Standard Model precision measurements Misure di precisione del modello standard Lesson 3: W mass measurement

Stefano Lacaprara

INFN Padova

Dottorato di ricerca in fisica Università di Padova, Dipartimento di Fisica e Astronomia Padova, May 4, 2020

- 2 Z-pole observables
- 3 Asymmetries
- ④ W mass and width
- 5 Top mass
- 6 Higgs mass and features

7 Global ElectroWeak fit

- 2 Z-pole observables
 - Standard Model
 - Z lineshape

3 Asymmetries

W mass and width

5 Top mass

6 Higgs mass and features

2 Z-pole observables

3 Asymmetries

- Forward-Backward Asymmetries
- Left-Right Asymmetries
- Tau polarization

W mass and width

Top mass

6 Higgs mass and features

- 2 Z-pole observables
- 3 Asymmetries

W mass and width

- Motivation
- At LEP II
- M_W at Tevatron
- M_W at LHC

5 Top mass

Input to global EWK fit (in parenthesis the order followed in these lessons)

• Higgs mass (4)

► LHC

- W mass and width (3)
 - ► LEP2, Tevatron, LHC
- Z-pole observables (1)
 - ► LEP1, SLD
 - M_Z, Γ_Z
 - $\bullet \sigma_0^{had}$
 - $\sin^2 \Theta_{eff}^{lept}$
 - Asymmetries

• BR
$$R^0_{lep,b,c} = \Gamma_{had} / \Gamma_{\ell\ell,b\bar{b},c\bar{c}}$$

- top mass (3)
 - ► Tevatron, LHC
- other:
 - $\alpha_s(M_Z^2)$, $\Delta \alpha_{had}(M_Z^2)$

• Higgs mass (4)

- ► LHC
- W mass and width (3)
 - ► LEP2, Tevatron, LHC
- Z-pole observables (1)
 - ▶ LEP1, SLD
 - $\blacktriangleright M_Z, \Gamma_Z$
 - $\triangleright \sigma_0^{nau}$
 - ► $\sin^2 \Theta_{eff}^{lept}$
 - Asymmetries
 - $\blacktriangleright \text{ BR } R^0_{lep,b,c} = \Gamma_{had} / \Gamma_{\ell\ell,b\bar{b},c\bar{c}}$
- top mass (3)
 - Tevatron, LHC
- other:
 - ► $\alpha_s(M_Z^2)$, $\Delta \alpha_{had}(M_Z^2)$

Motivations

Motivation:

W mass and top quark mass are fundamental parameters of the Standard Model; The standard theory provides well defined relations between m_W , m_{top} and m_H

Electromagnetic constant measured in atomic transitions, e*e⁻ machines, etc.

 $G_F, \, \alpha_{EM}, \sin \theta_W \\ are known with high precision \\ Precise measurements of the \\ W mass and the top-quark \\ mass constrain the Higgs- \\ boson mass \\ (and/or the theory. \\$

radiative corrections)

- Difference \sim 23 \pm 15 MeV \sim 1.5 σ .
 - \blacktriangleright was 80359 \pm 11 vs 30585 \pm 15 w/o ATLAS: 26 \pm 18 MeV 1.3σ
- For a 2σ effect, we need M_W experimental precision of about $\pm 10 \text{ MeV}$

Cross sections for Z and W boson production at LEP

 \mathcal{B}

Year	Mean energy	Luminosity	
	\sqrt{s} [GeV]	$[pb^{-1}]$	
1995,1997	130.3	6	
	136.3	6	
	140.2	1	
1996	161.3	12	
	172.1	12	
1997	182.7	60	
1998	188.6	180	
1999	191.6	30	
	195.5	90	
	199.5	90	
	201.8	40	
2000	204.8	80	
	206.5	130	
	208.0	8	
Total	130 - 209	745	

- Most of luminosity taken around $ee \rightarrow WW$ production threshold $(\sqrt{s} = 2M_W)$ for measurement of M_W ;
- and at the highest possible \sqrt{s} for discoveries.

- Lines are theoretical expectation
- dots are LEP1/2 measurements.
- Will not discuss all measurement here, only the $ee \to WW$ as it is related to the measurement of M_W

ee ightarrow 4f

BLACK dots

comes from the $\gamma\gamma$ interactions: dominant but reducible

ee cross section at high energy ($\sim \sqrt{2M_W}$)

 $ee
ightarrow far{f}$

- green and magenta dots
- $Z/\gamma \ s(t)$ -channel;
- very important ISR QED correction, up to 100% wrt born-level x-section due to radiative return to Z

ee cross section at high energy ($\sim \sqrt{2M_W}$)

Stefano Lacaprara (INFN Padova)

W pair production is achieved via three different Feynman diagrams

W pairs decays are:

- fully hadronic: $q\bar{q}q\bar{q}$
 - Seen as 4 jets
 - BR = 45.6%
 - eff: 80-90%, purity: 80%
- semi leptonic $q \bar{q} \ell \nu$
 - Seen as 2 jets, isolated leptons, MET
 BR = 43.8%
 - eff: 70-90%, purity: 95%
- full leptonic $\ell \nu \ell \nu$
 - two isolated leptons, MET
 - BR = 10.6%
 - eff: 70%, purity: 90%

Total of $\approx 12\,000$ WW pairs produced/experiment ($17pb \times 700pb^{-1}$ above threshold)

Full hadronic event: DELPHI

2. TK Energy flow, run 67777, event 16923, type DST

Semileptonic event: OPAL

Stefano Lacaprara (INFN Padova)

Events / 0.05 ALEPH preliminary 196 GeV Hadronic decay Data W+M_ • 4 jets in the events; All 4f - W⁺W⁻ qq MC • No missing energy; 10^{2} • \sqrt{s} is known! LEP is a e^{\pm} collider! • Event is central: • Background from $ZZ \rightarrow 4q$, $ee \rightarrow qqg$ plus $g \rightarrow q\bar{q}$, etc: 10 • Use neural network to achieve high purity (75-85%) and efficiency (85-89%)

• Combinatorics problem with jet pairing

NN output

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

infn 🕐

Semi leptonic

- 2 jets, one high p_T , isolated lepton, MET;
- very clean, little background, high BR (44%);
- ID also au from low multiplicity "jet" decay;
- cross contamination of au to e and μ channel;
- 3-jet background for au channel

Full leptonic

- 0 jets, two high p_T , isolated lepton, MET;
- very clean, little background, low BR (11%);
- background from $\gamma/Z* \rightarrow \ell\ell$ has no MET

Threshold measurement

• $\sigma_{ee
ightarrow WW}$ at threshold rises as the velocity of the W,

$$\sigma \sim eta = \sqrt{1 - 4 M_W^2/s}$$

- So, measurement of $\sigma_{WW}(s)$ is directly related to measurement of M_W .
- Precision comparable with the direct-reconstruction method;
 - Most sensitive measurement from \sqrt{s} just above threshold; At $\sqrt{s} = 161 \text{ GeV}$ collected only 12 pb^{-1} (out of 750 pb^{-1});
 - Moreover, at threshold σ is small $\approx 3pb$
 - Used also data at 172 GeV (not as sensitive);
 - Measure is statistically limited: expected $N = 12 \cdot 3 \cdot \epsilon \cdot A \approx 30 \ ev/exp$
 - Syst. error from LEP energy scale
 - resonant depolarization not possible at LEPII
 - \star \sqrt{s} from extrapolation of magnets bending calibrated at LEPI
 - other from luminosity, final state interaction, radiative corrections, all negligible

Sensitivity to mass at threshold, very little $\int \mathcal{L} dt$ needed

Beautiful demonstration of the non-abelian nature of EWK theory: presence of ZWW vertex

- Measure σ at given \sqrt{s}
- DELPHI used ${\bf 29}$ events in total at $\sqrt{s}=161~GeV$
- $\sigma_{WW} = 3.67^{+0.97}_{-0.85} \pm 0.19 \ \textit{pb}$

Results

Co

	Experiment	M_W [GeV]	
-	ALEPH	80.20 ± 0.34	
	DELPHI	$80.45\substack{+0.45 \\ -0.41}$	
	L3	$80.78\substack{+0.48\\-0.42}$	
	OPAL	$80.40\substack{+0.46\\-0.43}$	
mbined:	$M_W = 80.42$	$2 \pm 0.20 \pm 0.03$	E _{LEP})GeV

Pros and cons:

• Pros:

- Large BR (45.6%)
- fully reconstruct the two *W*;
- all LEP energy visible;
- Cons:
 - large combinatorics
 - even larger if a 5th jet is spawned from gluonsthralung;
 - jet resolution is poor

* at best
$$\frac{\Delta E}{E} \approx \frac{60 - 80\%}{\sqrt{E/GeV}}$$
, leading to $\Delta M_W \approx 8 - 9 \ GeV$;

- \star Can be improved with kinematic fit
- final state interaction
 - color reconnection
 - Bose-Einstein correlation;

- in full-hadronic WW decays, all LEP energy is visible;
- can use (E, \vec{p}) conservation as a constraint for the global reconstruction;
- perform a kinematic fit of the jets 4-momenta, within their known uncertainties (likelihood), to improve the jet resolution;
- known as 4C kin-fit (4 constraints)
 - ▶ also possible to constraint $M_{W^+} = M_{W^-}$ (5C fit)

- Resolution improves from 8 9 GeV to 1.5 1.7 GeV
- Scale of M_W is directly linked to the scale of LEP \sqrt{s}
- Presence of ISR, if not detected by the apparatus, produces a bias.

Color Reconnection

- W^{\pm} decay vertices separation pprox 0.1 fm
- ${\, \bullet \,}$ typical hadronization scale $\approx 1~{\it fm}$
- \bullet so colored objects from different W decays can interact and modify the final hadronized state

Bose-Einstein Correlation

- quantum-mechanical effect:
- wave-functions of identical particles (boson π, K) obey to BE statistics, and this change thier dynamics
- Seen as an enhancement probability for identical boson with small relative momenta.

Both interaction shift the reconstructed M_W , introducing important systematic uncertainties O(30 MeV)

Can be studied by looking at the particles reconstruction as a function of the distance from the jet thrust axis.

- Two jets (1+2) from one W, other two jets (3+4) from the other.
 - Define inter-W region (A+C) and inter-W region (B+D).
- Sum inter/intra-W distribution (with rescaled $\phi = \phi \cdot \Delta \phi_{j_1 j_2} / \pi / 2$).
 - R is ratio (A + C)/(B + D) far from jet axis, normalized to MC w/ no-CR.
 - R = 1 correspond to no color reconnection
- Compare with MC prediction with various models.

No-CR effect excluded at 99.5%, 51% of events are reconnected at 189 GeV

Stefano Lacaprara (INFN Padova)

OPAI

1.4 1.6 1.8

O [GeV OPAI

O [GeV

Look at identical bosons:

• pair of charged particles (π^{\pm}) , with similar momenta:

• small
$$Q = \sqrt{-(p_1 - p_2)^2}$$

 $R(Q) = rac{dN/dQ}{dN/dQ_{ref}}.$

Need a reference sample (w/o BEC) to normalize the distribution e.g.:

- opposite charge pairs (resonances);
- pairs from opposite hemispheres:
- two π from different events:

BEC clearly seen for intra-W jets, not for inter-W ones

 $M_{W}% ^{\prime}$ from unbinned maximum likelihood fits to measured data

• Also τ from low multiplicity jet.

OPAL tried also a fully leptonic $(\ell \nu \ell \nu)$: low BR, two ν 's, not competitive for combination.

LEP W-Boson Mass

95 100

Source Systematic Uncertainty in MeV					
Source	$n m_W$ on Γ_W				
	$q\overline{q}\ell\nu_{\ell}$	$q\overline{q}q\overline{q}$	Combined		
ISR/FSR	8	5	7	6	
Hadronisation	13	19	14	40	
Detector effects	10	8	9	23	
LEP energy	9	9	9	5	
Colour reconnection	_	35	8	27	
Bose-Einstein Correlations	-	7	2	3	
Other	3	10	3	12	
Total systematic	21	44	22	55	
Statistical	30	40	25	63	
Statistical in absence of systematics	30	31	22	48	
Total	36	59	34	83	

- No direct fit to reconstructed mass
- Use invariant mass distribution as returned by the kinematic fit
- compared with MC templates for different M_W and Γ_W values.
- The best value are chosen via unbinned likelihood fit Template Method (more later)

Systematics

LEP II results

LEP W-Boson Mass

LEP W-Boson Width

- D0 was born as a quasi-calorimetry-only detector
- excellent E/HCAL (LAr + U absorber) with transverse and logitudinal segmentation
- for RunII, they added a magnet and a decent tracker
- M_W measurement: only $par{p}
 ightarrow XW
 ightarrow e
 u$ considered.
- Not yet full lumi analyzed:
 - Statistics is not limiting factor

- CDF had a good tracker system from the beginning
- good muon detector also (up to $|\eta| \sim$ 1)
- $\bullet\,$ consider both $e\nu$ and $\mu\nu$ dataset
- only 2.2/fb analyzed so far (out of 9/fb)

Hadronic Recoil

- At hadron collider, it is not possible to see a pure $W \rightarrow qq'$ signal: the QCD background is simply too overwhelming.
- W + x production is large, so statistics is not the limiting factor.
- Consider only W leptonic decay $W \rightarrow \ell \nu$
- kinematic fit à la LEPII is not possible, because the initial state is not known!
 - partially yes in the transverse plane
 - partially, because the W typically recoils against some hadronic stuff

Uses three observables: p_T^{ℓ} , MET, and

 $M_T^W = \sqrt{2
ho_T^\ell MET (1 - \cos \Delta \phi)}$ to extract M_W Other possible (but not as sensitive)

Like good old days: $p_T^\ell > 25 GeV$, MET> 25 GeV, $u_T < 15 GeV$

W/Z discovery by the UA1 and UA2 experiments at CERN (1983/84)

Carlo Rubbia (left, UA1) and Luigi Di Lella (right, UA2)

- p_T^{ℓ} , MET, and M_T^W are sensitive to M_W .
- Produce MC templates with different M_W ,
- fit data to templates to select the best M_W

- Shown the range of the fit
- where the sensitivity to M_W is max
- typically fir all three variables at once

Critical issues

- MET modelling
- hadronic recoil energy response and smearing
 - Control sample with $Z \rightarrow \ell \ell$
 - extrapolation from M_Z to M_W
- Underlying event (PU + spectator parton interactions)
- parton density function (pdf)
 - In principle do not affect transverse observables
 - limited η coverage give sensitiveness
- detector description
- background (small)
- *M_T* less sensitive to recoil, but requires good MET modelling

black: no recoil; red: recoil; yellow:+ det effect

 $v^2/dof = 95 / 86$

- Muon p_T scale
 - Foundation of CDF analysis is track pT measurement with drift chamber (COT)
 - Perform alignment using cosmic ray data: ~50µm→~5µm residual
 - Calibrate scale using large sample of dimuon resonances (J/ψ, Y, Z)
 - Span a large range of pT
 - · Flatness is a test of dE/dx modeling

CDF

- Apply calibrated p-scale and set EM scale using *E/p* of *W* and *Z* events
 - Overall scale from peak
 - Radiative tail used to tune material model
- Confirm by measuring Mz

DØ

- Use $Z \rightarrow ee$ events and LEP M_Z to calibrate scale
- Use subsamples to calibrate material model and response to pileup

- Measured recoil: 1) hard recoil from hadronic activity in W/Z event, 2) underlying event/spectator interaction energy
- Tune using Z and minimum-bias data
- · Validate using measured recoil in W events

M_w [MeV] Measurement CDF 1988-1995 (107 pb⁻¹) 80432 ± 79 D0 1992-1995 (95 pb⁻¹) 80478 ± 83 CDF 2002-2007 (2.2 fb⁻¹) 80387 ± 19 D0 2002-2009 (5.3 fb⁻¹) 80376 ± 23 Tevatron 2012 80387 ± 16 LEP 80376 ± 33 World average 80385 ± 15 80200 80400 80600 M_w [MeV]

Mass of the W Boson

Major systematic uncertainties						
Major systematic uncertainties						
Source	Uncert (MeV)					
	D0	CDF				
$\ell E scale \& res$	16	7				
u _T	5	2				
background	2	3				
PDF	11	10				
$p_T(W)$ model	2	5				
QED rad	7	4				
total	22	15				
stat	13	12				

syst error from calib, from QCD, and statistical

And what about LHC?

- Actual precision is already quite high, no rush to publish a non competitive measurement
 - Today $\delta(\textit{QCD}) \sim \delta(\textit{calib}) \sim \delta(\textit{stat})$
 - At LHC $\delta(QCD) > \delta(calib) > \delta(stat)$
- PDF knowledge play a critical role:
 - \triangleright differences for \sqrt{s} and $p\bar{p}$ vs pp
 - LHC: 25% of Z/W are produced from from s,c quarks (vs 5% at tevatron)
 - different pdf, less known for s,c, helicity, p_T^W
- modelling of p_T^W from p_T^Z
 - ▷ $\delta(M_W) \sim 5$ MeV plus extrapolation;

second gen. quarks are more important!

- 40% more W^+ than W^- : charge dependent analysis
- ATLAS did it [9], CMS not yet

M_W at LHC: helicity

A proton-proton collider is the most challenging enviroment to measure m_{w} , worse compared to e+e- and proton-antiproton

In $p\overline{p}$ collisions W bosons are mostly produced in the same helicity state

Further QCD complications

- Heavy-flavour-initiated processes
- W+, W- and Z are produced by different light flavour fractions
- Larger gluon-induced W production

In pp collisions they are equally distributed between positive and negative helicity states

Large PDF-induced W-polarisation uncertainty affecting the p_T lepton distribution

Larger Z samples, available for detector calibration given the precisely known Z mass \rightarrow most of the measurement is then the transfer from Z to W

Stefano Lacaprara (INFN Padova)

Dataset, Selection and method

Dataset: L = 4.6 fb @ 7 TeV (2011)

- exactly one μ or e pt $p_T > 30 \text{ GeV}$
- recoil $u_T < 30 \text{ GeV}$
- *MET* > 30 GeV
- $M_T > 60 \, \mathrm{GeV}$
- $5.8 \cdot 10^6 \ W \rightarrow e\nu$, $7.8 \cdot 10^6 \ W \rightarrow \mu\nu$
 - (10x TeVatron dataset)
 - statistics is not the limiting factor
 - Expected statistical uncertainties $\sigma_{M_W}pprox 10\,{
 m MeV}$

- Template fit based on p_T^ℓ and $M_t = \sqrt{2p_T^\ell p_T^{miss}(1 \cos \Delta \phi)}$
 - For W at rest, p_T^ℓ has a Jacobian edge at $M_W/2$

Analysis strategy

- M_t has endpoint at M_W
- templates build by reweighting same full MC simulation according to $BW(M_W)$.
- $\chi^2(M_W)$ interpolated, minimum found.
- several categories. In total 28 (12 e, 16 μ)
 - ▶ $\ell = e, \mu$
 - ► W⁺, W⁻,
 - $\triangleright p_T^{\ell}, p_T^{miss}$
 - $|\eta_{\ell}|$ range (3e, 4 μ)

- p_T^{ℓ} and depend M_t on ℓ energy calibration
 - ► *M_t* also on recoil
 - p_T^{ℓ} and M_t are partially correlated
 - measurement based on p_T^{miss} done as consistency check but lower precision, not used for final combination.
- W are not at rest, and are affected by the W helicity, which depends on pdf
 - M_t is less sensitive than p_T^ℓ to physics effects, but more on recoil
- $\bullet~Z \rightarrow \ell\ell$ to calibrate detector response, lepton calibration, and recoil
- cross check by measuring M_Z with same method used for M_Z , treating one ℓ as a ν
 - NB. dataset of $Z
 ightarrow \ell \ell$ about 1/10 of $W
 ightarrow \ell
 u$
- cross check among different independent categories
 - ▶ also as a function of pile-up, u_t , and different fit range
- Blind analysis: random value \in [-100, +100] MeV added to M_W during analysis.

- EWK effects:
 - ▶ QED ISR and FSR, interference I/FSR, virtual loop, di-lepton radiation
- QCD corrections:
 - rapidity distribution at NNLO,
 - p_T^W distribution from fixed order PCD NNLO (includin nnlo pdf) plus MC tuning on Z data

Fit SM

\mathbb{P}_{T}^{ℓ} and M_{T} for differente generator

An example of the impact of MC generator/tuning on sensitive quantities. Suggest fit range to reduce sistematics

ATLAS: physics modelling of W p_T .

Reweight distribution from $\mathrm{POWHEG}+\mathrm{PYTHIA}$ 8 wrt NNLO prediction with complex multi step procedure, and tested on $p_T/\eta^{\ell\ell}$ $p_T\eta^\ell$ distrubution for Z and W.

W-boson charge	W	7+	W^-		Combined	
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9
 PDFs are the dominant uncertain uncertainty due to heavy-flavour- 	nty, fo initia	llowe ted p	ed by rodu	p _T W	'	
 PDF uncertainties are partially ar between W+ and W-, and signific combination of these two category 	nti-co cantly ries.	rrelat redu	iced I	by the	e	/

- $\bullet~\ell$ calibration (scale and resolution) from $Z \to \ell \ell$
- Calibration with $\mathsf{Z} \to \ell \ell$ where ℓ is considered as a a ν
- measure M_Z as M_W (template fit)
- CMS did this also [10], using also MET

ℓ calibration Systematics

$ \eta_{\ell} $ range	[0.0, 0.6]		[0.6, 1.2]		[1.8, 2.4]		Combined	
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]								
Energy scale	10.4	10.3	10.8	10.1	16.1	17.1	8.1	8.0
Energy resolution	5.0	6.0	7.3	6.7	10.4	15.5	3.5	5.5
Energy linearity	2.2	4.2	5.8	8.9	8.6	10.6	3.4	5.5
Energy tails	2.3	3.3	2.3	3.3	2.3	3.3	2.3	3.3
Reconstruction efficiency	10.5	8.8	9.9	7.8	14.5	11.0	7.2	6.0
Identification efficiency	10.4	7.7	11.7	8.8	16.7	12.1	7.3	5.6
Trigger and isolation efficiencies	0.2	0.5	0.3	0.5	2.0	2.2	0.8	0.9
Charge mismeasurement	0.2	0.2	0.2	0.2	1.5	1.5	0.1	0.1
Total	19.0	17.5	21.1	19.4	30.7	30.5	14.2	14.3

Recoil calibration

The recoil u_{τ} is the vector sum of the transverse energy of all the calorimeter clusters: u_{τ} is a measure of p_{τ} W

Calibration steps:

- Correct pile-up multiplicity in MC to match the data
- Correct for residual differences in the $\Sigma E_{_{\rm T}}$ distribution
- Derive scale and resolution corrections from the $p_{_{\rm T}}$ balance in Z events

- recoil calibration from $Z \rightarrow \ell \ell$
- look at distribution of
 - u_{\parallel} (to Z direction): scale

 - u_{\perp}^{ℓ} resolution u_{\parallel}^{ℓ} (W events).
- apply correction on MC based on Z

 $\tilde{h}_{data}^W(\Sigma E_T^*, p_T^W)$

$$= h_{\text{data}}^{Z}(\Sigma E_{\text{T}}^{*}, p_{\text{T}}^{\ell\ell}) \left(\frac{h_{\text{Mat}}^{\text{data}}(\Sigma E_{\text{T}}^{*})}{h_{\text{MC}}^{W}(\Sigma E_{\text{T}}^{*})} \middle/ \frac{h_{\text{data}}^{Z}(\Sigma E_{\text{T}}^{*})}{h_{\text{MC}}^{Z}(\Sigma E_{\text{T}}^{*})} \right)$$
$$u_{x}' = u_{x} + \left(\langle u_{x} \rangle_{\text{data}} - \langle u_{x} \rangle_{\text{MC}} \right) ,$$
$$u_{y}' = u_{y} + \left(\langle u_{y} \rangle_{\text{data}} - \langle u_{y} \rangle_{\text{MC}} \right) ,$$

W-boson charge	W^+		W^{-}		Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
$\langle \mu \rangle$ scale factor	0.2	1.0	0.2	1.0	0.2	1.0
$\Sigma E_{\rm T}^*$ correction	0.9	12.2	1.1	10.2	1.0	11.2
Residual corrections (statistics)	2.0	2.7	2.0	2.7	2.0	2.7
Residual corrections (interpolation)	1.4	3.1	1.4	3.1	1.4	3.1
Residual corrections ($Z \rightarrow W$ extrapolation)	0.2	5.8	0.2	4.3	0.2	5.1
Total	2.6	14.2	2.7	11.8	2.6	13.0

Larger for M_t than p_T^ℓ

Stefano Lacaprara (INFN Padova)

Results stability vs fit range

(a) varying p_T fit range (b) variying m_T fit range. Demonstrate good understading of physics model

Systematics and results

	source	MeV
M_W =80370 \pm 7(stat) \pm 11(exp syst) \pm 14(mod syst) MeV	stat	6.8
-80370 ± 10 MeV	μ	6.6
	е	6.4
	recoil	2.9
	Bkgn	4.5
Combination of all categories.		8.3
		5.5
Competitive with CDF (\pm 19 MeV) and D0 (\pm 23 MeV)	PDF	9.2
Additional masurement $\Delta M_{ m W^\pm} = -29 \pm 28{ m MeV}$	Total	18.5
V V		

In some better agreement with SM global fit than TeVatron results

[ATLAS, EPJC 78 (2018) 110]

Tevatron [CDF, D0, 1204.0042] Mw = 80387 ± 8(stat) ± 8(exp.syst)

± 12 (mod. syst) MeV

New average

smaller by 6 MeV, uncertainty of 13 MeV

(15 MeV previously)

Obtained by assuming 50% correlation of model systematic, very robust against changes

ATLAS Mw = 80370 ± 7_(stat) ± 11_(exp.syst) ± 14_(mod.syst) MeV

1 Introduction

- 2 Z-pole observables
- 3 Asymmetries
- ④ W mass and width

5 Top mass

6 Higgs mass and features

7 Global ElectroWeak fit

1 Introduction

- 2 Z-pole observables
- 3 Asymmetries
- ④ W mass and width

5) Top mass

6 Higgs mass and features

7 Global ElectroWeak fit

1 Introduction

- 2 Z-pole observables
- 3 Asymmetries
- ④ W mass and width

5 Top mass

6 Higgs mass and features

Global ElectroWeak fit

- J. Haller, A. Hoecker, R. Kogler, K. Mönig, T. Peiffer, and J. Stelzer, "Update of the global electroweak fit and constraints on two-Higgs-doublet models," arXiv:1803.01853 [hep-ph].
- ALEPH, DELPHI, L3, OPAL, LEP Electroweak Collaboration, "Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP," *Phys.Rept.* **532** (2013) 119–244, arXiv:1302.3415 [hep-ex].
- M. Dierckxsens, "Final state interactions in hadronic ww decay at lep," 2002.
- **L3** Collaboration, P. Achard *et al.*, "Measurement of Bose-Einstein correlations in $e^+e^- \rightarrow W^+W^-$ events at LEP," *Phys. Lett.* **B547** (2002) 139–150, arXiv:hep-ex/0209016 [hep-ex].
- **OPAL** Collaboration, G. Abbiendi *et al.*, "Study of Bose-Einstein correlations in $e^+e^- \rightarrow W^+W^-$ events at LEP," *Eur. Phys. J. C* **36** (2004) 297–308, arXiv:hep-ex/0403055.
- **D0** Collaboration, "Measurement of the W Boson Mass with the D0 Detector," *Phys.Rev.Lett.* **108** (2012) 151804, arXiv:1203.0293 [hep-ex].
- **CDF** Collaboration, "Precise measurement of the *W*-boson mass with the CDF II detector," *Phys.Rev.Lett.* **108** (2012) 151803, arXiv:1203.0275 [hep-ex].
- **CDF, D0** Collaboration, T. A. Aaltonen *et al.*, "Combination of CDF and D0 *W*-Boson Mass Measurements," *Phys.Rev.* **D88** no. 5, (2013) 052018, arXiv:1307.7627 [hep-ex].

Stefano Lacaprara (INFN Padova)
- **ATLAS** Collaboration, "Measurement of the *W*-boson mass in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector," *Eur. Phys. J.* **C78** no. 2, (2018) 110, arXiv:1701.07240 [hep-ex].
- **CMS** Collaboration, CMS Collaboration, "W-like measurement of the Z boson mass using dimuon events collected in pp collisions at $\sqrt{s} = 7$ TeV,".
- **Tevatron Electroweak Working Group, CDF, D0** Collaboration, M. Muether, "Combination of CDF and DO results on the mass of the top quark using up to 8.7*fb*⁻¹ at the Tevatron," arXiv:1305.3929 [hep-ex].
- A. B. Galtieri, F. Margaroli, and I. Volobouev, "Precision measurements of the top quark mass from the tevatron in the pre-lhc era," *Reports on Progress in Physics* **75** no. 5, (2012) 056201. http://stacks.iop.org/0034-4885/75/i=5/a=056201.
- (CDF Collaboration) Collaboration, "Precise measurement of the w-boson mass with the collider detector at fermilab," *Phys. Rev. D* 89 (Apr, 2014) 072003. http://link.aps.org/doi/10.1103/PhysRevD.89.072003.
- **ATLAS, CDF, CMS, D0** Collaboration, "First combination of Tevatron and LHC measurements of the top-quark mass," Tech. Rep. arXiv:1403.4427. ATLAS-CONF-2014-008. CDF-NOTE-11071. CMS-PAS-TOP-13-014. D0-NOTE-6416, CERN, Geneva, Mar, 2014.