Standard Model precision measurements Misure di precisione del modello standard Lesson 1: Measurements at Z pole

Stefano Lacaprara

INFN Padova

Dottorato di ricerca in fisica Università di Padova, Dipartimento di Fisica e Astronomia Padova, 5 March 2019

- 2 Z-pole observables
- 3 Asymmetries
- 4 W mass and width
- 5 Top mass
- 6 Higgs mass and features

• Stefano Lacaprara

- email: Stefano.Lacaprara@pd.infn.it
- tel: 049 9677100
- studio: st 137, Physics Dept. main building, 1st floor
- SM precision measurements 5 lessons, ×2 hours each;
- G.Simi will follow covering flavour physics (5x2h)
- A.Palano (Bari) will follow covering new exotic states (tetra-penta quark) and Dalitz plot analysis methods in b-physics (6h)
- All the slides available on moodle at https://elearning.unipd.it/dfa/course/view.php?id=756
 - All of you are subscribed to the course on moodle.
- We will also record the class and put the registraton on moodle.

- Final test: mandatory as per PhD school rules.
- A short seminar ($\approx 20'$) on one of the topics covered during the course, including discussion with us about topics related to the presentation and the course in general.
 - a list of possible topics will be provided, also topic suggest by students are fine (check with us in advance)
 - the topic should not be the main theme of your PhD work.

Where to start?

"Begin at the beginning and go on till you come to the end; then stop." Starting from the end, instead: Global SM fit, *aka* the success of SM.

Will cover (some) of the experimental aspect of SM precision measurements

Stefano Lacaprara (INFN Padova)

L.Carrol

Input to global EWK fit (in parenthesis the order followed in these lessons)

- Higgs mass (5)
 - LHC
- W mass and width (3)
 - ► LEP2, Tevatron, LHC
- Z-pole observables (1,2)
 - ► LEP1, SLD
 - ► *M_Z*, Γ_Z
 - $\triangleright \sigma_0^{had}$
 - ► $\sin^2 \theta_{eff}^{lept}$ (2)
 - Asymmetries (2)
 - BR $R^0_{lep,b,c} = \Gamma_{had} / \Gamma_{\ell\ell,b\bar{b},c\bar{c}}$
- top mass (4)
 - ► Tevatron, LHC
- other:
 - $\alpha_s(M_Z^2)$, $\Delta \alpha_{had}(M_Z^2)$

- Higgs mass (5) • LHC
- W mass and width (3)
 - LEP2, Tevatron, LH
- Z-pole observables (1,2)
 - ► LEP1, SLD
 - M_Z, Γ_Z
 - $\triangleright \sigma_0^{had}$
 - ▶ $\sin^2 \theta_{eff}^{lept}$ (2)
 - Asymmetries (2)
 - BR $R^0_{lep,b,c} = \Gamma_{had} / \Gamma_{\ell\ell,b\bar{b},c\bar{c}}$
- top mass (4)
 - Tevatron, LHC
- other:
 - $\alpha_s(M_Z^2), \ \Delta \alpha_{had}(M_Z^2)$

- Z-pole observables
 Standard Model
 Z-lineshang
 - Z lineshape

3 Asymmetries

- W mass and width
- 5 Top mass

6 Higgs mass and features

$$-\frac{1}{2} \partial_{\nu} g_{\mu}^{s} \partial_{\nu} g_{\mu}^{s} - g_{\mu} \partial_{\nu} g_{\mu}^{s} \partial_{\nu} g_{\mu}^{s} g_{\nu}^{s} g_{\mu}^{s} g_{\nu}^{s} g_{\mu}^{s} g_{\nu}^{s} g_{\mu}^{s} g_$$

$$-\frac{1}{2}\partial_{\nu}g_{\mu}^{a}\partial_{\nu}g_{\mu}^{a} - g_{s}t^{abc}\partial_{\mu}g_{\nu}^{b}g_{\nu}^{$$

latex from T.Gutierrez, who also noted a sign error somewhere

$$\mathcal{L} = -\frac{1}{4} \mathbf{W}_{\mu\nu} \cdot \mathbf{W}^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

 $-G_i(\bar{L}\phi R + \bar{R}\phi^{*\dagger}L).$

$$+\bar{L}\gamma^{\mu}\left(i\partial_{\mu}-g\frac{1}{2}\tau\cdot\mathbf{W}_{\mu}-g'\frac{Y}{2}B_{\mu}\right)L$$
$$+\bar{R}\gamma^{\mu}\left(i\partial_{\mu}-g'\frac{Y}{2}B_{\mu}\right)R$$

 $\left\{ \begin{array}{l} \mathsf{W}^{\pm},\mathsf{Z},\gamma \text{ kinetic energies} \\ \text{and self-interactions} \end{array} \right.$

 $\left\{ \begin{array}{l} \mbox{lepton and quark kinetic energies} \\ \mbox{and interactions with } W^{\pm}, {\rm Z}, \gamma \end{array} \right.$

$$+\left|\left(i\partial_{\mu}-grac{1}{2} au\cdot\mathbf{W}_{\mu}-g'rac{Y}{2}B_{\mu}
ight)\phi
ight|^{2}-V(\phi)
ight|$$

 $\left\{ \begin{array}{l} \mathsf{W}^{\pm},\mathsf{Z},\gamma, \text{ and Higgs} \\ \text{masses and couplings} \end{array} \right.$

{ lepton and quark masses and coupling to Higgs

gauge fermions Higgs Yukawa (flavour physics in L and R via CKM (q) and PMNS ν in fermions part)

masses after spontaneous symmetry breaking:

Free parameters: g, g', $V(\phi) = a\phi^2 + b\phi^4$, G_i

• higgs boson

$$u = \sqrt{\frac{-a}{2b}}$$
 minimum of Higgs potential (vacuum expectation value)
 $m_{\rm H} = 2\sqrt{a}$

$$A_{\mu} = \frac{g' W_{\mu}^{3} + g B_{\mu}}{\sqrt{g^{2} + g'^{2}}}, \ m_{A} = 0;$$

$$W_{\mu}^{\pm} = \frac{W_{\mu}^{1} \mp W_{\mu}^{2}}{\sqrt{2}}, \ m_{W} = \frac{\nu g}{2};$$

$$Z_{\mu} = \frac{g W_{\mu}^{3} - g' B_{\mu}}{\sqrt{g^{2} + g'^{2}}}, \ m_{Z} = \frac{\nu \sqrt{g^{2} + g'^{2}}}{2};$$

• fermions (excluding $\nu's$)

$$m_{fermions} = \frac{G_i \nu}{\sqrt{2}}$$

Excluding the fermion and Higgs masses

electron charge
$$e = \frac{gg'}{\sqrt{g^2 + g'^2}}$$
 Millikan experiment
 g, g', ν OR Weinberg angle $\sin \theta_W = \frac{g'}{\sqrt{g^2 + g'^2}}$ $p\nu, p\bar{\nu}$ scattering
or $\sigma(e_{pol}^-d)$ asymmetry
Fermi constant $G_F = \frac{1}{\nu^2\sqrt{2}}$ μ lifetime

Notable SM relations

$$M_W^2 = \frac{e^2}{4G_F\sqrt{2}\sin^2\theta_W} = \frac{\pi\alpha}{\sqrt{2}G_F\sin^2\theta_W}$$
$$M_Z = \frac{M_W}{\cos\theta_W}$$
$$\rho_0 = \frac{M_W^2}{M_Z^2\cos^2\theta_W} = 1 \text{ Depends only on Higgs sector}$$

Well before LEP

 $\sin \theta_W = 0.23 \pm 10\%, \ \alpha = 1/137.035..., \ G_F = 1.16639(1) \cdot 10^{-5} \ GeV^{-2}o$ Prediction: $M_W = 82 \pm 6 \text{ GeV}$ and $M_Z = 92 \pm 5 \text{ GeV}$ Need a new collider: build $Sp\bar{p}S$ and discover W and Z: UA1[2, 3]/UA2[4, 5]

$$\int -ieQ^{f}\gamma_{\mu} = \int -i\frac{g}{\cos\theta_{W}}\gamma_{\mu}\frac{1}{2}\left(c_{V}^{f} - c_{A}^{f}\gamma^{5}\right) = -i\frac{g}{\sqrt{2}}\gamma_{\mu}\frac{1}{2}\left(1 - \gamma^{5}\right)$$
Where Q , $c_{V}^{f} = \left(T^{(3)} - 2Q\sin^{2}\theta_{W}\right)$, and $c_{A}^{f} = T^{(3)}$ depends on fermion type:

fermion	Q^f	$T^{(3)}$	c^f_A	c_V^f
$(u_e, u_\mu, u_ au)_L$	0	1/2	1/2	1/2 = 0.50
$(e,\mu, au)_L$	-1	-1/2	-1/2	$-1/2 + 2\sin^2\theta_W = 0.03$
$(e,\mu, au)_R$	-1	0	0	$+2\sin^2 heta_W=0.47$
$(u, c, t)_L$	2/3	1/2	1/2	$1/2 + 4/3 \sin^2 heta_W = 0.19$
$(u, c, t)_R$	2/3	0	0	$4/3\sin^2 heta_W=0.31$
$(d, s, b)_L$	-1/3	-1/2	-1/2	$-1/2 + 2/3 \sin^2 \theta_W = 0.34$
$(d, s, b)_R$	-1/3	0	0	$2/3\sin^2 heta_W=0.16$

14/56

Correction to propagator

Are absorbed using effective (complex) coupling $g_{V/Af}$ and θ_W^{eff}

$$egin{aligned} \sin^2 heta_W^{ ext{eff}} &= (1 + \Delta \kappa_f) \sin^2 heta_W \ g_{Vf} &= \sqrt{(1 + \Delta
ho_f)} \left(T^3 - 2Q \sin^2 heta_W^{ ext{eff}}
ight) \ g_{Af} &= \sqrt{(1 + \Delta
ho_f)} \left(T^3
ight) \end{aligned}$$

$$\Delta \rho = \frac{3G_F M_W^2}{8\sqrt{2}\pi^2} \left(\frac{M_t^2}{M_W^2} - \tan^2 \theta_W \left(\ln \frac{M_H^2}{M_W^2} - \frac{5}{6} \right) \right) + \dots$$

$$\Delta \kappa = \frac{3G_F M_W^2}{8\sqrt{2}\pi^2} \left(\operatorname{cotan}^2 \theta_W \frac{M_t^2}{M_W^2} - \frac{10}{9} \left(\ln \frac{M_H^2}{M_W^2} - \frac{5}{6} \right) \right) + \dots \left(\operatorname{extra} \frac{M_f^2}{M_W^2} \text{ for } f = b \right)$$
Strong dependence on M_{top} , weak on M_H , small dependence to flavour, with exception to b quarks
Stefano Lacaprara (INFN Padova)
Fit SM
Padova 5/03/2019

Changes to SM relation due to radiative corrections (a different way to write the *notable SM relations*) $\cos^2 \theta_{eff}^{(f)} \sin^2 \theta_{eff}^{(f)} = \frac{\pi \alpha(0)}{\sqrt{2}M_z^2 G_F} \frac{1}{1 - \Delta r^{(f)}}$ where: $\Delta r^{(f)} = \Delta \alpha + \Delta r_w^{(f)}$ and $\Delta \alpha(s) = \Delta \alpha_{e\mu\tau}(s) + \Delta \alpha_{top}(s) + \Delta \alpha_{had}^{(5)}(s)$ As before, absorb radiative correction using running $\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha(s)}$ $\alpha(q^2 = 0) = 1/137.035\,999\,76(50) \rightarrow \alpha(M_Z^2) = 1/128.945$ $\Delta r_{W}^{(f)}$ is weak correction, flavour dependent $\Delta r_{W}^{(f)} = -\Delta \rho + \dots$ $\rho = 1 + \Delta \rho$

And now the experimental part... mostly from [6]

- CLEO@CESR [7]
 - Cornell
- DORIS@DESY [8](Υ)
- PETRA@DESY[9](gluon),
- BABAR@PEP-II [10],
- BELLE@KEKB [11],
- TOPAZ@TRISTAN [12]
 - discovery of $\alpha_{em}(\sqrt{s})$

KEK

- SLD@SLC
 - Stanford
- LEP and LEP II

$$\frac{d\sigma}{l\cos\theta} = \frac{\pi\alpha^2}{2s} [F_{\gamma}(\cos\theta) + F_{\gamma Z}(\cos\theta) \frac{s(s-M_Z^2)}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2} + F_Z(\cos\theta) \frac{s^2}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2}]$$

$$\frac{\gamma}{\sqrt{Z \text{ interference}}} Z$$
vanishes at $\sqrt{s} \approx M_Z$

$$\begin{split} F_{\gamma}(\cos\theta) &= Q_e^2 Q_{\mu}^2 (1+\cos^2\theta) = (1+\cos^2\theta) \\ F_{\gamma Z}(\cos\theta) &= \frac{Q_e Q_{\mu}}{4\sin^2\theta_W \cos^2\theta_W} [2g_V^e g_V^{\mu}(1+\cos^2\theta) + 4g_A^e g_A^{\mu}\cos\theta] \\ F_Z(\cos\theta) &= \frac{1}{16\sin^4\theta_W \cos^4\theta_W} [(g_V^{e^2} + g_A^{e^2})(g_V^{\mu^2} + g_A^{\mu^2})(1+\cos^2\theta) + 8g_V^e g_A^e g_V^{\mu} g_A^{\mu}\cos\theta] \end{split}$$

$$\begin{split} \boxed{\frac{d\sigma}{d\cos\theta} &= \frac{\pi\alpha^2}{2s} [F_{\gamma}(\cos\theta) + F_{\gamma Z}(\cos\theta) \frac{s(s-M_Z^2)}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2} + F_Z(\cos\theta) \frac{s^2}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2}] \\ & \gamma & \gamma/Z \text{ interference} & Z \\ \hline & \mathbf{vanishes at } \sqrt{s} \approx M_Z \\ F_{\gamma}(\cos\theta) &= Q_e^2 Q_{\mu}^2 (1 + \cos^2\theta) = (1 + \cos^2\theta) \\ F_{\gamma Z}(\cos\theta) &= \frac{Q_e Q_{\mu}}{4\sin^2\theta_W \cos^2\theta_W} [2g_V^e g_V^\mu (1 + \cos^2\theta) + 4g_A^e g_A^\mu \cos\theta] \\ F_Z(\cos\theta) &= \frac{1}{16\sin^4\theta_W \cos^4\theta_W} [(g_V^{e^2} + g_A^{e^2})(g_V^{\mu^2} + g_A^{\mu^2})(1 + \cos^2\theta) + 8g_V^e g_A^e g_V^\mu g_A^\mu \cos\theta] \end{split}$$

 $\cos \theta$ is the angle between e^- and μ^- On resonance $\sqrt{s} = M_Z$: γ/Z vanish (~ 0.2% at $\sqrt{s} = M_Z \pm 3 GeV$), $\gamma \sim 1$ %, Z dominates

$$\begin{split} \frac{d\sigma}{d\cos\theta} &= \frac{\pi\alpha^2}{2s} \left[F_{\gamma}(\cos\theta) + F_{\gamma Z}(\cos\theta) \frac{s(s-M_Z^2)}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2} + F_Z(\cos\theta) \frac{s^2}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2} \right] \\ & \gamma \qquad \gamma / Z \text{ interference} \qquad Z \\ & \nabla \gamma / Z \text{ int$$

 $\begin{array}{c} \cos\theta \text{ is the angle between } e^- \text{ and } \mu^- \\ (1 + \cos^2\theta) \text{ terms contribute to } \sigma_{tot} \\ (\cos\theta) \text{ terms introduce asymmetries forward-backward} \end{array}$

Stefano Lacaprara (INFN Padova)

$$\begin{split} \boxed{\frac{d\sigma}{d\cos\theta} &= \frac{\pi\alpha^2}{2s} [F_{\gamma}(\cos\theta) + F_{\gamma Z}(\cos\theta) \frac{s(s-M_Z^2)}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2} + F_Z(\cos\theta) \frac{s^2}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2}] \\ & \gamma & \gamma/Z \text{ interference} & Z \\ \hline & \mathbf{vanishes at } \sqrt{s} \approx M_Z \\ F_{\gamma}(\cos\theta) &= Q_e^2 Q_{\mu}^2 (1 + \cos^2\theta) = (1 + \cos^2\theta) \\ F_{\gamma Z}(\cos\theta) &= \frac{Q_e Q_{\mu}}{4\sin^2\theta_W \cos^2\theta_W} [2g_V^e g_V^\mu (1 + \cos^2\theta) + 4g_A^e g_A^\mu \cos\theta] \\ F_Z(\cos\theta) &= \frac{1}{16\sin^4\theta_W \cos^4\theta_W} [(g_V^{e^2} + g_A^{e^2})(g_V^{\mu^2} + g_A^{\mu^2})(1 + \cos^2\theta) + 8g_V^e g_A^e g_V^\mu g_A^\mu \cos\theta] \end{split}$$

 $\begin{array}{l} \text{if } e^+e^- \to q\bar{q} \text{: } \cos\theta \text{ difficult to know } (q \text{ vs } \bar{q} \text{ harder than } \ell \text{ vs } \bar{\ell}) \\ \text{Additional color term } \times N_c \end{array}$

and QCD final state radiative correction $\times (1+\delta_{\textit{QCD}}),$ see later

At tree level, two diagrams:

• s-channel

- same as $e^+e^- \rightarrow f\bar{f}$;
- dominates at large angle;
- t-channel
 - Bhabha scattering^a
 - largely dominates at small scattering angle
 - $\star~\sigma\approx 1/\theta^3$: close to colliding e^- beam
 - very well known QED process;
 - Used to measure LEP luminosity with large angle luminometer

Stefano Lacaprara (INFN Padova)

^aBhabha Homi Jehangir, indian theoretical phys. (Bombay 1909 - m. Bianco 1966)

ISR

• Emission of γ from initial state. Important effect (radiative return to Z peak).

$$\sigma(s) = \int_0^1 dz \cdot H_{QED}^{tot}(z,s) \cdot \sigma_{ew}(zs)$$
FSR

- both QED and QCD (only for quarks)
- change partial and total width $\Gamma_h = \Sigma_f \Gamma_0^f (1 + \delta_{QED}^f) (1 + \delta_{QCD}^f)$

$$egin{aligned} &\Gamma_h = \Sigma_f \Gamma_0'(1+\delta_{QED}')(1+\delta_{QED}$$

- Note the huge importance of ISR radiative (QED) corrections!
- Decrease σ by 30% and shift peak position by \sim 100 MeV
- $\sigma_{\textit{had}}^{\textit{tot}}$ is measured
- value reported and used for electroweak fit, is σ^0_{had} , where QED correction are evaluated
- pseudo-observable
- Same also for R_f^0 , Γ_Z^0 , A_{FB}^0 , ...

Considering only hadronic final states:

$$\sigma(s) = 12\pi \frac{\Gamma_e \Gamma_{had}}{M_Z^2} \frac{s}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} \text{ (neglecting the -small- } \gamma \text{ contribution)}$$

At peak: $\sigma_0 = \frac{12\pi}{M_Z^2} \frac{\Gamma_e \Gamma_{had}}{\Gamma_Z}$,
where: $\Gamma_{had} = \Sigma_{q \neq t} \Gamma_{q\bar{q}} \text{ and } \Gamma_Z = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{had} + \Gamma_{inv}$

We can measure 6+1 parameters:

- Z mass M_Z from peak position;
- Z total width **F**_Z from peak width;
- hadronic pole cross-section σ_0 from peak height;
- Width ratios $R^0_{\ell} = R^0_{e,\mu,\tau} = \Gamma_{had}/\Gamma_{ee,\mu\mu,\tau\tau}$ from exclusive peak height;
- Width ratios $R_b^0 = \Gamma_{bb} / \Gamma_{had}$ as above;

Very clean environment Electron ID via tracks and ECAL clusters: E/p = 1 (B = 0.5T)

- This example has 3 jets $e^+e^- \to qqg$

Good example of FSR (QCD): slightly more complex events, larger hadron multiplicity, jet reco (E/HCAL) very good tracker B = 1.5T,

Even clearer environment: outer tracking detector for μ ID. L3 had all detectors inside solenoid (0.5*T*), excellent ECAL (BGO)

 $au o 3h
u_{ au}$ three prong, and $au o h
u_{ au}$ one prong decays DELPHI had RICH (PID)

Event selection is quite easy thanks to the very clean environment: E_{ch} (sum of tracks momenta) vs charged multiplicity.

L3 hadron selection

LEP not so clean as one might imagine.

Gamma-Gamma interaction produce a lot of interaction in addition to Z production.

The scattered electrons escape in the beam pipe, undetected.

At Z peak, x-section is ~150nb (vs ~30nb for ee->Z), but it is reduced to ~6nb via pt and $\Delta\phi$ cuts.

Year	Centre-of-mass	Integrated
	energy range	luminosity
	[GeV]	$[\mathrm{pb}^{-1}]$
1989	88.2 - 94.2	1.7
1990	88.2 - 94.2	8.6
1991	88.5 - 93.7	18.9
1992	91.3	28.6
1993	89.4, 91.2, 93.0	40.0
1994	91.2	64.5
1995	89.4, 91.3, 93.0	39.8

Number of events $\times 1\cdot 10^3$

			N	umber	of Event	s				
	$Z \to q\overline{q}$					$\mathrm{Z} ightarrow \ell^+ \ell^-$				
Year	A	D	L	0	LEP	A	D	\mathbf{L}	0	LEP
1990/91	433	357	416	454	1660	53	36	39	58	186
1992	633	697	678	733	2741	77	70	59	88	294
1993	630	682	646	649	2607	78	75	64	79	296
1994	1640	1310	1359	1601	5910	202	137	127	191	657
1995	735	659	526	659	2579	90	66	54	81	291
Total	4071	3705	3625	4096	15497	500	384	343	497	1724

Total per experiment:

- 4M Z
 ightarrow q ar q
 - 0.5M $Z \rightarrow \ell^+ \ell^-$

In 1990, 91, 93, and 95 a total of 7 + 20 pb^{-1} lumi collected off-peak Actual ${\cal L}$ collected by each experiment $\sim 10-15\%$ less

$$\sigma_{tot} = rac{(\textit{N}_{sel} - \textit{N}_{bg})}{\epsilon_{sel}\mathcal{L}}$$

Background and efficiency from MC. Key issue is luminosity \mathcal{L} measurement

- $e^+e^-
 ightarrow e^+e^-$ via t-channel dominates at low heta.
- Collect Bhabha events with very forward calorimenters 25 to 60 *mrad* from beam.
- x-section goes as 1/θ³: difficult to define the geometrical acceptance of forward calorimeters.
 - $\blacktriangleright\,$ common systematic uncert: $\lesssim 0.05\%$,
 - from theory $\sim 0.05\%$.
- $\bullet\,$ at LHC 2.6%, at Bellell 0.7%

Off-peak measurements $M_Z \pm 2 \text{ GeV}$ are crucial for Γ_Z

Hadronic and leptonic cross-section vs \sqrt{s}

- M_Z from peak position
 - $ee \rightarrow ee(\gamma)$ also t-channel and inteference

- Γ_Z from peak width in hadronic final state (larger stats)
- Width ratios *R* from exclusive cross-sections.
 - $\sigma^{0}_{had,e,\mu,\tau} \propto \Gamma_{e}\Gamma_{had,e,\mu,\tau}$
- For M_Z critical is the determination of \sqrt{s} for LEP.

 \leq LEP \sqrt{s} : resonant depolarization [13]

Dipole *B* field is vertical.

- Electron spin aligns with B
- Sokolov-Ternov theo., patent in '73!.

Due to spin-B interaction: $E_{\uparrow\uparrow} > E_{\uparrow\downarrow}$.

• spin flip due to synchrotron radiation, but flip rate is not symmetric.

Pol
$$_{trans} \propto \left(1-e^{-t/ au}
ight)$$
, with $au \; 10h$

$$E \sim p = eBR = rac{e}{2\pi}BL$$

• *B* is not uniform, LEP ring not a circle

$$E_{beam} = rac{e}{2\pi} \oint B \cdot d\ell$$

EVALUATE: LEP \sqrt{s} : resonant depolarization

- spin precess in B field, with a ν proportinal to B (Larmor precession)
 - number of precessions per turn:

$$\nu_s = \frac{g_e - 2}{2} \frac{e}{2\pi m_e} \oint B \cdot d\ell = \frac{g_e - 2}{2} \frac{E_{beam}}{m_e}$$

- ν_s is proportional to E_{Beam}
- \bullet apply an additional, radial B field, oscillating with freq ν
 - if $\nu = \nu_s$, the spin is rotated until it becomes horizontal
 - ▶ about 10⁴ turns (1s) to rotate by 90 deg
 - \blacktriangleright stochastic sync. rad.: horizonal pol is unstable \rightarrow destroyed.

- External freq is: $f_{dep} = (k \pm [\nu]) \cdot f_{rev}$
- where $f_{rev} = 11.25 \ kHz$ is that of LEP, k is an integer;
- $[\nu] = \nu_{scan}$ is the non-integer part of the ν of the bending field;
- a freq scan is performed, ν_{scan} is moved slowly
- then the polarization is measured (Compton scattering), then repeat for different bunches

- Process is slow, and can be done only at the end of a fill
- precision (limited to ν_{scan} step) is pprox 100 keV
- Ultimate LEP \sqrt{s} resolution \approx 2.2 MeV. Why?

Tidal movement of earth move the dipole magnets.

Typical displacement 1mm (in 27km), giving a 10 MeV peak-to-peak change.

Other ground distortion from Geneva lake level, heavy rain ...

Vagabond electric currents from trains.

Final M_Z syst from \sqrt{s} about 1.7 MeV

$M_Z = 91.1875 \pm 0.0021 \ GeV \ (23ppm)$

- $\pm 1.7 \ MeV \ LEP \ \sqrt{s} \ scale$
- ±0.3 *MeV* QED corr (ISR)
- $\pm 0.1 \ MeV$ fit parametrization
- $\pm 0.05~MeV~\mathcal{L}$
- $\pm 0.05~MeV~lpha_{had}$
- Contribution γZ interference

$\Gamma_Z = 2.4952 \pm 0.0023 ~\text{GeV}$

- $\pm 1.2 \ MeV$ from QED corr (ISR)
- $\pm 0.2 \ MeV$ from QED corr (FSR)
- $\pm 0.1 \ MeV$ from fit parametrization

Partial width: $R^0_\ell = \Gamma_{had}/\Gamma_\ell$	ALEPH 20.729±0.039
$egin{aligned} R_e^0 =& 20.804 \pm 0.050 \ R_\mu^0 =& 20.785 \pm 0.033 \ R_ au^0 =& 20.764 \pm 0.045 \end{aligned}$	L3 \bigcirc 20.809±0.060 OPAL \bigcirc 20.822±0.044 LEP \bigcirc 20.767±0.025 common: 0.007 $\chi^2/DoF = 3.5/3$
$R_{ au}^0$ expected to be smaller due to $m_ au > m_\mu \gg m_e$	ALEPH
$R_{ au}^0$ expected to be smaller due to $m_{ au} > m_{\mu} \gg m_e$ Assuming lepton universality:	ALEPH

With lepton universality:

$$\begin{split} & \Gamma_Z = & 2495.2 \pm 2.3 \ \text{MeV} \\ & \Gamma_{had} = & 1744.4.8 \pm 2.0 \ \text{MeV} \\ & \Gamma_\ell = & 83.895 \pm 0.086 \ \text{MeV} \\ & \Gamma_{inv} = & 499.0 \pm 1.5 \ \text{MeV} \end{split}$$

- $\Gamma_{inv}^{SM} = 501.7 \pm 0.2^{+0.1}_{-0.9}(m_H) \ MeV$
- $\Gamma_{inv}^{x} = -2.7^{+1.8}_{-1.5} \text{ MeV}$
- $N_{\nu} = 2.9840 \pm 0.0082$

•
$$\delta N_{\nu} \approx 10.5 \frac{\delta n_{had}}{n_{had}} \oplus 3.0 \frac{\delta n_{lep}}{n_{lep}} \oplus 7.5 \frac{\delta \mathcal{L}}{\mathcal{L}}$$

It is not possible, in general, to distinguish quark flavour, with the exception of b and c-quarks, using different techniques: Useing two features: long b (and c) lifetime and exclusive b and c decays.

- lifetime tagging;
 - $c\tau$ for b is ~ 450 μm (in lab $\times\gamma$)
 - c au for c is $\sim 150 \mu m$ (in lab $imes \gamma$)
 - detect displaced secondary vertex via impact parameter or decay length measurements
- exclusive decays:
 - leptonic decay;
 - decay with D mesons;

Correction to $R_{b,c}$ from QCD (gluon radiation from final state quarks), in addition to QED correction and LEP energy scale.

Heavy hadrons have long lifetime and large boost at LEP

- Impact Parameter (*d*₀):
 - d₀ is the distance of closest approach from the primary vertex of the extrapolated track;
 - the resolution depends on the track reconstruction and primay vertex knowledge;
 - silicon microvertex close to beam pipe for resolution, PV depends on accelerator (SLC better than LEP);
 - a signed quantity wrt the jet dir.

lifetime tagging

 badly measured track can intercept the "wrong-side" of the beam-spot;

•
$$d_0^{sign} = d_0 / \sigma(d_0);$$

- Decay length (L)
 - Signed as well

lifetime tagging

L significance and NN

b Purity [%]

b Efficiency [%]

$$\delta_{I\!P}\sim 16-100\mu m~(R\phi/Z)$$
 , $\delta_b\sim 300\mu m$

Stefano Lacaprara (INFN Padova)

97.8

22.7

98.6

29.6

84.3

23.7

Padova 5/03/2019 44/56

98.3

61.8

96.7

25.5

A lepton inside a jet is a stong indication of a b or c flavour.

To distinguish from b to \overline{b} use semileptonic decay of b quarks.

- $b
 ightarrow \ell^-$; pprox 10%
- $c
 ightarrow \ell^+$; pprox 13%
- $b
 ightarrow c
 ightarrow \ell^+$ cascade decay ;

- Distinguish between direct and cascade decay using lepton p_T and p
- lower purity and efficiency wrt lifetime tagger

Tagging via reconstruction of charmed meson and barions in jet:

D-Meson Tags

direct evidence of a jet originated by an heavy quark.

- low $\mathcal{B} \sim \mathcal{O}(\%)$
- ullet b
 ightarrow c fragmentation is small
- distinguish *c* from *b* decay by charmed mesons momentum;

$$\begin{array}{c} D_0 \rightarrow K^-\pi^+ \\ D^+ \rightarrow K^-\pi^+\pi^+ \\ D_s \rightarrow K^+K^-\pi^+ \\ \Lambda_c^+ \rightarrow pK^-\pi^+ \\ D^{*+} \rightarrow \pi^+D^0 \\ \text{slow } \pi^+ \text{, no need for PID} \end{array}$$

 R_a for b and c

Single-tag (one b/c) or double-tag methods (both sides: allows to extract tag ε from data)charm R_c beauty R_b

Dotted line is systematic uncertainties

Contribution from SLD (next lesson): smaller interaction region, better b-tagging, smaller

uncertainties

Stefano Lacaprara (INFN Padova)

Input to global EWK fit (in parenthesis the order followed in these lessons)

- Higgs mass (5)
 - LHC
- W mass and width (3)
 - ► LEP2, Tevatron, LHC
- Z-pole observables (1,2)
 - ► LEP1, SLD
 - ► *M_Z*, Γ_Z
 - $\triangleright \sigma_0^{had}$
 - ► $\sin^2 \theta_{eff}^{lept}$
 - Asymmetries (2)
 - BR $R^0_{lep,b,c} = \Gamma_{had} / \Gamma_{\ell\ell,b\bar{b},c\bar{c}}$
- top mass (4)
 - ► Tevatron, LHC
- other:
 - $\alpha_s(M_Z^2)$, $\Delta \alpha_{had}(M_Z^2)$

- Higgs mass (5) • LHC
- W mass and width (3)
 - ► LEP2, Tevatron, LH(
- Z-pole observables (1,2)
 - ► LEP1, SLD
 - M_Z , Γ_Z
 - $\triangleright \sigma_0^{had}$
 - $\sin^2 \theta_{eff}^{lept}$
 - Asymmetries (2)
 - BR $R^0_{lep,b,c} = \Gamma_{had} / \Gamma_{\ell\ell,b\bar{b},c\bar{c}}$
- top mass (4)
 - Tevatron, LHC
- other:
 - $\alpha_s(M_Z^2), \ \Delta \alpha_{had}(M_Z^2)$

- F. Halzen and A. D. Martin, Quarks and Leptons: an introductory course in modern particle physics. Wiley, New York, USA, 1984.
- G. Arnison, A. Astbury, B. Aubert, C. Bacci, G. Bauer, A. Bézaguet, R. Böck, T. Bowcock, M. Calvetti, T. Carroll, P. Catz, P. Cennini, S. Centro, F. Ceradini, S. Cittolin, D. Cline, C. Cochet, J. Colas, M. Corden, D. Dallman, M. DeBeer, M. D. Negra, M. Demoulin, D. Denegri, A. D. Ciaccio, D. DiBitonto, L. Dobrzynski, J. Dowell, M. Edwards, K. Eggert, E. Eisenhandler, N. Ellis, P. Erhard, H. Faissner, G. Fontaine, R. Frey, R. Frühwirth, J. Garvey, S. Geer, C. Ghesqui'ere, P. Ghez, K. Giboni, W. Gibson, Y. Giraud-H'eraud, A. Givernaud, A. Gonidec, G. Grayer, P. Gutierrez, T. Hansl-Kozanecka, W. Haynes, L. Hertzberger, C. Hodges, D. Hoffmann, H. Hoffmann, D. Holthuizen, R. Homer, A. Honma, W. Jank, G. Jorat, P. Kalmus, V. Karimaki, R. Keeler, I. Kenyon, A. Kernan, R. Kinnunen, H. Kowalski, W. Kozanecki, D. Kryn, F. Lacava, J.-P. Laugier, J.-P. Lees, H. Lehmann, K. Leuchs, A. Lévêque, E. Linglin, E. Locci, M. Loret, J.-J. Malosse, T. Markiewicz, G. Maurin, T. McMahon, J.-P. Mendiburu, M.-N. Minard, M. Moricca, H. Muirhead, F. Muller, A. Nandi, L. Naumann, A. Norton, A. Orkin-Lecourtois, L. Paoluzi, G. Petrucci, G. Mortari, M. Pimia, A. Placci, E. Radermacher, J. Ransdell, H. Reithler, J.-P. Revol, J. Rich, M. Rijssenbeek, C. Roberts, J. Rohlf, P. Rossi, C. Rubbia, B. Sadoulet, G. Sajot, G. Salvi, J. Salvini, J. Sass, A. Saudraix, A. Savoy-Navaro, D. Schinzel, W. Scott, T. Shah, M. Spiro, J. Strauss, K. Sumorok, F. Szoncso, D. Smith, C. Tao, G. Thompson, J. Timmer, E. Tscheslog, J. Tuominiemi, S. V. der Meer, J.-P. Vialle, J. Vrana, V. Vuillemin, H. Wahl, P. Watkins, J. Wilson, Y. Xie, M. Yvert, and E. Zurfluh, "Experimental observation of isolated large transverse energy electrons with associated missing energy at s=540 gev," *Physics Letters B* 122 no. 1, (1983) 103 116. http://www.sciencedirect.com/science/article/pii/0370269383911772.
- UA1 Collaboration, G. Arnison et al., "Experimental Observation of Lepton Pairs of Invariant Mass Around 95-GeV/c**2 at the CERN SPS Collider," Phys. Lett. B126 (1983) 398–410. [,7.55(1983)].
- M. Banner, R. Battiston, P. Bloch, F. Bonaudi, K. Borer, M. Borghini, J.-C. Chollet, A. Clark, C. Conta, P. Darriulat, L. D. Lella, J. Dines-Hansen, P.-A. Dorsaz, L. Fayard, M. Fraternali, D. Froidevaux, J.-M. Gaillard, O. Gildemeister, V. Goggi, H. Grote, B. Hahn, H. Hanni, J. Hansen, P. Hansen, T. Himel, V. Hungerbã¹/₄ hler, P. Jenni, O. Kofoed-Hansen, E. Lançon, M. Livan, S. Loucatos, B. Madsen, P. Mani, B. Mansoulie, G. Mantovani, L. Mapelli, B. Merkel, M. Mermikides, R. Mã,llerud, B. Nilsson, C. Onions, G. Parrour, F. Pastore, H. Plothow-Besch, M. Polverel, J.-P. Repellin, A. Rothenberg, A. Roussarie, G. Sauvage, J. Schacher, J. Siegrist, H. Steiner, G. Stimpfl, F. Stocker, J. Teiger, V. Vercesi, A. Weidberg, H. Zaccone, and W. Zeller, "Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the cern pp collider," *Physics Letters B* 122 no. 5, (1983) 476 485. http://www.sciencedirect.com/science/article/pii/0370269383916052.

- 🕨 UA2 Collaboration, P. Bagnaia et al., "Evidence for Z0 ¿ e+ e- at the CERN anti-p p Collider," Phys. Lett. B129 (1983) 130–140. [,7.69(1983)].
- ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, "Precision electroweak measurements on the Z resonance," Phys. Rept. 427 (2006) 257–454, arXiv:hep-ex/0509008 [hep-ex].
- CLEO Collaboration, "Measurement of the Total Hadronic Cross Section in e+e- Annihilations below 10.56-GeV," Phys. Rev. D76 (2007) 072008, arXiv:0706.2813 [hep-ex].
- H. Albrecht, R. Childers, C. Darden, G. Drews, H. Hasemann, W. Schmidt-Parzefall, H. Schröder, H. Schulz, F. Selonke, E. Steinmann, R. Wurth, W. Hofmann, A. Markees, D. Wegener, K. Schubert, J. Stiewe, R. Waldi, S. Weseler, P. Böckmann, L. Jönsson, M. Danilov, Y. Semenov, I. Tichomirov, and Y. Zaitsev, "The hadronic cross section of electron-positron annihilation at 9.5 gev and the v and v' resonance parameters," *Physics Letters B* 116 no. 5, (1982) 383 386. http://www.sciencedirect.com/science/article/pii/0370269382903057.
- P. Söding, "On the discovery of the gluon," The European Physical Journal H 35 no. 1, (Jul, 2010) 3–28. https://doi.org/10.1140/epjh/e2010-00002-5.
- **BaBar** Collaboration, "Measurement of $e^+e^- \rightarrow$ hadrons cross sections at BABAR, and implication for the muon g 2," PoS Hadron2013 (2013) 126, arXiv:1402.0618 [hep-ex].
- H. Nakazawa, "Measurement of hadronic cross sections with isr/two-photon processes at belle," Nuclear and Particle Physics Proceedings 260 (2015) 98 101. http://www.sciencedirect.com/science/article/pii/S2405601415000796. The 13th International Workshop on Tau Lepton Physics.
- I. Levine, D. Koltick, B. Howell, E. Shibata, J. Fujimoto, T. Tauchi, K. Abe, T. Abe, I. Adachi, K. Adachi, M. Aoki, M. Aoki, K. Emi, R. Enomoto, H. Fujii, K. Fujii, T. Fujii, N. Fujiwara, H. Hayashii, H. Hirano, H. Ikeda, H. Ikeda, Y. Inoue, S. Itami, R. Itoh, H. Iwasaki, M. Iwasaki, R. Kajikawa, K. Kaneyuki, S. Kato, S. Kawabata, H. Kichimi, M. Kobayashi, H. Mamada, K. Miyabayashi, A. Miyamoto, K. Nagai, K. Nakabayashi, M. Nakamura, E. Nakano, O. Nitoh, S. Noguchi, A. Ochi, F. Ochiai, N. Ohishi, Y. Ohnishi, Y. Ohnishi, H. Okuno, T. Okusawa, A. Sugiyama, S. Suzuki, K. Takahashi, T. Takahashi, T. Tanimori, Y. Teramoto, M. Tomoto, T. Tsukamoto, T. Tsumura, S. Uno, K. Watanabe, Y. Watanabe, A. Yamamoto, and M. Yamauchi, "Measurement of the electromagnetic coupling at large momentum transfer," *Phys. Rev. Lett.* **78** (Jan, 1997) 424–427. http://link.aps.org/doi/10.1103/PhysRevLett.78.424.

- L. Arnaudon, B. Dehning, P. Grosse-Wiesmann, R. Jacobsen, M. Jonker, J. Koutchouk, J. Miles, R. Olsen, M. Placidi, R. Schmidt, J. Wenninger, R. Assmann, and A. Blondel, "Accurate determination of the lep beam energy by resonant depolarization," Zeitschrift für Physik C Particles and Fields 66 no. 1-2, (1995) 45–62. http://dx.doi.org/10.1007/BF01496579.
- L. Arnaudon, R. Assmann, A. Blondel, B. Dehning, G. E. Fischer, P. Grosse-Wiesmann, A. Hofmann, R. Jacobsen, J. P. Koutchouk, J. Miles, R. Olsen, M. Placidi, R. Schmidt, and J. Wenninger, "Effects of terrestrial tides on the LEP beam energy." SL Divisional Reports 1994, http://cds.cern.ch/record/90793.

 R. N. Cahn and G. Goldhaber, The Experimental Foundations of Particle Physics. Cambridge University Press, second ed., 2009. http://dx.doi.org/10.1017/CB09780511609923. Cambridge Books Online.

2 Z-pole observables

3 Asymmetries

- Forward-Backward Asymmetries
- Left-Right Asymmetries
- Tau polarization
- Results from b and c Quarks

W mass and width

5 Top mass

- 2 Z-pole observables
- 3 Asymmetries

4 W mass and width

- Motivation
- At LEP II
- M_W at Tevatron
- M_W at LHC

5 Top mass

- 2 Z-pole observables
- 3 Asymmetries
- 4 W mass and width

5 Top mass

6 Higgs mass and features

- 2 Z-pole observables
- 3 Asymmetries
- 4 W mass and width

5) Top mass

6 Higgs mass and features

- 2 Z-pole observables
- 3 Asymmetries
- 4 W mass and width
- 5 Top mass
- 6 Higgs mass and features