe Ly, jikl=x9.2 [H,A]=0
LA |=ihe A, jikl=1,2 = there’s a larger symm.
group that contains both
. 1 ., 2H . L and A
AA =-ihe =L, jkl=Xx,2
L M so(4) =so(3)Jso(3)
L. Fortunato

n=2 n=3 n=4
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m Hydrogen atom (Pauli, 1926)

m [sospin symmetry (Heisenberg, 1932)
m Spin-isospin symmetry (Wigner, 1937)
seniority (Racah, 1943)

!

m Pairing,

m Elliott model (Elliott, 1958)

m Flavor symmetry (Gell-Mann, Ne'eman, 1962)
m Interacting boson model (Arima, Iachello, 1974)
m Nuclear supersymmetry (Iachello, 1980)

f

From R.Bijker L. Fortunato




“Flavour” SU(3)

Gell-mann and Ne‘eman have suggested that the

internal degrees of freedom of hadrons can be

described by an SU(3) dynamical symmetry (flavour)

SUG3) D SU2) & Uyll) D 0,2) 8 U

| |
(A,pe) I

We have the Gellmann-
Okubo mass formula

(Mass replaces energy in the
relativistic formalism)

Eﬂae._.n%_gcw.l _:n_.w—ﬁo%mﬂ_s:lm_@wﬁﬁi l v:

I=Isospin Y=Hypercharge=2(C-I,)

From R.Bijker

E(GeV)

LB

14+

Th.

*

-— — 8
— — — 1

S ———

FIG. 3. Level diagram of the baryon decuplet. The energy lev-
els are computed using the mass formula (3.6).

MULI,Y)=My+aY+b[I(I+1)~Y2/4] . (3.6)
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Algebraic models.... give 3 scheme!

Baryons with Up, Down, Strange and Bottom Quarks and Highest Spin (J = 35)

»>
Discovered

Three Bottom Quarks
not yet discovered

Two Bottom Quarks
not yet discovered

One Bottom Quark
not all discovered

No Bottom Quark
all discovered

L. Fortunato




SU(3).... explains observation!

1321 g

Baryon 5

Supermultiplet
‘Mass Splitting z°
MMass DL =
won ) E e
5

A
1116 hm_..w_“.
Splitting Due To

Splitting Due To
Strong Interaction
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2-IBM, u(6) and Dynamical symmetries in nuclei
Introduction to the nucleus as a manybody system

Interacting Boson Model (IBM) o u(6)
Dynamical Symmetries in the IBM: u(5) su(3) so(6)

Casten'’s triangle

Examples of energy spectra and electromagnetic
transitions among the three IBM-limits

R | .
> 00 o . .. h
® ° ) o
e e
e’ ‘o
Shell Model IBM Collective Model
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Interacting Boson Model (IBM o IBA)

u(6) - SGA for the atomic nucleus

It has three dynamical symmetries

Akito Arima and Francesco Iachello

Nucleus: many-body system made up of fermions
(1~250) with spin 1/2 of 2 species, protons and
neutrons.

Fermions have a tendency to couple into composites
bosons (analogous to Cooper’s pairs in
semiconductors) with total angular momentum 0 or
2, called s and d bosons respectively.

L. Fortunato

Shell structure:
valence nucleons

Cooper pairing:
s, d boson system

Collective motion:
nuclear shapes

From R.Bijker L. Fortunato




Motivations

Further splitting  Multiplicity
Quanturm energy from spin-orbit of states
states of potential effect / #
well including . S
angular momentum J Oy, 8
effects. / ;
1g——
_._.
. mm..u 10
———, 2
Nﬂ—|.n.“ ».... ._*Em m
P — musm 4
f—=
.:ﬂ__m 8
- ._n_u_. L_
28 b 25 © 2
1d ———=.,
) 1ds, 6
1p———7_ ._ﬂ__._m 2
1y,
1s o 1s @

Closed shells
indicated by
‘magic numbers”
of nucleons.

Valence nucleons
have a tendency to
form couples with
L=0,2. Indeed the
fundamental state
of even-even nuclei
is always 0+, while
the first excited
state is almost
always a 2+ state.
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Motivations - 2

N=n.+n,

Collective states in a nucleus with 2N valence nucleons
are approximated by a N-boson state:

where n, and ny are not necessarily conserved, but the
total boson number N is conserved.

couples of holes.

If the shell is up to half-filled one considers couples of
particles, if it is filled more than a half one considers

L. Fortunato




Motivations - 3

There is the need to find a conceptual scheme that
allows to set some “order” into the complexity of
nuclear spectroscopy - symmetries!
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Fermions” coupling

Fermions (s=1/2) in a valence shell (j=r+s) are
coupled, usually, in such a way that 3., =0,2

S pair
* sboson
Hqﬂlo.._- ﬂnllo.f
D pair
@ . d boson
=2’ o
nucleon boson
FIGURE 4.6. Correspondence between nucleon pairs, S and D, and bosons,
s and d.

From T.Otsuka L. Fortunato




Definitions:

“Elementary” bosons (IBM building blocks):
b,,b,t with a=1,...,6 T%@ﬂ_ - 5
o

oo
b,=s
UNémH d

u

(bysby] = _&ﬂﬁ =0

One constructs the u(6) algebra by taking bilinear
operators:

me = @W@m o,f=1,...n order 7°

Such that they close into u(6): [G,, G.] = Zc, G,

L. Fortunato

Vibrational limit u(6) O u(5)

Elements : Dimension: Algebra:
[stxd]?, - 5 36 u(6)

[dtxs]?, - 5

N.m.\.Xm.N«SQ S 1

[dfxd]O@), - 1 25 u(5)
[dtxd]?, - 5

[dtxd]®, - 9

[dtxd]®), - 7 10 so(5)
[dtxd]®, - 3 3 so(3)

L. Fortunato




Rotazional limit u(6) O su(3)

Elements : Dimension:

Algebra:

[stxd], - 5 36
[dtxs]), - 5
[sTxs]©0), - 1
[dfxd]©@), - 1
[dtxd]®), - 7
[dtxd]®, - 9

u(6)

[sTxd]@ +[dtxs]?,
-A7/2)[dtxd]?, -5 8

[dtxd]V, - 3 3

su(3)
so(3)

L. Fortunato

y-unstable limit u(6) Os0(6)

Elements : Dimension: Algebra:
[stxd]?, - 5 36 u(6)
N.m.\.Xm.N«SQ S 1
[dfxd]©O), - 1
[dtxd]?, - 5
[dtxd]®, ~ 9
[stxd]® +[dTxs]@) - 5 15 so(6)
[dtxd]®), - 7 10 so(5)
[dtxd]®, - 3 3 so(3)

L. Fortunato




Subalgebra chains:

SU(5) D SO(5) D SO(3) (vibrational)
SU(6) D¢ SU(3) D SO(3) (rotational )
S0(6) D SO(5) D SO(3) (y-unstable)

With the operators defined in the model one can
therefore build only 3 subalgebra chains, that are
called limits. They correspond to dynamical
symmetries: for each one it is possible to write a
hamiltonian operator (actually not only one) that is

analitically solvable.

To say it all there’s a fourth chain, called su(3),
that is isomorphical to su(3) (automorphism).

L. Fortunato

Chain I: u(6) O u(5) Os0(5) Os50(3)

Hys =nGU(S)]+ &, C[U()] + 5,C[SO(3)] + 5C,[SO(3)]

Ny ny(n,+4) v(v+3) L(L+1)

m?%cu& =£n, +K,1, AS + 3 + 5@? + wv + ﬁRh + :

cAvacAvamoAvamkov v
N Ny v L

Basis states are labelled by quantum numbers coming

from the Casimir operators (+missing label problem)
L. Fortunato




Chain Il: u(6) Osu(3) Oso(3)

Hqyy = ,C3[SU(3)]+ :C[SO(3)]
(A 1) L(L+1)

NS,FE = mmﬁm F '+ 30+ 3u+ ?:_v + mmh? + :

u(6) O su(3) O so(3)
N (A 1) L

L. Fortunato

Chain lll: u(6) Os0(6) Oso(5) Oso(3)

Hioy) = K,C[SO(6)] + 5, C,[SO(5)] + 5C,[SO(3)]
o(o +4) v(v+3) L(L+1)

m?ﬁcuhv = 5?;2 + 3 - QAQ+ uﬁ: + Ec? + wv + ﬁh? + :

u(6) O so(6) O so(5) O so(3)

N o %

L. Fortunato




Casten’s triangle

IBA
O(6)
x>0,X=0

SU(3)

5
J(5) >0, x=—7/2

e>0

H = mDQ -xQ(x) - Q(x)

The parameters
refer to a particular
hamiltonian, called

AAO Qo.ﬁ O\\

The triangle is like
a map that shows
the whole nuclear
phenomenology
that is hidden
behind quadrupole
deformations
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Casten’s triangle

Deformed

4,20 @

o0+ /' sph.
Rin=2 £ @
U(s)

Vibrator

SU(3)

It has a rich phenomenology !

Rick Casten,
YALE

Prolate Rotor
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Extended Casten’s triangle

It has the chain IV that corresponds to an oblate
axial rotor instead of a prolate one.

sU@)

First-order phase transitions

smessme 4 Critical point

TRERSEES ~= 0(6)
- Oblate deformed £
Critical point i =

X P

Prolate deformed
SU(3)

©Critical point
uGs) .?_MM point X(5)

There are various phase transitions !

L. Fortunato

Spherical, Oblate and Prolate....what the hell?

Spherical Oblate Prolate
C
_
t
.
u
Mandarin Lemon S
. S
& P
_ o)
Discus throwing Rugby M
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U(5) - Spherical

Experiment 119Cd,, 5 0(5)
3F I -
L eN\¥e. s 0
w ~ 1 \b. w.T o H
(4% X7
6t 3+
S —— ot
g2 : -
~ b..T o
4+
W < = o+ ot |2— ="+ ot
o
1F -
1
P, ] Lo
R,»= N.O 0 v
] = Kl o+ 0 L o+ ngy ! L*

B(E2;2* - 0")=€N

Slide by D.Warner

B(E2:4" - 2°) 2N -1)

B(E2;

2" . 0")
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SU(3) - Rotational (axial)

Experiment ymmmawm SU(3)
20 @2 o
_ \ /II. 5+
—12+ ll#...-l...b.“ll 4+
. L gt— m+|.m+”w+ 7
3 — g+ 0%
S 6 — o+
m IIIHOﬂ- — 5+
o an— A.._...II. A..—.
_..n._ -— 2t 3+
—g+— O /N+ .
Im...
IIIA.+ »J
.....HN+ Al_lxma
O+
+ + Z + . * — * -
B(E22" - 0') =€ (2N +3) B(E2:4" — 2) _10( (2N -2)(2N +5)
5 B(E22* -~ 0°) 7| 2N(2N+3)

Slide by D.Warner
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O(6) - gamma-soft

,L Experiment 196pt, o | S0O(6) )
6
4
P \ 12+
— Gt o+ 3—6*
3 — 4+ 31 g+
= o+ . 3—3¢
&1} —3 i 3—0* -
5 ar 2 — 4+
2* 2—2*
Y
— + “_. - N+
_NQNH o
o+ |KO+ 2.5 +0——0%t v I L*
B(E22" - 0')= & N(N +4) B(E24" - 2') _10| (N-1)(N +5)
5 B(E22" -~ 0°) 7| N(N+4)
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Slide by D.Warner

Crucial Observables -1

Some observables are used to classify a spectrum:

e ratio _“NL\N” mAk_.+v\mAN+v
3.33 o oy 3, E(4)/E(2) o

X{5] B3 —..saiaeaiiiin

S e "_

L. Fortunato

Figuretaken from P.van Isacker




Crucial Observables -2

2-neutron Separation Energy E(N+1)-E(N)

Position of excited bands, other energy ratios Ry, /5,

Isomer shift d(r?) = (r?),+ — (r?)o+

Intensity of transfer reactions

Electromagnetic Transitions  B(E2;27 — 07)

B(E2) ratios B(E0;05 — 07)

E.M. transitions satisfy certain selection rules that
are dictated by the symmetry of the system and
characterize it!

L. Fortunato

EXPER. THEORY

st L

iy —

This state does not play any role,
o —
save for setting overall scales

ot 1,0

The idea is to compare data with “sets of rules”, which depend on the symmetry
L. Fortunato




Electromagnetic Transitions and Selection Rules

Operators in general (and the EM transition operator
in particular) can also be expressed in terms of the
elements of the algebra and one can calculate matrix
elements analitically.

For exemple in the electric quadrupole case E2:
Q) =[stxd + dtxs + xdtxd ](2)_

The calculation of reduced transition probability:
B(E2; L - L") = (2L'+1)/(2L+1) [¢( L' I T(E2) I L )|2

implies selection rules. For instance in the U(5) limit:

Therefore some transitions are forbidden!

B(E2; [N1,n,+1, v=n,+1, L=2n+2 - [Nl,n, v'=n, L'=2n, ) =
k(2N-L)(L'+2)

L. Fortunato

3-IBM2, other extensions and |IBFM

Nucleus as a system of two kinds of particles
Interacting Boson Model 2 (IBM-2) - u(6)0u(6)
Dynamical Symmetries in IBM-2 and F-spin
Other extensions (brief overview)

Examples: energy spectra, scissor mode
Interacting Boson-Fermion Model (IBFM)

Superalgebra, dynamical supersymmetry,

supermultiplets

L. Fortunato




IBM-2: protons and neutrons

In the IBM-2 we consider protons and
neutrons as different species, defining
creation and annihilation operators for
each one of them:

S, S, d. d, s, s, d.f d,t

The 72 generators close into U, (6) O U,(6) and can
be regrouped in 2 subsets:

[btym % by J®, - 36 proton operators
_”_u._.§3 X _ui\:{ ”_Cc

. — 36 neutron operators

L. Fortunato

Algebra chains

All algebras are bosonic. Besides trivial chains
that involve only separately chains of each of the
two algebras U (6) and U,(6), we have

U(6) O0U,(6) 00U, (6) O3 chains O SO, (3)

The generators U, (6) are obtained by summing
the corresponding generators of U.(6) and U, (6).

ni generate SO(3)
L,; generate SO,(3)
L.;+L,; generate SO.(3)

Example: L

L. Fortunato




By analogy with the isospin formalism we can think
to the proton and neutron bosons as two different
“charge states” of the same boson with F=%2 and (by
convention)

Mg = -%2 neutron
+12 proton
— LS, isovector or spin singlet (§=0,7=1): §, = ¥ a;, az,

— 38, isoscalar or spin triplet (S=1,7=0): 2, = ¥ a;,az,

m>0

Figuretaken from P.van Isacker

L. Fortunato

What does it add to _urmu:o:gmso_omv\N

Predicts scissors states L™=1+
(scissors mode): in the classical
limit they are described as
collective oscillations of the angle
between the symmetry axes of
the proton and neutron ellipsoids.
They are isovector modes.

B(ML;0f — 1F) (i%)
They are probed S = 1
measuring the e —u WW )
magnetic M1 2 L ]
transitions 1} 1
Lt (L+1)" g o | Eee

1 ] 1
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L.i-L,; : is the op. that promotes M1 transitions

On top of L™=1+ states there are bands with L™=1+,
2+,3%, ...

Mixed Symmetry States

These states are called mixed symmetry states
because they correspond to IRREPS that are not
totally symmetric nor totally antisymmetric under the
exchange of protons and neutrons:

[N, ] O[N,]O[N,+N,,0,0,...]0[N+N,-1,1,0,...]0
O[N+N,-2,2,0,...]0 ...

L. Fortunato

IBM-2 hamiltonian and proton-neutron interaction

The generic form of a bosonic hamiltonian in the IBM2
is:

H=E, + ¢n + g,n, + kKQR. Q2 + V_+V_ +V, A, + M,

€., € . are linked to the energy of the proton and
neutron bosons. Other terms describe the mutual
interaction between the two components, in which
the proton-neutron quadrupole interaction dominates.

In particular then, the Majorana operator M, makes
possible the transition (shift) between different
symmetry states.

L. Fortunato




Other extensions: IBM-n with n=12,3 4

There are several other extensions and generalizations,
some coming from physical considerations, other from

mathematical generalizations, but the algebra becomes
more and more complicated. We won't deal with them.

— IBM-1: single type of pair.

— IBM-2: T=1 nn (M;=-1) and pp (M,;=+1) pairs.

— IBM-3: full 1sospin 7=1 triplet of nn (M,;=-1), np
(M;=0) and pp (M;=+1) pairs.

— IBM-4: tull 1sospin T=1 triplet and T=0 np pair
(with S=1).

Taken from P.van Isacker

L. Fortunato

[BFM: Interacting Boson Fermion Model

The IBM and all its extensions treat
collective excitations of systems with an
even number of particles (even nuclei) in
terms of a set of interacting bosons. F. Iachello

It is interesting to extend (Iachello &
Scholten,1979) the model to odd nuclei:

- all particles, except one, are coupled into
s and d bosons

- the remaining unpaired particle is treated
explicitely as a fermion that is moving in
some given s.p. orbital Olaf Scholten

L. Fortunato




[BM and IBFM

In odd systems, besides coupled fermions with L=0,2
there is also an unpaired fermion that interacts with
the rest of valence bosons: Vgg Vg

S (J=0) pairing = s-boson

J-fermion

D (J=2) pairing = d-boson

L. Fortunato

IBFM, Superalgebra and Supersymmetry

Set of bosonic and fermionic operators that satisfy
certain rules - Superalgebra o graded Lie algebra

Set: X,,Y,e¥*, a=1,...,r, b=1,..s,

X - bosonic elements Y - fermionic elements

1) Commutation/anticommutation relations:
(c,d,f are “graded” structure constants)

S\ENL = mm}: m.m_w_ = Im.ma
_NE%L — QM%\T &n_@ - = Ma

a

ﬁ\auﬁv - \M@.Nnu \M@

|l
_|_
=
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2) Jacobi Super-identity:
[ X, X ], Xe] + [, Xe] Xa] + ([, X, X ] = 0
:R: ?@u m,: + T@“ _m;uma: + ﬁ\D @@L@: =0
Tﬂ: tm: M\&: + t\? HL@S - G\D Tmawwﬁ =0
(Yo, {1y Yo} |+ [T {Te Yo} | + [Xe, {¥a, Ty }] = 0

U(n/m) can be realized with creation and
annihilation bilinear operators

Qmmnwww a,f=1,..n order n*

&3 2
anm.q. ML order m~

mwnmk@g i=ily cvagttt, W= Ly it ordermm

| = ;
F.=bya, a=1,...,n, i=1,...,m  ordermn

L. Fortunato

Classification of superalgebras

Their classification is known (1975-77)

TABLE 2. Kac classification of classical graded Lie algebras.

Name Label Kac label Victor Kac,
Special Unitary su(n/m) An=1,m=1) .
Orthosymplectic  osp(n/2m),n=odd B((n—1)/2,m) matematico
Orthosymplectic  osp(n/2m), n = even D(n/2,m) Mz

Others Clnl.n>2 Cln|

A[n].n>2 Aln]

Pln),n>2 P[n]
F[4] F[4]
G[3] Gl3]

D[1,2:@] D[1,2:@]

Non-semisimple
Unitary u(n/m)

L. Fortunato




Extension

One can extend all the concepts that we
have seen to superalgebras:

e there are super-representations

e there are Casimir super-operators that
commute with all the elements of the
superalgebra

e there are spectrum generating
superalgebras

.m. J— \AMWDJ M\,.mvv ) Lvmf M\mv m Q*

e there are dynamical supersymmetries

H=C)

L. Fortunato

IBFM Operators

Bosons : @WAQH;.JQ = %,Q.H?Ho,%f%wuu

. . . 1
Fermions : murnr..;bv = mws%ﬁ_H%TWCIC,:;%M

)

Q is the dimension of the fermionic space M 2j+1)
J

e mo._.MQO@@ + M :Q%mm@ ! pi @m B
Q

oo B!
Hp = ¢ +M5s Gt Y, Vil aha
il kK
Ve = 2, %%w%%mﬁ. -
afik
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IBM + fermion with j=3/2

Consider the case of the IBM + a fermion in a j=3/2
orbit (similar to Bayman-Silverberger supersymm.) :

the Lie superalgebra is U(6/4)
The Racah form of the m_wmvam u(6/4) is

Ghe,0)

1
S5
x
o~

G e

A7(j,7) = a;xd;|

L. Fortunato
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Examples of “Lattice” or superalgebras network — 2

UB(e) O ... 0 SOB(3) for Bosons
UF(4) O ... 00 SUF(3) for Fermions

The two chains are combined into a single chain

UB(6) O UF(4) O SOB(6) O SUF(4) O
Spin(6) O Spin(5) O Spin(3)

L. Fortunato

Classification of states

The chains gives a way to classify (label) states

u(6/4) > WB6)®ut'(4) O s0P(6)@sut (4)

! \ |
N Np, Ny, )
D spin(6) D spin(5) D spmn(3) D spin(2)
\ | | !
AO.TQBO.MV ﬁ.ﬁ_u_ﬁmv f.?.\ ?@

N Ny, N, L,0,,0,,04,7,T,,V\,J,M; Are the needed q.n.

L. Fortunato




Example of Hamiltonian and analytic spectrum

H = mo._.mmﬁ%:m\&._.ﬁﬁm?m\&+§ﬁ_?w®
+6,Cy (11" 6) + &5, (1 4) + ¢, C (" 4) + €5, (uP6)C, (" 4)
+nC, (6%6) +1 'C, (spin6) + BC, (spin5) + yC,(spin3) ,

with eigenvalues
E = E(N NgNg,L (0),05,0,),(1,7), V5, M)
= eyteg N +e N (N +1)+e Ng+e,Ng(Ny+5)+e;N,

+¢,Np(5 = Np) +esNpNp + nZ(Z+4)
+1'[0,(0,+4) + 6,(0,+2) + 03]
+B 7, (1, +3)+ 1,(r, + )] + W (T +1) .

L. Fortunato

Supermultiplets U(6/12)

Given a certain REP of the supergroup we associate a set
of subgroup REP’s that correspond to different nuclei !!

U(6/12) Uk(6) ® U"(12) nucleus

18 (1 \ v

11%

5] & [1°] \ .,
H_.MMT.m__m

[6] ® [1'] \ 95y
[7} 7] ® [1"] \ 194

N e w2l tia
T.e@ T/_.L @ ?. L L. Fortunato




Comparison between theory and experiment

>
= .
£8 Theory - Experiment
_._vm (4.0) = ”w\w oo == y et (3] ===
f I et 50 502
= <505 4 (20)< oy ¥ 0,0 112 = rh sz (10 <I|wm
j N—52 <4,1> ©0) 7]
[7.0] e <A4,1>
' — 92 302 6,1] A%mv 6]
2 _
9 — 1) A\I.%wm
=k e =13 . =ig
30) &—112 92 — J—
g M= m \= a0 eyl " -
= \ — 112 =132 /IS 10 <
T 12 B0 =155 11214 0y ——512 A — 9 LU NS
\_ A==z a mo -
Pt Nn
—002 112 \ e
— 912 o 7 Nm ‘_ ‘_ N @ : ,, - ? 00)——112
—2 w12 00) ——112 — 912 512
20)¢ 0 V/meﬁ _ - — P T
502 —12 \— 2052 <50> . IS [6.1]
323 20)
2 — = B =8 ool
\— 512 20—
3 =i R
—an
il ~=gt MIN 3 1) ——52
512 ’ ==
(1,0) == 309 <6,1>
1] 1o =—52 <1
<6,1> . ) =— 16,1]
6.1 .
o- (00 ——1p 0,0) ——112 A_Mﬁ_v
<7,0> <7,0>
[0 7.0
Qualitatively excellent, quantitatively good
L. Fortunato

Another example of application of IBFM: 196-Au

196
g | 70AU .
= | Theory ‘ 17 Experiment
s L — &
g mli /H@.N . aﬁs
y—3 i (3/2,172) 4
—_— .
8- L m“ (372, ME — m” j% a \ % % N
& ) ——=% A (112, § —— M AH
MR <RI \_ 5
o | (IR12) —=7% BASP>  PB1s61> (112, :~Tn|‘_- )
<A
[6,01<6.0>
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Ad nauseam

199,
(MeV) 7605114 77114 Th
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Dynamical proton-neutron Supersymmetry

Even-even odd-even
N, +1, N +1 N, , N.+1, j,
Hmhv.—” & Hmhv.—”
() ()
HDW>= o H00>=
Z<+H\ Z._.n \.._.._._” _/_< \Z._._..\.._.C\..m.:
even-odd odd-odd

u(6/12), 0 U(6/4),

L. Fortunato




One nucleon trasfer reactions

The trasfer reactions of a single nucleon (neutron or
proton) furnish a crucial test for supersymmetry. The
transfer operator is:

|_|H = |O._”mﬁ X m._.ﬂ w\wu_nw\wv_ﬁ + ®_”n_= X m._.ﬂ w\N”_a\NvB
To = Blsyxaty 3212, + oldy = at, 3213/,

It is a tensor under trasformations induced by Spin(6),
hence obeys selection rules and gives analytic
expressions for the transfer intensities.

Example : 194pt  _, 195Ay

gs

gs, exc

Theoretical and experimental values (in some reduced unities)
Reyc=0 Exp=0.019
Rys= 1.12 Exp=1.175

L. Fortunato

Message to be taken with you

e Some simple models are “naturally” written in
terms of creation and annihilation operators.

e To them we can always associate an algebra that
brings with itself a dynamical symmetry.

e By knowing how to deal mathematically with the
algebra one can get analytic solutions that can be
compared with experimental data (not only: you
can get also new, unexpected solutions!)

e The algebra naturally entails quantum numbers
(=classification), selection rules (= explain some
weird observations).

e The algebra gives a conceptual frame and might
give hints on new physics!!

L. Fortunato




