Standard Model precision measurements Misure di precisione del modello standard Lesson 4: Higgs

Stefano Lacaprara

INFN Padova

Dottorato di ricerca in fisica Università di Padova, Dipartimento di Fisica e Astronomia Padova, May 14, 2020

Input to global EWK fit (in parenthesis the order followed in these lessons)

- Higgs mass (5)
 - LHC
- W mass and width (3)
 - ► LEP2, Tevatron
- Z-pole observables (1)
 - ► LEP1, SLD
 - ► *M_Z*, Γ_Z
 - $\triangleright \sigma_0^{had}$
 - ► $\sin^2 \theta_{eff}^{lept}$
 - Asymmetries (2)
 - BR $R^0_{lep,b,c} = \Gamma_{had} / \Gamma_{\ell\ell,b\bar{b},c\bar{c}}$
- top mass (4)
 - ► Tevatron, LHC
- other:
 - $\alpha_s(M_Z^2)$, $\Delta \alpha_{had}(M_Z^2)$

- Higgs mass (5)LHC
- W mass and width (3)
 - LEP2, Tevatron
- Z-pole observables (1)
 - ▶ LEP1, SLD
 - ► *M_Z*, Γ_Z
 - $\blacktriangleright \sigma_0^{hat}$
 - $\blacktriangleright \sin^2 \theta_{st}^{lept}$
 - Asymmetries (2)
 - $\blacksquare \text{ BR } R^0_{lep,b,c} = \Gamma_{had} / \Gamma_{\ell\ell,b\bar{b},c\bar{c}}$
- top mass (4)
 - ▶ Tevatron, LHC
- other:
 - $\alpha_s(M_Z^2)$, $\Delta \alpha_{had}(M_Z^2)$

- Standard Model
- Z lineshape
- 2 Asymmetries
- 3 W mass and width
- 4 Top mass
- 5 Higgs mass and features

2 Asymmetries

- Forward-Backward Asymmetries
- Left-Right Asymmetries
- Tau polarization

3 W mass and width

4 Top mass

5 Higgs mass and features

2 Asymmetries

3 W mass and width

- Motivation
- At LEP II
- At Tevatron and LHC

Top mass

Higgs mass and features

2 Asymmetries

3 W mass and width

4 Top mass

- General technique
- Lepton plus jets
- Dileptons

5 Higgs mass and features

- Z-pole observables
- 2 Asymmetries
- 3 W mass and width
- 4 Top mass
- 5 Higgs mass and features
 - Searches and Discovery
 - Mass
 - Width
 - Spin
 - Coupling

- Dominating production mode at LEP (I and II) was the Higgs-stralung.
- Direct production $ee \rightarrow H$ possible
 - *H* coupling to fermion $\propto m_f$
 - ightarrow negligible to e^{\pm}
- Second process is WW fusion
- Higgstralhung drops when the available $\sqrt{s} > M_Z + M_H$:
 - $\sqrt{s} = 206 \ GeV$
 - $M_H \leq 115 \ GeV$
 - Higgstralhung wall
- dominant H decay into $H o b ar{b}$

Final states considered: ZH

- $H \rightarrow b\overline{b}$,
- $Z \rightarrow q\bar{q}$, high BR
- $Z \rightarrow \ell \ell$, clean, low BR
- $Z \rightarrow \nu \nu$, invisible Z

Analysis based on $H \rightarrow bb$ invariant mass, b-tagging, NN, \mathcal{L} , ...

- For $M_H = 115$
- seen 17 events
 - (with S/B > 0.2)
- expected background 15.8
 - SM higgs signal 8.4

Most significant events Including ALEPH 4 jets

most significant Hvv candidate

measured H mass=115 GeV H mass resolution ~3 GeV

LEP II excludes a SM Higgs Boson with $M_H \le 114.4 \ GeV$ 95% CL (expected 115.3 GeV) LEP I excluded up to 65 GeV

- Main production modes:
 gluon fusion (gg → H);
 associated production (Higgstralbus)
 - ▶ associated production (Higgstralhung) $Z/W \rightarrow Z/WH$;
- Searches in associated production for additional tagging;
- final states
 - $WH \rightarrow e/\mu + bb$
 - $ZH \rightarrow ee/\mu\mu + bb$
 - $ZH \rightarrow \nu\nu + bb$
 - $gg \rightarrow H \rightarrow WW \rightarrow e\nu e\nu/\mu\nu\mu\nu/e\nu\mu\nu$
- b-tagging, multivariate technique, similar to LHC;

Background subtracted M_{bb} (CDF+D0)

Background subtracted discriminant for all channels

250 Events/0.25 120 120 120 Tevatron Run II, L_{int} ≤ 10 fb⁻¹ - Data - Bkgd SM Higgs combination SM Higgs Signal ±1 s.d. on Bkgd 100 50 0 -50 -100 -150 -200 $m_H=125 \text{ GeV/c}^2$ -0.25 log_0(s/b) -250 🗀 -3 -2.5 -2 -1.5 -1 -0.5 log₁₀(s/b)

Background an signal vs S/B for all Higgs channel

Tevatron results per channel

Expected and observed CL limit

p-value

p-value is probability that the data observed is due only to a fluctuation of the expected background. Lower p-value is 3σ

Discovery at LHC: 4 July 2012. ATLAS

CMS: $H \rightarrow \gamma \gamma$ split by category

180

180

ATLAS and CMS combined $H o \gamma\gamma, ZZ o 4\ell$ p-value @

Today dicovery of the Higgs boson is established w/o doubt major effort it to establish/measure Higgs properties: Is it **the** SM Higgs or not?

- Mass
- Width
- Spin
- Coupling to fermions/bosons

Exploit all possible production and decay channels

- $gg \rightarrow H$ gluon fusion:
 - Highest cross-section but "isolated" production, no associated objects.
- *VBF* vector boson fusion:
 - Presence of two forward-backward associated jets;
- VH associated with vector boson:
 - Clear signature from V = Z/W decay;
- *ttH*/ *bbH* top-associated production:
 - Rich experimental signature, but low cross-section.

Cross section for $M_H = 125 \text{ GeV}$

\sqrt{s}	7 TeV	8 TeV	13 TeV
Process		σ [pb]	
gg ightarrow H	15.13	19.27	43.92
VBF	1.222	1.578	3.748
WH	0.5785	0.7046	1.380
ZH	0.3351	0.4153	0.8696
ttH	0.08632	0.1293	0.5085
bbH	0.1558	0.2035	0.5116

Stefano Lacaprara (INFN Padova)

Padova May 14, 2020 24/93

 $M_H = 125$ GeV is a gift from nature: many different decay channels are available

Decay

very difficult for QCD b background;

- $H \rightarrow \tau \tau$ $\mathcal{B} = 6.3\%$
 - marginally better;
- $H \rightarrow WW$ $\mathcal{B} = 21.5\%$
 - $\blacktriangleright W \to \ell \nu$ easy, but 2 ν in the final state;
- $H \rightarrow ZZ$ $\mathcal{B} = 2.6\%$
 - ▶ $Z \rightarrow 2\ell$: golden channel;
- $H \rightarrow \gamma \gamma$ $\mathcal{B} = 0.228\%$

 \succ via loop, low BR, but $M_{\gamma\gamma}$ peak visible;

• $H \rightarrow invisible$

visible only in associated production;

 $\mathcal{B} = 0\%$

H ightarrow	$\gamma\gamma$	ZZ	WW	bb	au au	$\mu\mu$	inv.
gg ightarrow H	 Image: A second s	1	1	1	1	1	~
VBF	~	1	\checkmark	\checkmark	\checkmark	~	~
VH	1	1	\checkmark	1	1	X	1
ttH	\checkmark	\checkmark	1	\checkmark	X	X	×

- Basically all possible production/decay channels have been used;
- Some (eg $H \rightarrow \mu\mu$) has expected yield $\ll 1$ with current luminosity;

- Small peak over rapidly falling continuous background;
- key element is ECAL resolution and stability;
 - Use $Z \rightarrow ee$ sample to calibrate and monitor ECAL response;
 - CMS has 1 1.7 X₀ in front of ECAL: γ conversion reconstruction is crucial;
 - \blacktriangleright BDT $\gamma\text{-jet}$ to identify γ
- vertex identification;
 - problematic with high PU;
 - \blacktriangleright combine info on tracking recoiling against $\gamma\gamma$ system
 - \blacktriangleright and γ conversion pointing direction.
- Many event categories
 - according to γ ID (MVA)
 - production channel (kineamtics)
 - \star tH, VH, ttH, VBF, untagged;
 - associated object decay: leptonic, hadronic, MET

Stefano Lacaprara (INFN Padova)

weighted (w = S/(S + B)) sum of all categories. CMS Preliminary 77.4 fb⁻¹ (13 TeV) GeV All categories S/(S+B) weighted 30000 suo 25000 Data S+B fit B component 20000 S/(S+B) Weighte +1 σ +2 o 1000 B component subtracted 140 160

m_{yy} (GeV)

$H \rightarrow \gamma \gamma$ categories breakdown [1]

Different categories have different $M_{\gamma\gamma}$ resolution, S/(S+B), and are sentitive to different production mechanism (small to bbH)

Stefano Lacaprara (INFN Padova)

individual prod channel significance:

similar analysis, even more categories (32), sensitive to different prod. channel

 $H \rightarrow \gamma \gamma$: differential cross section CMS [4], ATLAS [3]

Signal so clean that differential $d\sigma/dp_{T}$, $d\sigma/N_{jets}$ possible

$H \rightarrow ZZ$ CMS [5]: golden channel

- four ℓ , high p_T , isolated: eeee, $ee\mu\mu$, $\mu\mu\mu\mu$
 - narrow peak ($M_{\ell\ell\ell\ell}, \sigma \sim 1-2\%$)
 - handy $Z \rightarrow 4\ell$ peak to calibrate lepton scale and resolution tagged
 - one Z on-shell (other Z^*)
 - (small) background from ZZ and Z + X
- use also $p_T^{4\ell}$ and angular correlations between ℓ
- ggF, VBF, VH

$H \rightarrow ZZ$: MELA [5]

Matrix Element Likelihood Analysis

- Fully use the polarization information of the $H \rightarrow ZZ^* \rightarrow \ell \ell + \ell \ell$ decay;
- define 5 uncorrelated angles which fully determines the decay kinematics;
- using ME build probabily for S and B (ZZ)
- then build likelihood-ratio discriminant \mathcal{D}^{kin}
- very sensitive to J^P of initial state

Stefano Lacaprara (INFN Padova)

Padova May 14, 2020

$H \rightarrow ZZ$: ATLAS [6, 7]

- Very similar analysis
- mostly sensitive to ggF
- differential cross section also measured
- tensor structure of SM studied (2HDM)
- $\mu = 1.29 \pm 0.18 \pm 0.8$ (μ_{VBF} is a bit high)

m12 vs. m24

Data

ZZ.

IXX VV

Z+iets, tf

WIII Uncertaint

Dels
 Speal

Bin 2 Bin 3 Bin 4

Higgs (125 GeV

- Large ${\cal B}$, consider $W o \ell
 u$ (${\cal B}=$ 10%)
- prod: gg/VBF/VH $\sim 25/1/1.4$;
- clean final state, but with 2 ν .
 - No M_{WW} reconstruction possible
 - reconstruct $M_{\ell\ell}$ mass
 - and $M_T = \sqrt{2 p_T^{\ell\ell} E_T^{miss} (1 \cos \Delta \phi)}$
- large background
- Selection
 - Opposite charge ℓ , MET
 - Use W polarization from H decay to reduce WW background
 - control regions for background normalization
- \bullet categories for 0,1,2 jets, additional ℓs

- Signal extraction based on M_T , $M_{\ell\ell}$ or $\Delta R_{\ell\ell}^{min}$ (ZH)
- many categories, as usual...
- significance 9.1σ (7.1 expected):

• $\mu = 1.28 \pm 0.18$

 $\mu_{WH} = 3.27 {}^{+1.88}_{-1.70}$

 $\mu_{ZH} = 1.00 {}^{+1.57}_{-1.00}$

ō 1

min Δ R.

3 Padova May 14, 2020 39/93

2

Stefano Lacaprara (INFN Padova)

CMS

Nonpromp

VVV

77

Higgs

IN/d(min ∆ R

•
$$WW \rightarrow e \nu \mu \nu$$
, categories: N jets= 0, 1, \geq 2

- measured ggF as well as VBF cross section;
- sensitive variable are: $M_{\ell\ell}, M_T$ and $p_T^{sublead}$ (2nd ℓ)
- significance: ggF 6.3σ (7.1 expected) VBF 1.9 (2.7)

•
$$\mu_{ggF} = 1.21 \pm 0.22$$
, $\mu_{VBF} = 0.62 \pm 0.36$,

ggF vs VBF

Stefano Lacaprara (INFN Padova)

Fit SM

60

Padova May 14, 2020 40/93

- ullet sizeable ${\mathcal B}$
 - use all τ decay channel
 - leptonic and hadronic
- most powerful variable $M_{ au au}$ $\sigma_M \sim 10\%$
 - $M_H = 125$ GeV close to $M_Z = 91$ GeV
 - \blacktriangleright use kinematic fit of $M_{\tau\tau}$ using visible products and MET
 - ▶ $Z \to \tau \tau$ background estimated via $Z \to \mu \mu$ and replacing $\mu \leftrightarrow \tau$
- many categories according to production mechanism
 - ▶ additional ℓ (VH);
 - additional F-B jets (VBF);
 - boosted topology;
 - ► 0/1 jets;

Distribution for signal (left) and background (right) in $\mu \tau_h$ final state:

- M_{vis} in 0-jet category (visible $\tau \tau$ mass)
 - 1 prong
 - ▶ 1 prong $+\pi^0$
 - 3 prongs
- $M_{\tau\tau}$ in VBF category ($\tau\tau$ using kin fit)
- $M_{ au au}$ in boosted categoty

Several control samples with enriched W+jets, QCD, $t\bar{t}$

1

0

signal searched in ggH, boosted, VBF, and VH (not separately)
significance 4.7σ 13 TeV.
3.2σ at 7+8 TeV
Combined: 5.9σ
μ = 1.07 ± 0.20(stat) ± 0.15(syst)

Best fit $\mu = \sigma/\sigma_{SM}$

New analysis (using 77.4 fb^{-1}) fully based on Neural Network, condidering different final state and different production mechanism, each quite pure, to extract the full information.

infn

- Similar analyisis
 - boosted, VBF
 - $\tau \rightarrow h' s \nu, e \nu \nu, \mu \nu \nu$

• significance at 7+8 TeV: 4.3 σ (3.4 expected)

• $\mu = 1.4 \pm 0.4$ (VBF 1.2 ± 0.4 , boosted 2.1 ± 0.9)

ATLAS m _H = 125.36 GeV	-σ(statistical) -σ(syst. excl. the -σ(theory)	ory) Total uncertainty
$H \rightarrow \tau \tau$ $\mu = 1.4^{+0.4}_{-0.4}$	* 03 - 03 • 03 • 03 • 02 • 01 • 01	
Boosted $\mu = 2.1^{+0.9}_{-0.8}$	+ 0.5	
VBF $\mu = 1.2^{+0.4}_{-0.4}$	+ 0.3	
7 TeV (Combined) $\mu = 0.9^{+1.1}_{-1.1}$	+ 0.8 - 0.8	
8 TeV (Combined)µ = 1.5 ^{+0.5} _{-0.4}	- 0.3	-
$\textbf{H} \rightarrow \tau_{lep} \tau_{lep} \mu = 2.0^{+1.0}_{-0.9}$	+ 0.7 - 0.7 + 0.6 - 0.5 + 0.1	
Boosted $\mu = 3.0^{+2.0}_{-1.7}$	-14	
VBF $\mu = 1.7^{+1.0}_{-0.9}$	+ 0.8 - 0.8	
$\textbf{H} \rightarrow \tau_{lep} \tau_{had} \mu = 1.0^{+0.5}_{-0.5}$	• 0.4 • 0.3 • 0.4 • 0.3 • 0.1 • 0.1	
Boosted $\mu = 0.9^{+1.0}_{-0.9}$	* 0.6	
VBF $\mu = 1.0^{+0.6}_{-0.5}$	+ 0.5 - 0.4	
$\textbf{H} \rightarrow \tau_{had} \tau_{had} \mu = 2.0^{+0.9}_{-0.7}$	+ 0.5 - 0.5	H
Boosted $\mu = 3.6^{+2.0}_{-1.6}$	+ 1.0 - 0.9	
VBF $\mu = 1.4^{+0.9}_{-0.7}$	+ 0.6 - 0.5	
√s = 7 TeV, 4.5 fb ⁻¹ √s = 8 TeV, 20.3 fb ⁻¹	0 S	2 4 Signal strength (μ)

$H \rightarrow bb$ CMS [12], ATLAS [13]

• Mostly in associated production: VH, ttH, bbH

- $W/Z + H \rightarrow \ell \nu / \ell \ell / \nu \nu + bb$
- Selection: two central b-tag jets
- ▶ 0,1,2 ℓ (different prod mechanism)
- MVA for final selection
- also gg in boosted regime
- Key element is M_{bb} resolution
 - Use b-jet regression and kin fit to improve it
 - in 35% b jet has a ν : bJES different from light-JES
 - Use MVA calibration
 - ★ trained with GenJets on MC
 - ★ use jet-related and event variables:
 - *p*_T, η jet composition (charged/neutral/em/μ/...),
 b-tag, soft-lepton, MET, ...
 - ★ plus kin fit
 - $\star~\sigma: 17
 ightarrow 10 \, {
 m GeV}$
- Background WZ + light, W/Z + bb, $t\bar{t}$

 $H \rightarrow bb$ CMS VH results [12]

- final states considered: $Z(\nu\nu/ee/\mu\mu)H(b\bar{b}), W(e/\mu\nu)H(b\bar{b})$
- background: $VZ(b\bar{b})$, peaks are not resolved, and V+jets

5.1 fb ⁻¹ (7 TeV) + 19.8 fb ⁻¹ (8 TeV) + 77.2 fb ⁻¹ (13 TeV)							
	CMS VH, H-	→bচ		Observed ±1c (stat @ syst) 2016 2017 ±1c (syst)			syst)
Run 2				1.06 ±	0.20 (stat) ± 0.17	(syst)
2016						1.19 ±	0.39
2017						1.08 ±	0.34
Run 1	_			0.89 ±	0.38 (stat) ± 0.24	(syst)
Combined				1.01±	0.17 (:	stat) ± 0.14	(syst)
(0 0.5	1	1.5	2	2.5	³ Bes	.54 stfitμ
		Signi	ficar	nce (σ)			
Data set		Expecte	d (Observ	red	Signal st	rength
2017							
0-lepto	on	1.9		1.3		$0.73 \pm$	0.65
1-lepto	on	1.8		2.6		$1.32 \pm$	0.55
2-lepto	on	1.9		1.9		$1.05 \pm$	0.59
Comb	ined	3.1		3.3		$1.08 \pm$	0.34
Run 2		4.2		4.4		$1.06~\pm$	0.26
Run 1 +	Run 2	4.9		4.8		$1.01 \pm$	0.23

Significance 4.9 (4.3) σ

$H \rightarrow bb$ CMS VBF [14]

- Selection using topology (fwd/bwk qq jets), $\Delta \phi_{bb}$, BDT
- Separation of VBF from gg from $\Delta \phi / \eta_{bb}$

7 category, this is the best one

Fitting all together

$H \rightarrow b\overline{b}$	Best fit (68% CL)	Upper limits (95% CL)		Signal significance	
Channel	Observed	Observed	Expected	Observed	Expected
VH	0.89 ± 0.43	1.68	0.85	2.08	2.52
tīH	0.7 ± 1.8	4.1	3.5	0.37	0.58
VBF	$2.8^{+1.6}_{-1.4}$	5.5	2.5	2.20	0.83
Combined	$1.03^{+0.44}_{-0.42}$	1.77	0.78	2.56	2.70

Rich but terrific final state

- Extremely complex analysis fully based on MVA techniques;
- categories based on N jets and N b-jets;
- 2ℓ "Standard" MVA:ANN, BDT and, MEM;
- $1\ell\,$ Deep Neural Network (DNN) [one of the first usage in CMS];
- Combined significance 3.9σ (3.5 expected)

D INFN

- Also heavily MVA based, no DNN;
- Categorization based on N jets and b-tagging classifier ;
- Single and double lepton final state.

Significance 1.4 σ (1.6 expected)

post fit results:

- Search for $gg
 ightarrow H
 ightarrow bb \sim 2.54 \sigma$ (0.7 expected)
- Boosted regime: p_T > 450, single "fat" jet topology, look at fat-jet inv mass
 - signal region is double b-tagged fat jets
 - ▶ data driven QCD background from fat jets w/o double b-tag (also W → qq present)
- method validated with $Z \rightarrow bb$: clear signal!

CMS/ATLAS combined results for $H \rightarrow bb$ [12, 20]

• CMS, using all $H \rightarrow bb$ searches:

- ► VH (4.8*\sigma*) [12]
- VBF (2.56σ) [14]
- ttH (3.9σ) [15, 16] (new)
- gg (boosted topology) (1.5σ) [18]

signal significance is 5.6(5.5) σ (not updated)

• Same for ATLAS

no gg

Channel	Significance			
Channel	Exp.	Obs.		
VBF+ggF	0.9	1.5		
tīH	1.9	1.9		
VH	5.1	4.9		
$H \rightarrow b\bar{b}$ combination	5.5	5.4		

- $H \to \mu \mu \ \mu < 2.6 2.8$ [23, 24]
- $H \rightarrow Z\gamma~\mu < 3.9-6.0$ [25, 26, 27]
- $H \rightarrow \text{invisible } \Gamma_{\text{inv}} < 28 26\%$ [28, 29]
- $H
 ightarrow c ar{c} \ \mu \lesssim 150/70$ [30, 31]
- $H/Z \to (\phi/\rho)\gamma \ BR(H \to (\phi/\rho)) \lesssim (4.8/8.8)10^{-4}$ [32] • $H/Z \to (1/\psi/\psi'/\Upsilon(pS))\gamma \ BR \le (3.5/0.2/5)10^{-4}$ [33]

double Higgs production

- probe shape of H potential in \mathcal{L}_{SM}
- destructive interference: small rate $\sigma_{SM}=$ 33 fb at 13 TeV
- sensitive to BSM: $\lesssim 20\%$ precision to probe BSM
- Effective Field Theory approach

Many searches

- one $H \rightarrow bb$ for large BR,
- other *H* for signal/background separation ($\gamma\gamma$, *ZZ*, *WW*, $\tau\tau$)

	Limits on μ	L
$HH \rightarrow$	Obs (exp)	fb^{-1}
bbbb [34, 35]	37,13	36
$bb\gamma\gamma$ [36, 37]	24,22	36
bb au au [38, 39]	30,12.7	36
<i>bbWW/ZZ</i> [40, 41]	79, 190	36
WWWW [42]	160	36
$WW\gamma\gamma$ [40, 43]	80,230	36
CASS IN 10 TO THE STATE OF THE	ATLAS Constant Constant	

Combination probes $\mu \lesssim 10$ [44, 45] and $k_{\lambda} (= \lambda_{HHH} / \lambda_{SM}) \in [-2.3, 10.1]$ [46]

10 10² 10³ 10⁴

95% expected

100 200 300 400

Combined Onervel 22.2-1

HH
ightarrow bbbb most sensitive for high $M_{\rm x}$, $HH
ightarrow bb\gamma\gamma$ complementary at low mass

- Estimates of the sensitivity to HH at HL-LHC are based on:
 - extrapolations from Run-2 analyses
 - dedicated studies with smeared/parametric detector response, corresponding to pile-up of 200
- A combined significance to the SM HH process of 4σ can be achieved with all systematic uncertainties

	Statistical-only		Statistical + System:	
	ATLAS	CMS	ATLAS	CMS
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95
$HH \rightarrow b\bar{b}\tau\tau$	2.5	1.6	2.1	1.4
$HH \rightarrow b\bar{b}\gamma\gamma$	2.1	1.8	2.0	1.8
$HH \rightarrow b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56
$HH \rightarrow b\bar{b}ZZ(4l)$	-	0.37	-	0.37
combined	3.5	2.8	3.0	2.6
	Combined	Combined		
	4.5		4.0	

Mass: 8 TeV combined CMS+ATLAS results [48]

Mass resolution

- $H \rightarrow \gamma \gamma \ \sigma_M \sim 1 2\%$
- $H \rightarrow ZZ \rightarrow 4\ell \ \sigma_M \sim 1 2\%$
- $H \rightarrow WW \ \sigma_M \sim 20\%$
- $H \rightarrow \tau \tau \ \sigma_M \sim 10 20\%$
- $H \rightarrow bb \ \sigma_M \sim 10\%$
- $H \rightarrow \mu \mu \sigma_M \sim 1 2\%$

 $M_{H} = 125.09 \pm 0.21(stat) \pm 0.11(syst) \, {
m GeV}$

Stefano Lacaprara (INFN Padova)

ATLAS	⊷ Total □ Stat. only
Run 1: 🖬 = 7-8 TeV, 25 fb ⁻¹ , Run 2: 🖬 = 13 TeV, 38.1 fb ⁻¹	Total (Stat. only)
Run 1 H4/	124.51±0.52 (±0.52) GeV
Run 1 H → γγ	126.02 ± 0.51 (± 0.43) GeV
Run 2 H4/	124.79 \pm 0.37 (\pm 0.36) GeV
Run 2 Η→γγ	124.93 ± 0.40 ($\pm 0.21) \ GeV$
Run 1+2 H4/	124.71±0.30 (±0.30) GeV
Run 1+2 Η→γγ	125.32 ± 0.35 (± 0.19) GeV
Run 1 Combined	125.38 \pm 0.41 (\pm 0.37) GeV
Run 2 Combined	$124.86 \pm 0.27 (\pm 0.18) \text{ GeV}$
Run 1+2 Combined	124.97 ± 0.24 (± 0.16) GeV
ATLAS + CMS Run 1	125.09 ± 0.24 (± 0.21) GeV
123 124 125 126	127 128
	m _H [GeV

m. (GeV)

Stefano Lacaprara (INFN Padova)

On-shell

Ratio of off-shell/on-shell production is sensitive to Γ_{μ}

$M_{4\ell} - m_H \lesssim \Gamma_H$ $\sigma^{on-shell}_{gg o H o ZZ^*} \propto rac{g_{Hgg}^2 g_{HZZ}^2}{m_H^2 \Gamma_H^2}$

- direct upper limit $\Gamma_H \leq 1$ GeV at 95% C.L. (from $H \rightarrow 4\ell$ decay):
- highest resolution channels ($\gamma\gamma$ and 4ℓ) has a *M* resolution few GeV;
- direct lower limit $\Gamma_H \gtrsim 3.5 \cdot 10^{-12}$ GeV at 95% C.L. (from $H \rightarrow 4\ell$ vertex lifetime);
- Indirect limit

Direct measurement

Invariant mass distribution governed by Higgs propagator $\frac{d\sigma_{pp\to H\to ZZ}}{dM_{A\ell}^2} \propto \frac{g_{Hgg}^2 g_{HZZ}^2}{(M_{A\ell}^2 - m_L^2)^2 + m_L^2 \Gamma_L^2}$

• Expected (SM) $\Gamma_H = 4 \ MeV$ for $M_H = 125 \ GeV$

Off-shell cross-section increases when the two ${\sf Z}$ are produced on-shell

Must consider interference effect among different diagram with same final state:

CMS: use $ZZ \rightarrow 4\ell$ and $ZZ \rightarrow 2\ell 2\nu$ 2D \mathcal{L} fit to $M_{4\ell}$ (or M_T) vs MELA CMS Observed --- Expected - Observed, 2016+2017 --- Expected, 2016+2017 2 Δ InL 10 12 2 4 6 8 14 Г_н (MeV) Parameter Observed Expected $3.2^{+2.8}_{-2.2}$ [0.08, 9.16] $4.1^{+5.0}_{-4.0}$ [0.0, 13.7] $\Gamma_{\rm H}$ (MeV)

ATLAS [51]:

		Observed	Expected			
		Observed	Median	$\pm 1 \sigma$	$\pm 2 \sigma$	
	$ZZ \rightarrow 4\ell$ analysis	4.5	4.3	[3.3, 5.4]	[2.7, 7.1]	
$\mu_{\rm off\text{-}shell}$	$ZZ \rightarrow 2\ell 2\nu$ analysis	5.3	4.4	[3.4, 5.5]	[2.8, 7.0]	
	Combined	3.8	3.4	[2.7, 4.2]	[2.3, 5.3]	
Γ_H / Γ_H^{SM}	Combined	3.5	3.7	[2.9, 4.8]	[2.4, 6.5]	
R_{gg}	Combined	4.3	4.1	[3.3, 5.6]	[2.7, 8.2]	

Limit on Γ_H at 95% C.L.: CMS $\Gamma_H <$ 9.16 MeV, ATLAS: $\Gamma_H <$ 14.4 MeV

• In $H \rightarrow \gamma \gamma$, interference between $gg \rightarrow H \rightarrow \gamma \gamma$ and $gg \rightarrow \gamma \gamma$ change on-shell cross section. [53, 54]

Perspective for Higgs width

- shift of M_{H→γγ} estimated 35 ± 9 MeV [55] which depends on Γ_H;
- possible to measure Γ_H
- \blacktriangleright with 3 ab $^{-1}$, upper limit on $\Gamma_{H}\sim 200\,\text{MeV}$
- also cross section changes due to interference
 - \blacktriangleright combined with previous 95% C.L. on $\Gamma_{H}\sim 60\,\text{MeV}$ with $3\,\text{ab}^{-1}$
- using on-shell vs off-shell cross section measurement [56]
 - with 3 ab^{-1} expected results at 95% C.L. $\Gamma_H = 4.1^{+0.7}_{-0.8} \text{ MeV}$.

120

124

126

128

130

m_w [GeV]

Detection of $H \rightarrow \gamma \gamma$ rules out the J = 1 state (Landau-Yang theorem)

More states can be tested using the angular information from • $H \rightarrow ZZ \rightarrow 4\ell$ angles from MELA analysis are very powerfu • $H \rightarrow W/W \rightarrow 2\ell 2\nu$ $\blacktriangleright \Delta \phi_{\ell \ell}$ • $H \rightarrow \gamma \gamma$ $p_T^{\gamma\gamma}$ $|\cos\theta^*|$

- \bullet A ${\cal L}$ is build for SM 0^+ hypotesis
- and exotic one J^p
- using all variables sensitive to Higgs spin/parity (angles, $\Delta \phi_{\ell\ell}$, $p_T^{\gamma\gamma}$, $|\cos \theta^*|$)
- \bullet A ${\cal L}$ ratio is used to compare the two hypotesis
- pseudo-experiment to build the two *L* distributions:
- Positive $-2 \ln \mathcal{L}_{J^p}/\mathcal{L}_{0^+}$ means that J^p is less likely than 0^+
- Many different and exotic possiblities are checked: $0^-, 1^\pm, 2^\pm$

Higgs Coupling: by production mechanism [60, 61]

All main production modes have been observed. Global signal strength: $\mu = 1.13 \pm 0.09/1.11 \pm 0.09$ CMS/ATLAS

Higgs Coupling: by final state [60, 62]

Coupling to fermions vs bosons [60, 62]

 $\kappa_{F,V}$: scaling factor of Yukawa coupling of fermions and bosons (= 1 in SM)

- Fermions: $g_F = \kappa_F \sqrt{2} m_F / \nu$
- Bosons: $g_V = \kappa_V 2m_V^2/\nu$
- $H\to\gamma\gamma$ distinguish up-down quadrant, thanks to top and W loop origin

Simplified Template Cross Sections (STXS) [64]

- intepretation of Higgs coupling in term of Wilson coefficient of effective Lagrangian, alternative to k-framwork [63] than $k_f^2 = \Gamma_f / \Gamma_f^{SM}$
- Effective Lagrangian approach for Higgs

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \Sigma_i \frac{C_i^{(d)}}{\Lambda^{(d-4)}} \mathcal{O}_i^{(d)} ~~ \text{for}~ d>4$$

• Possible to define a common event categorization (CMS/ATLAS) with corresponding sensitiveness to different *C_i*

CP-even			CP-odd			Impact on	
Operator	Structure	Coeff.	Operator	Structure	Coeff.	production	decay
O_{uH}	$HH^{\dagger}ar{q}_{p}u_{r} ilde{H}$	C_{uH}	O_{uH}	$HH^{\dagger}\bar{q}_{p}u_{r}\tilde{H}$	$c_{\widetilde{u}H}$	tt H	-
O_{HG}	$H H^\dagger G^A_{\mu u} G^{\mu u A}$	c_{HG}	$O_{H\widetilde{G}}$	$H H^\dagger \widetilde{G}^A_{\mu u} G^{\mu u A}$	$c_{H\widetilde{G}}$	ggF	Yes
O_{HW}	$HH^{\dagger}W^{l}_{\mu u}W^{\mu u l}$	c_{HW}	$O_{H\widetilde{W}}$	$HH^\dagger \widetilde{W}^l_{\mu u} W^{\mu u l}$	$c_{H\widetilde{W}}$	VBF, VH	Yes
O_{HB}	$HH^{\dagger}B_{\mu u}B^{\mu u}$	c_{HB}	$O_{H\widetilde{B}}$	$H H^\dagger \widetilde{B}_{\mu u} B^{\mu u}$	$c_{H\widetilde{B}}$	VBF, VH	Yes
O_{HWB}	$H H^\dagger au^{l} W^l_{\mu u} B^{\mu u}$	C_{HWB}	$O_{H\widetilde{W}B}$	$H H^\dagger au^{l} \widetilde{W}^{l}_{\mu u} B^{\mu u}$	$c_{H\widetilde{W}B}$	VBF, VH	Yes
Stefano Lacaprara	(INFN Padova)		F	Fit SM		Padova May	14, 2020 7

IIH-IH

0.9

- It exists!
- $M_H = 125.09 \pm 0.24 \ GeV$
- $\Gamma_H < 10 \text{ MeV} (\Gamma_H^{SM} = 4 \text{ MeV})$
- $J^P = 0^+$
- coupling to fermions and gauge boson as expected from SM
 - Including direct evidence of coupling to third generation quarks
- all production mechanism seen,
- only missing item is di-Higgs production: task for HL-LHC

As Standard-Model-Higgs-particle as it can be

I Z-pole observables

2 Asymmetries

- 3 W mass and width
- 4 Top mass
- 5 Higgs mass and features

6 Global ElectroWeak fit

• Future prospective

Electroweak sector given by 3 parameters

• once v, g, g' are known, all other parameters are fixed

Use the three most precise parameters

- $\alpha : \Delta \alpha / \alpha = 3 \times 10^{-10}$
- $\mathbf{F} = \mathbf{G}_{\mathrm{F}} + \mathbf{G}_{\mathrm{F}} = \mathbf{5} \times 10^{-7}$
- $M_{z}:\Delta M_{z}/M_{z}=2\times10^{-5}$
- measure more than the minimal set of parameters to test the theory!

Radiative corrections

- modification of propagators and vertices
- electroweak form factors ρ , κ , Δr
 - depend on all parameters of the theory (m_t, M_H, α_s...)

Padova May 14, 2020 80/93

Higgs Mass from Loop Effects

• Most from e^+e^- collider

- Many from hadrons one too;
 - ► *M_Z*: 0.002%
 - ► *M*_{top}: 0.4%
 - ► *M_W*: 0.016%
 - ► *M_H*: 0.16%

• requires procise calculation on theory side

- M_W: full EW 1 and 2-loop plus 4-loop QCD correction;
- $\sin^2 \theta_{eff}^{lept}$: as M_W ;
- Γ_f 2-loop for all flavours;
- Radiator N³LO
- Γ_W : only 1-loop EW (negligible in fit)
- ▶ all: 1 and 2-loop QCD

→	M_H [GeV]	125.1 ± 0.2	LHC
	M_W [GeV]	80.379 ± 0.013	
	Γ_W [GeV]	2.085 ± 0.042	lev.+LHC
	M_Z [GeV]	91.1875 ± 0.0021	
	Γ_Z [GeV]	2.4952 ± 0.0023	
	$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	IEP
	R^0_ℓ	20.767 ± 0.025	
	$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	Law a
	$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	SLD
	$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	
	$\sin^2 \theta_{\text{eff}}^{\ell}(\text{TEV})$	0.23148 ± 0.00033	lev. (+LHC?)
	A_c	0.670 ± 0.027	
	A_b	0.923 ± 0.020	
	$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	
	$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	LEP
	R_c^0	0.1721 ± 0.0030	1
	R_b^0	0.21629 ± 0.00066	
	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$	2760 ± 9	
	$\overline{m}_c [\text{GeV}]$	$1.27^{+0.07}_{-0.11}$	low E
	\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	
→	$m_t \; [\text{GeV}]^{(\bigtriangledown)}$	172.47 ± 0.68	Tev.+LHC

-

- Most from e^+e^- collider
- Many from hadrons one too;
 - ► *M_Z*: 0.002%
 - ► *M*_{top}: 0.4%
 - ► *M_W*: 0.016%
 - ▶ *M_H*: 0.16%

• requires procise calculation on theory side

- ► M_W: full EW 1 and 2-loop plus 4-loop QCD correction;
- $\sin^2 \theta_{eff}^{lept}$: as M_W ;
- Γ_f 2-loop for all flavours;
- Radiator N³LO
- Γ_W : only 1-loop EW (negligible in fit)
- all: 1 and 2-loop QCD

Comparison of important contributions exp. vs theo. uncertainties

	important			
Observable	Exp. error	Theo. error		
M_W	15 MeV	4 MeV		
$\sin^2 \theta_{\rm eff}^l$	$1.6\cdot 10^{-4}$	$0.5\cdot 10^{-4}$		
Γ_Z	2.3 MeV	0.5 MeV		
$\sigma_{ m had}^0$	37 pb	6 pb		
R_b^0	$6.6\cdot 10^{-4}$	$1.5\cdot 10^{-4}$		
m_t	0.76 GeV	0.5 GeV		
		1		
		new in fit		

SM Fit Results

- χ^2_{min} = 18.6 Prob(χ^2_{min} , 15) = 23%
- $\chi^{2}_{min}(old m_t) = 17.3$
- $\chi^{2}_{min}(old M_{VV}) = 19.3$
- Mw: -1.5 σ (-1.4 σ previously)
 - central value smaller by 4 MeV
 - uncertainty reduced by I MeV

• m_t: 0.5σ (unchanged)

- central value: $177 \rightarrow 176.4 \text{ GeV}$
- uncertainty reduced by $0.3 \; \text{GeV}$
- + can reach $\pm 0.9~\text{GeV}$ with perfect knowledge of M_{W}

Iargest deviations in b-sector:

• $A^{0,b}_{FB}$ with 2.5σ

[Gfitter, 1803.01853]

G fitter

2σ

190

$\Delta \chi^2$ profile vs m_t

M_{top}

- determination of m_t from Z-pole data (fully obtained from rad. corrections $\sim m_t^2$)
- alternative to direct measurements
- M_H allows for significantly more precise determination of m_t

SM fit w/olm. and M., measu

$$= 177.0 \pm 2.4_{\rm exp} \pm 0.5_{\rm theo} \,\,{\rm GeV}$$

similar precision as determination from $\sigma_{t\bar{t}}$, good agreement

10 1X2

dominated by experimental precision

Predicting M_H

SM: Incredibly Healthy!

Parameter	Present LHC	IL	C/Giga	Z
M_H [GeV]	0.2 ->< 0.1		< 0.1	
M_W [MeV]	$15 \rightarrow 8$	\rightarrow	5	WW threshold
M_Z [MeV]	2.1 2.1		2.1	
m_t [GeV]	$0.8 \longrightarrow 0.6$	\rightarrow	0.1	tt threshold scan
$\sin^2 \theta_{\mathrm{eff}}^\ell$ [10 ⁻⁵]	16 16	\rightarrow	1.3	$\delta A^{0,f}_{LR} \colon IO^{-3} \to IO^{-4}$
$\Delta \alpha_{\rm had}^5 (M_Z^2) \ [10^{-5}]$	$10 \longrightarrow 5$		5	low energy data, better α_s
$R_l^0 [10^{-3}]$	25 25	\rightarrow	4	high statistics on Z-pole
$\kappa_V \ (\lambda = 3 \mathrm{TeV})$	$0.05 \longrightarrow 0.03$	\rightarrow	0.01	direct measurement of BRs

- theoretical uncertainties reduced by a factor of 4 (esp. M_W and $sin^2 \theta^l_{eff}$)
 - implies three-loop EW calculations!
 - exception: $\delta_{theo} m_t (LHC) = 0.25 \text{ GeV} (factor 2)$

Impact of individual uncertainties on δM_W in fit (numbers in MeV)

• ILC/GigaZ: impact δM_Z of will become important again!

Prospects of EW Fit

- competitive results between EW fit and Higgs coupling measurements!
 - precision of about 1%
- ILC/GigaZ offers fantastic possibilities to test the SM and constrain NP

Data speaks and it's telling: Standard Model, Standard Model, Standard Model but we have ν oscillations, P'_5 , $R(K^{(*)})$, $R(D^{(*)})$, Dark Matter, Dark Energy ...

- [1] CMS Collaboration, A. M. Sirunyan *et al.*, "Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at $\sqrt{s} = 13$ TeV," JHEP 11 (2018) 185, arXiv:1804.02716 [hep-ex].
- [2] CMS Collaboration, "Measurements of Higgs boson production via gluon fusion and vector boson fusion in the diphoton decay channel at $\sqrt{s} = 13$ TeV,".
- [3] ATLAS Collaboration, "Measurements of Higgs boson properties in the diphoton decay channel with 36 fb⁻¹ of pp collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector," arXiv:1802.04146 [hep-ex].
- [4] C. Collaboration, "Measurement of inclusive and differential higgs boson production cross sections in the diphoton decay channel in proton-proton collisions at √s = 13 tev," Journal of High Energy Physics 2019 no. 1, (Jan, 2019) 183. https://doi.org/10.1007/JHEP01(2019)183.
- [5] CMS Collaboration, "Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $\sqrt{s} = 13$ TeV," JHEP 11 (2017) 047, arXiv:1706.09936 [hep-ex].
- [6] ATLAS Collaboration, "Measurement of inclusive and differential cross sections in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector," *JHEP* **10** (2017) 132, arXiv:1708.02810 [hep-ex].
- [7] ATLAS Collaboration, G. Aad *et al.*, "Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4 ℓ decay channel at $\sqrt{s} = 13$ TeV," arXiv:2004.03969 [hep-ex].
- [8] CMS Collaboration Collaboration, "Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at \sqrt{s} = 13 TeV," Tech. Rep. CMS-PAS-HIG-16-042, CERN, Geneva, 2018. https://cds.cern.ch/record/2308255.
- [9] CMS Collaboration, A. M. Sirunyan et al., "Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector," Phys. Lett. B779 (2018) 283-316, arXiv:1708.00373 [hep-ex].
- [10] CMS Collaboration, "Measurement of Higgs boson production and decay to the au au final state,".
- [11] ATLAS Collaboration, "Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector," arXiv:1501.04943 [hep-ex].
- [12] CMS Collaboration, A. M. Sirunyan et al., "Observation of Higgs boson decay to bottom quarks," Phys. Rev. Lett. 121 no. 12, (2018) 121801, arXiv:1808.08242 [hep-ex].
- [13] ATLAS Collaboration, "Evidence for the $H \rightarrow b\overline{b}$ decay with the ATLAS detector," JHEP 12 (2017) 024, arXiv:1708.03299 [hep-ex].
- [14] CMS Collaboration, V. Khachatryan et al., "Search for the standard model Higgs boson produced through vector boson fusion and decaying to bb," Phys. Rev. D92 no. 3, (2015) 032008, arXiv:1506.01010 [hep-ex].

- [15] CMS Collaboration, A. M. Sirunyan *et al.*, "Search for $t\bar{t}H$ production in the $H \rightarrow b\bar{b}$ decay channel with leptonic $t\bar{t}$ decays in proton-proton collisions at $\sqrt{s} = 13$ TeV," JHEP 03 (2019) 026, arXiv:1804.03682 [hep-ex].
- [16] CMS Collaboration, "Measurement of t $\overline{t}H$ production in the $H \rightarrow b\overline{b}$ decay channel in 41.5 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13$ TeV,".
- [17] ATLAS Collaboration, "Search for the Standard Model Higgs boson produced in association with top quarks and decaying into a $b\bar{b}$ pair in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector," Submitted to: Phys. Rev. D (2017), arXiv:1712.08895 [hep-ex].
- [18] CMS Collaboration, "Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair," Phys. Rev. Lett. 120 no. 7, (2018) 071802, arXiv:1709.05543 [hep-ex].
- [19] CMS Collaboration, "Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair at $\sqrt{s} = 13$ TeV with 137 fb⁻¹,".
- [20] ATLAS Collaboration, M. Aaboud et al., "Observation of H → bb decays and VH production with the ATLAS detector," Phys. Lett. B786 (2018) 59–86, arXiv:1808.08238 [hep-ex].
- [21] CMS Collaboration, A. M. Sirunyan et al., "Observation of ttH production," Phys. Rev. Lett. 120 no. 23, (2018) 231801, arXiv:1804.02610 [hep-ex].
- [22] ATLAS Collaboration, M. Aaboud et al., "Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector," Phys. Lett. B784 (2018) 173–191, arXiv:1806.00425 [hep-ex].
- [23] CMS Collaboration, A. M. Sirunyan et al., "Search for the Higgs boson decaying to two muons in proton-proton collisions at \sqrt{s} = 13 TeV," Phys. Rev. Lett. 122 no. 2, (2019) 021801, arXiv:1807.06325 [hep-ex].
- [24] ATLAS Collaboration, M. Aaboud *et al.*, "Search for the dimuon decay of the Higgs boson in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector," *Phys. Rev. Lett.* **119** no. 5, (2017) 051802, arXiv:1705.04582 [hep-ex].
- [25] CMS Collaboration, V. Khachatryan et al., "Search for a Higgs boson decaying into γ^{*}γ → ℓℓγ with low dilepton mass in pp collisions at √s = 8 TeV," Phys. Lett. B753 (2016) 341–362, arXiv:1507.03031 [hep-ex].
- [26] CMS Collaboration, A. M. Sirunyan *et al.*, "Search for the decay of a Higgs boson in the *ll*γ channel in proton-proton collisions at √s = 13 TeV," JHEP 11 (2018) 152, arXiv:1806.05996 [hep-ex].
- [27] ATLAS Collaboration, M. Aaboud *et al.*, "Searches for the $Z\gamma$ decay mode of the Higgs boson and for new high-mass resonances in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector," *JHEP* **10** (2017) 112, arXiv:1708.00212 [hep-ex].

- [28] CMS Collaboration, A. M. Sirunyan *et al.*, "Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at $\sqrt{s} = 13$ TeV," arXiv:1809.05937 [hep-ex].
- [29] ATLAS Collaboration Collaboration, "Combination of searches for invisible Higgs boson decays with the ATLAS experiment," Tech. Rep. ATLAS-CONF-2018-054, CERN, Geneva, Nov, 2018. http://cds.cern.ch/record/2649407.
- [30] ATLAS Collaboration, M. Aaboud et al., "Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment," arXiv:1802.04329 [hep-ex].
- [31] CMS Collaboration, A. M. Sirunyan et al., "A search for the standard model Higgs boson decaying to charm quarks," JHEP 03 (2020) 131, arXiv:1912.01662 [hep-ex].
- [32] ATLAS Collaboration, M. Aaboud et al., "Search for exclusive Higgs and Z boson decays to φγ and ργ with the ATLAS detector," JHEP 07 (2018) 127, arXiv:1712.02758 [hep-ex].
- [33] ATLAS Collaboration, M. Aaboud *et al.*, "Searches for exclusive Higgs and Z boson decays into $J/\psi\gamma$, $\psi(2S)\gamma$, and $\Upsilon(nS)\gamma$ at $\sqrt{s} = 13$ TeV with the ATLAS detector," *Phys. Lett.* **B786** (2018) 134–155, arXiv:1807.00802 [hep-ex].
- [34] CMS Collaboration, A. M. Sirunyan et al., "Search for nonresonant Higgs boson pair production in the bbbb final state at √s = 13 TeV," Submitted to: JHEP (2018), arXiv:1810.11854 [hep-ex].
- [35] ATLAS Collaboration, M. Aaboud et al., "Search for pair production of Higgs bosons in the bbbb final state using proton-proton collisions at \sqrt{s} = 13 TeV with the ATLAS detector," JHEP 01 (2019) 030, arXiv:1804.06174 [hep-ex].
- [36] CMS Collaboration, A. M. Sirunyan *et al.*, "Search for Higgs boson pair production in the $\gamma\gamma b\overline{b}$ final state in pp collisions at $\sqrt{s} = 13$ TeV," *Phys. Lett.* B788 (2019) 7–36, arXiv:1806.00408 [hep-ex].
- [37] ATLAS Collaboration, M. Aaboud *et al.*, "Search for Higgs boson pair production in the γγbb final state with 13 TeV pp collision data collected by the ATLAS experiment," JHEP 11 (2018) 040, arXiv:1807.04873 [hep-ex].
- [38] CMS Collaboration, "Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at √s =13TeV," Phys. Lett. B778 (2018) 101–127, arXiv:1707.02909 [hep-ex].
- [39] ATLAS Collaboration, M. Aaboud *et al.*, "Search for resonant and non-resonant Higgs boson pair production in the $b\bar{b}\tau^+\tau^-$ decay channel in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector," *Phys. Rev. Lett.* **121** no. 19, (2018) 191801, arXiv:1808.00336 [hep-ex]. [Erratum: Phys. Rev. Lett.122,no.8,089901(2019)].

- [40] CMS Collaboration, A. M. Sirunyan et al., "Search for resonant and nonresonant Higgs boson pair production in the bblν νν final state in proton-proton collisions at √s = 13 TeV," JHEP 01 (2018) 054, arXiv:1708.04188 [hep-ex].
- [41] ATLAS Collaboration, M. Aaboud et al., "Search for Higgs boson pair production in the bbWW" decay mode at √s = 13 TeV with the ATLAS detector," arXiv:1811.04671 [hep-ex].
- [42] ATLAS Collaboration, M. Aaboud *et al.*, "Search for Higgs boson pair production in the $WW^{(*)}WW^{(*)}$ decay channel using ATLAS data recorded at $\sqrt{s} = 13$ TeV," Submitted to: JHEP (2018), arXiv:1811.11028 [hep-ex].
- [43] ATLAS Collaboration, M. Aaboud et al., "Search for Higgs boson pair production in the γγWW^{*} channel using pp collision data recorded at √s = 13 TeV with the ATLAS detector," Eur. Phys. J. C78 no. 12, (2018) 1007, arXiv:1807.08567 [hep-ex].
- [44] CMS Collaboration, A. M. Sirunyan et al., "Combination of searches for Higgs boson pair production in proton-proton collisions at \sqrt{s} = 13 TeV," Submitted to: Phys. Rev. Lett. (2018), arXiv:1811.09689 [hep-ex].
- [45] ATLAS Collaboration, G. Aad et al., "Combination of searches for Higgs boson pairs in pp collisions at \sqrt{s} =13 TeV with the ATLAS detector," Phys. Lett. B 800 (2020) 135103, arXiv:1906.02025 [hep-ex].
- [46] ATLAS Collaboration, "Constraints on the Higgs boson self-coupling from the combination of single-Higgs and double-Higgs production analyses performed with the ATLAS experiment,".
- [47] Physics of the HL-LHC Working Group Collaboration, M. Cepeda et al., "Higgs Physics at the HL-LHC and HE-LHC," arXiv:1902.00134 [hep-ph].
- [48] ATLAS, CMS Collaboration, G. Aad et al., "Combined Measurement of the Higgs Boson Mass in pp Collisions at \sqrt{s} = 7 and 8 TeV with the ATLAS and CMS Experiments," Phys. Rev. Lett. 114 (2015) 191803, arXiv:1503.07589 [hep-ex].
- [49] CMS Collaboration, A. M. Sirunyan et al., "A measurement of the Higgs boson mass in the diphoton decay channel," Phys. Lett. B 805 (2020) 135425, arXiv: 2002.06398 [hep-ex].
- [50] ATLAS Collaboration, M. Aaboud *et al.*, "Measurement of the Higgs boson mass in the $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels with $\sqrt{s} = 13$ TeV *pp* collisions using the ATLAS detector," *Phys. Lett.* **B784** (2018) 345–366, arXiv:1806.00242 [hep-ex].
- [51] ATLAS Collaboration, M. Aaboud *et al.*, "Constraints on off-shell Higgs boson production and the Higgs boson total width in $ZZ \rightarrow 4\ell$ and $ZZ \rightarrow 2\ell 2\nu$ final states with the ATLAS detector," *Phys. Lett.* B786 (2018) 223–244, arXiv:1808.01191 [hep-ex].
- [52] CMS Collaboration, A. M. Sirunyan et al., "Measurements of the Higgs boson width and anomalous HVV couplings from on-shell and off-shell production in the four-lepton final state," arXiv:1901.00174 [hep-ex].

- [53] L. J. Dixon and Y. Li, "Bounding the Higgs Boson Width Through Interferometry," Phys. Rev. Lett. 111 (2013) 111802, arXiv:1305.3854 [hep-ph].
- [54] J. Campbell, M. Carena, R. Harnik, and Z. Liu, "Interference in the gg → h → γγ on-shell rate and the higgs boson total width," Phys. Rev. Lett. 119 (Oct, 2017) 181801. https://link.aps.org/doi/10.1103/PhysRevLett.119.181801.
- [55] "Estimate of the m_H shift due to interference between signal and background processes in the $H \rightarrow \gamma \gamma$ channel, for the $\sqrt{s} = 8$ TeV dataset recorded by ATLAS,".
- [56] "Projections for measurements of Higgs boson signal strengths and coupling parameters with the ATLAS detector at a HL-LHC," Tech. Rep. ATL-PHYS-PUB-2014-016, CERN, Geneva, Oct, 2014. https://cds.cern.ch/record/1956710.
- [57] CMS Collaboration, "Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV," arXiv:1411.3441 [hep-ex].
- [58] ATLAS Collaboration, "Evidence for the spin-0 nature of the Higgs boson using ATLAS data," Phys. Lett. B726 (2013) 120-144, arXiv:1307.1432 [hep-ex].
- [59] ATLAS Collaboration, "Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector," Eur. Phys. J. C75 no. 10, (2015) 476, arXiv:1506.05669 [hep-ex]. [Erratum: Eur. Phys. J.C76,no.3,152(2016)].
- [60] CMS Collaboration, A. M. Sirunyan et al., "Combined measurements of Higgs boson couplings in proton-proton collisions at \sqrt{s} = 13 TeV," Submitted to: Eur. Phys. J. (2018), arXiv:1809.10733 [hep-ex].
- [61] ATLAS Collaboration Collaboration, "Combined measurements of Higgs boson production and decay using up to 80 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS experiment," Tech. Rep. ATLAS-CONF-2018-031, CERN, Geneva, Jul, 2018. http://cds.cern.ch/record/2629412.
- [62] ATLAS Collaboration, G. Aad *et al.*, "Combined measurements of Higgs boson production and decay using up to 80 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS experiment," *Phys. Rev. D* 101 no. 1, (2020) 012002, arXiv:1909.02845 [hep-ex].
- [63] LHC Higgs Cross Section Working Group Collaboration, J. R. Andersen et al., "Handbook of LHC Higgs Cross Sections: 3. Higgs Properties," arXiv:1307.1347 [hep-ph].
- [64] LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., "Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector," arXiv:1610.07922 [hep-ph].

- [65] ATLAS Collaboration, G. Aad *et al.*, "Higgs boson production cross-section measurements and their EFT interpretation in the 4*l* decay channel at √s = 13 TeV with the ATLAS detector," arXiv:2004.03447 [hep-ex].
- [66] J. Haller, A. Hoecker, R. Kogler, K. Mönig, T. Peiffer, and J. Stelzer, "Update of the global electroweak fit and constraints on two-Higgs-doublet models," arXiv:1803.01853 [hep-ph].
- [67] CDF, D0 Collaboration, "Higgs Boson Studies at the Tevatron," Phys. Rev. D88 no. 5, (2013) 052014, arXiv:1303.6346 [hep-ex].
- [68] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, et al., "Higgs mass and vacuum stability in the Standard Model at NNLO," JHEP 1208 (2012) 098, arXiv:1205.6497 [hep-ph].
- [69] CMS Collaboration, "Evidence for the 125 GeV Higgs boson decaying to a pair of τ leptons," JHEP 1405 (2014) 104, arXiv:1401.5041 [hep-ex].
- [70] CMS Collaboration, "Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks," Phys. Rev. D89 no. 1, (2014) 012003, arXiv:1310.3687 [hep-ex].
- [71] CMS Collaboration, "Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states," JHEP 1401 (2014) 096, arXiv:1312.1129 [hep-ex].
- [72] CMS Collaboration, "Measurement of the properties of a Higgs boson in the four-lepton final state," Phys. Rev. D89 no. 9, (2014) 092007, arXiv:1312.5353 [hep-ex].
- [73] CMS Collaboration, "Observation of the diphoton decay of the Higgs boson and measurement of its properties," Eur. Phys. J. C74 no. 10, (2014) 3076, arXiv:1407.0558 [hep-ex].
- [74] CMS Collaboration, "Search for the associated production of the Higgs boson with a top-quark pair," JHEP 1409 (2014) 087, arXiv:1408.1682 [hep-ex].
- [75] CMS Collaboration, "Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs," Phys.Lett. B736 (2014) 64, arXiv:1405.3455 [hep-ex].
- [76] CMS Collaboration, "Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV," arXiv:1412.8662 [hep-ex].
- [77] ATLAS Collaboration Collaboration, "Measurement of the higgs boson mass from the h → γγ and h → zZ* → 4ℓ channels in pp collisions at center-of-mass energies of 7 and 8 tev with the atlas detector," Phys. Rev. D 90 (Sep, 2014) 052004. http://link.aps.org/doi/10.1103/PhysRevD.90.052004.
- [78] ATLAS Collaboration, "Observation and measurement of Higgs boson decays to WW* with the ATLAS detector," arXiv:1412.2641 [hep-ex].

- [79] "Study of the Higgs boson decaying to WW* produced in association with a weak boson with the ATLAS detector at the LHC," Tech. Rep. ATLAS-CONF-2015-005, CERN, Geneva, Mar, 2015.
- [80] ATLAS Collaboration, "Search for the bb decay of the Standard Model Higgs boson in associated (W/Z)H production with the ATLAS detector," JHEP 1501 (2015) 069, arXiv:1409.6212 [hep-ex].
- [81] ATLAS Collaboration, "Determination of the off-shell Higgs boson signal strength in the high-mass ZZ and WW final states with the ATLAS detector," arXiv:1503.01060 [hep-ex].
- [82] "Study of the spin and parity of the Higgs boson in HVV decays with the ATLAS detector," Tech. Rep. ATLAS-CONF-2015-008, CERN, Geneva, Mar, 2015.
- [83] J. M. Campbell, R. K. Ellis, and C. Williams, "Bounding the Higgs width at the LHC using full analytic results for gg -> e⁻e⁺µ⁻µ⁺," JHEP 1404 (2014) 060, arXiv:1311.3589 [hep-ph].
- [84] N. Kauer and G. Passarino, "Inadequacy of zero-width approximation for a light Higgs boson signal," JHEP 1208 (2012) 116, arXiv:1206.4803 [hep-ph].
- [85] F. Caola and K. Melnikov, "Constraining the Higgs boson width with ZZ production at the LHC," Phys. Rev. D88 (2013) 054024, arXiv:1307.4935 [hep-ph].
- [86] G. Passarino, "Higgs Interference Effects in $gg \rightarrow ZZ$ and their Uncertainty," JHEP **1208** (2012) 146, arXiv:1206.3824 [hep-ph].
- [87] M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Kennedy, et al., "The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC," Eur. Phys. J. C72 (2012) 2205, arXiv:1209.2716 [hep-ph].
- [88] Gfitter Group Collaboration, "The global electroweak fit at NNLO and prospects for the LHC and ILC," Eur. Phys. J. C74 (2014) 3046, arXiv:1407.3792 [hep-ph].