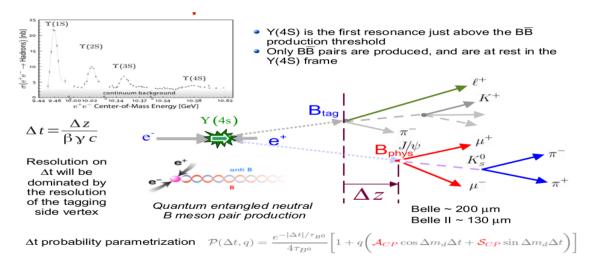
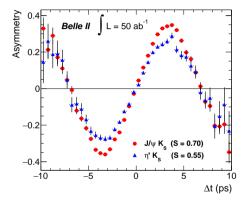

Flavour Tagging Tutorial

stefano.lacaprara@pd.infn.it

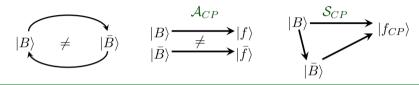

¹INFN Padova, ²Max-Plank-Institute für Physik

Belle II Starter Kit Workshop, KEK, 11 October 2018


Time Dependent CP violation in a nutshell

Needs everything!

- exclusive B⁰ signal reconstruction;
 - charged and neutral particles
 - PID
 - vertexing
- Flavour tagging of B^0_{tag} ;
- Measure Δz


Physics motivation

- determination of $\phi_1(\beta)$
- measurement of $\phi_2(\alpha)$
- sensitiveness to New Physics

$$Asym = \frac{\mathcal{P}(B^0 \to X_{CP}) - \mathcal{P}(\bar{B}^0 \to X_{CP})}{\mathcal{P}(B^0) + \mathcal{P}(\bar{B}^0)} = \mathcal{A}\cos(\Delta m \Delta t) + \mathcal{S}\sin(\Delta m \Delta t)$$

- Direct $\mathcal{A}_{CP}^{J/\psi \kappa_S^0} = 0$, Mix-induced $\mathcal{S}_{CP}^{J/\psi \kappa_S^0} = \sin(2\phi_1)$
- FT is possible only for a fraction of events: efficiency ϵ (very high, $\epsilon \sim$ 99%)
- a fraction w of them is wrongly classified

$$\mathcal{P}^{Obs}(\Delta t, q, \epsilon, w) = \epsilon \left[(1 - w) \mathcal{P}^{Sig}(\Delta t, q) + w \mathcal{P}^{Sig}(\Delta t, -q) \right]$$
$$= \frac{e^{-|\Delta t|/\tau}}{4\tau} \epsilon \left\{ 1 + q(1 - 2w) \cdot \left[\eta_{CP} S_{CP} \sin(\Delta m \Delta t) + A_{CP} \cos(\Delta m \Delta t) \right] \right\}$$

q is flavour, η_{CP} = ±1 is CP final state; τ, Δm from PDG
r = (1 - 2w) is called dilution factor

$$\begin{split} N_{B^0}^{tag} &= \varepsilon(1-w)N_{B^0} + \varepsilon wN_{\overline{B}^0} \\ N_{\overline{B}^0}^{tag} &= \varepsilon(1-w)N_{\overline{B}^0} + \varepsilon wN_{B^0} \\ Asym^{Obs}(\Delta t) &= \frac{N_{B^0}^{tag} - N_{\overline{B}^0}^{tag}}{N_{B^0}^{tag} + N_{\overline{B}^0}^{tag}} = (1-2w) \cdot \frac{N_{B^0} - N_{\overline{B}^0}}{N_{B^0} + N_{\overline{B}^0}} = r \cdot Asym^0 \\ \hline \text{Stat uncert on } Asym^0 \text{ is } \sigma_{Asym^0} &= \frac{\sigma_{Asym^{Obs}}}{r}; \\ \bullet \text{ If } N_{tag} &= N_{B^0}^{tag} + N_{\overline{B}^0}^{tag}, \text{ with small asymmetry } (N_{B^0}^{tag} \approx N_{\overline{B}^0}^{tag}): \sigma_{Asym^{Obs}} \propto \frac{1}{\sqrt{N_{tag}}} \propto \frac{1}{\sqrt{\varepsilon}} \\ \bullet \sigma_{Asym^0} &= \sigma S_{CP} = \sin 2\phi_1 \propto \frac{1}{r\sqrt{\varepsilon}} = \frac{1}{\varepsilon_{eff}}. \\ \bullet \text{ effective tagging efficiency } \varepsilon_{eff} &= \varepsilon r^2 \\ \text{the statistical uncertainty on } Asym^0 \text{ of a sample of } N_B \text{ candidates, with tagging eff } \varepsilon \text{ sprobability } w \text{ is equivalent to that of a sample of } \varepsilon_{eff} N_B \text{ with perfect tagging.} \end{split}$$

and wrong tag

- The wrong tag fraction is typically different for B^0 and $\overline{\mathsf{B}}^0\;\Delta w$
- We typically use many tagging categories (13 today in Belle II)

 $\triangleright \ \varepsilon_{eff} = \Sigma_i \varepsilon_i \langle r_i \rangle^2$

 \bullet the best sensitivity on $\mathcal{S}_{\mathit{CP}}$ is obtained form a UML fit to data

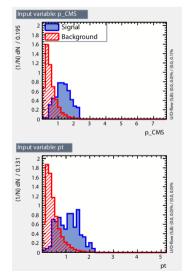
$$\mathcal{P}_{j}^{i} = \underbrace{\mathcal{T}_{j}\left(\Delta t^{i}, \sigma_{\Delta t}^{i}, \eta_{CP}^{i}\right)}_{\text{time-dep part}} \prod_{k} \underbrace{\mathcal{Q}_{k,j}(x_{k}^{i})}_{\text{time integrated}}$$

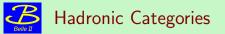
• $\varepsilon_{eff} = \Sigma_{i} \varepsilon_{i} r_{i}^{2} \left(1 + \frac{12x_{i}^{2} r_{i}^{2} \mathcal{S}_{CP}^{2}}{1 + 16x_{i}^{2}}\right)$, with $x_{i} = \Delta m / \Gamma_{i}$

• as before for $\mathcal{S}_{CP} = 0$.

 \bullet For large $\mathcal{S}_{CP}\approx 1$ can be as large as 60% $^{\rm [Cahn[2000],Le\ Diberder[1990]]}$

- Full reconstruction of signal side. Eg. $B^0\to J/\psi\,K^0_S$ or $B^0\to\phi\,K^0_S$ or \ldots ;
- Perform full reconstruction of tag B (Rest Of Event: all that is not signal side);
- Large fraction of B decays is flavour specific, namely can only be reached through a decay of b quark or via a b quark.
 - ▶ eg $B^0 \rightarrow D^{*-} \ell^+ \nu_{\ell}$ the charge of ℓ identify the flavour of B^0 , as long as ℓ is coming from B^0 and not from secondary D decay
 - So we need to identify the ℓ but that is not enough.
 - ▶ Need to look at kinematic variables to understand if from B⁰ or from D (using MVA technique)
- But so many B⁰ decays are possible that also inclusive technique are also used
- In Bellell we use 13 different categories, both inclusive and exclusive.
- Very important!: Flavour Tagger is candidate-based (not event-based!)
 - ▶ If you have multiple B^{Sig} reconstructed in an event (eg decays into neutrals $B^0 \rightarrow \eta' (\rightarrow \eta (\rightarrow \gamma \gamma) \pi^+ \pi^-) K^0_S(\rightarrow \pi^0 \pi^0))$
 - you have a different ROE for each candidate
 - and a different flavour tag for each candidate




Categories	Targets	$\sim \rho^{-}$
Electron	e^-	and the second s
Intermediate Electron	e^+	$\overline{B}^{o} \longrightarrow \pi^{+}$
Muon	μ^-	$D^* \xrightarrow{+} K^-$
Intermediate Muon	μ^+	D° \rightarrow π^+
KinLepton	e^-	7
Intermediate KinLepton	ℓ^+	$\rightarrow \pi^- (K^-)$
Kaon	K^-	$ \nu_{\ell}$
KaonPion	K^- , π^+	\overline{B}^{0} ℓ^{+}
SlowPion	π^+	D+
FastHadron	π^- , K^-	K^{0}
MaximumP	ℓ^- , π^-	► Y ⁻
FSC	ℓ^- , π^+	
Lambda	Λ	\overline{B}^{0} π^{+}
Total= 13		$\Lambda_c^+ \overline{\tau}_{-} \overline{\tau}_{-}$

- Can be primary (b \rightarrow c $\ell^- \nu$)
- ullet or secondary (b \to c \to s $\ell^+\nu)$ leptons, with opposite charge
- Separate primary from cascade leptons using p and p_T spectrum (harder for primary)
- other variables:
 - E_W^{90} : energy on the hemisphere defined by direction of virtual W boson.
 - p_{miss}^* and $\cos \theta_{miss}^*$
 - $\cos \theta_T^*$ angle between ℓ and thrust axis of B^0_{tag}
 - *M_{recoil}* inv mass of the recoil system
- considerate separately Electron and Muon
- if identified as cascade, IntermediateElectron and IntermediateMuon
- inclusively in KinLepton and IntermediateKinLepton
 - of course inclusive and exclusive categories are strongly correlated.
 - still inclusive categories improve overall performances

Kaon

- ▶ Dominant decay $B^0 \rightarrow D(\rightarrow K^-X)X$ tag from K charge.
- ► K multiplicity 0.78 ± 0.08^[PDG]
- right(wrong) sign K is 0.58(0.13)^{[Albrecht et al[1994b]]}
- very powerful source of tagging info!
 - ★ considered also $n_{K_S^0}$ in ROE
 - * K_S^0 from $b \to c\bar{c}s$ decay or s \bar{s} from gluon splitting
 - * other kin variables as for leptons
- combine the three K with highest $q \cdot r$

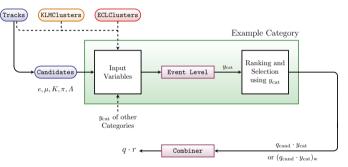
SlowPion

- π^{\pm} from $D^{*\pm}$ decays.
- same variables as Kaon
- $\cos \theta_T^*$ particularly powerful

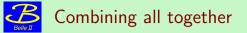
KaonPion

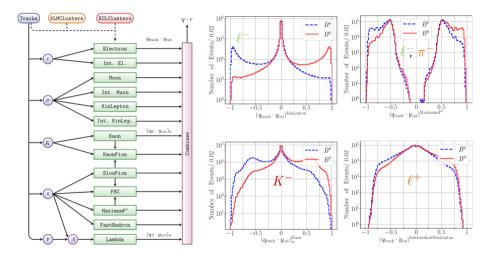
Correlation between slow pion and kaon

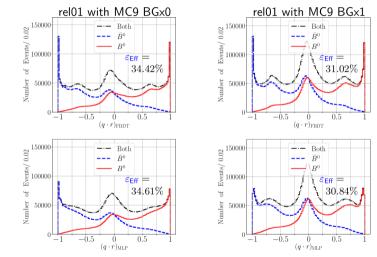
MaximumPstar

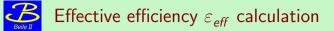

- very inclusive tag by looking at charge of the highest CMS-momentum particle in the ROE
- such as from hadronization of W or leptons
- high $\varepsilon \approx 100\%$: fails only if no tracks in ROE
- ε_{eff} not as good.
- FSC
 - Inclusive tagger using correlation between fast (MaximumPstar) and slow (SlowPion) particles
- Lambda
 - From $b \rightarrow c \rightarrow s$ decay, $\Lambda \rightarrow p\pi$
 - \blacktriangleright clean tagger but with low ε

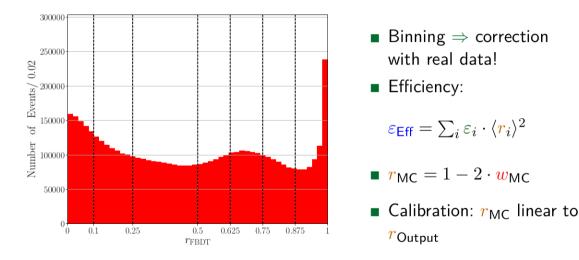
Categories	Discriminating input variables		
Electron Int. Electron	$\mathcal{L}_e, \ p^*, \ p^*_{t}, \ p, \ p_{t}, \ \cos\theta, \ d_0, \ x , \ \mathcal{M}^2_{rec}, \ \mathcal{E}^W_{90}, \ p^*_{miss}, \ \cos\theta^*_{miss}, \ \cos\theta^*_{T}, \ p\text{-val}.$		
Muon Int. Muon	$\mathcal{L}_{\mu}, \ p^*, \ p^*_{\mathrm{t}}, \ p, \ p_{\mathrm{t}}, \ \cos\theta, \ d_0, \ x , \ M^2_{\mathrm{rec}}, \ E^W_{90}, \ p^*_{\mathrm{miss}}, \ \cos\theta^*_{\mathrm{miss}}, \ \cos\theta^*_{\mathrm{T}}, \ p\text{-val}.$		
Kin. Lepton Int. Kin. Lep.	$\mathcal{L}_e, \mathcal{L}_\mu, \ p^*, \ p^*_t, \ p, \ p_t, \ \cos\theta, \ d_0, \ x , \ M^2_{rec}, \ E^W_{90}, \ p^*_{miss}, \ \cos\theta^*_{miss}, \ \cos\theta^*_{T}, \ p\text{-val}.$		
Kaon	$egin{aligned} \mathcal{L}_{K}, \ p^*, \ p^*_{t}, \ p, \ p_{t}, \cos heta, \ d_0, \ x , \ n_{K^0_{S}}, \ \sum p^2_{t}, \ M^2_{rec}, \ E^W_{90}, \ p^*_{miss}, \cos heta^*_{miss}, \ \cos heta^*_{T}, \ \chi^2 \end{aligned}$		
Slow Pion	$\mathcal{L}_{\pi}, \ \mathcal{L}_{e^{-}}, \ \mathcal{L}_{K}, \ p^{*}, \ p_{t}^{*}, \ p, \ p_{t}, \ \cos\theta, \ d_{0}, \ x , \ n_{K_{S}^{0}}, \ \sum p_{t}^{2},$		
Fast Hadron	$M_{\rm rec}^2, E_{90}^W, p_{\rm miss}^*, \cos \theta_{\rm miss}^*, \cos \theta_{\rm T}^*, p-{\rm val}.$		
Kaon-Pion	$\mathcal{L}_{K}, \ y_{Kaon}, \ y_{SlowPion}, \ cos \ \theta^*_{K\pi}, \ \ \boldsymbol{q}_{P} \boldsymbol{K} \cdot \boldsymbol{q}_{\pi}$		
Maximum P*	$p^*, p_t^*, p, p_t, d_0, x , \cos \theta_T^*$		
FSC	$\mathcal{L}_{KSlow}, \ p_{Slow}^*, \ p_{Fast}^*, \ \cos \theta_{T, Slow}^*, \ \cos \theta_{T, Fast}^*, \ \cos \theta_{SlowFast}^*, \ q_{Slow} \cdot q_{Fast}$		
Lambda	$\mathcal{L}_{p}, \mathcal{L}_{\pi}, p_{\Lambda}^{*}, p_{\Lambda}, p_{p}^{*}, p_{p}, p_{\pi}^{*}, p_{\pi}, q_{\Lambda}, M_{\Lambda}, n_{K_{S}^{0}}, \cos\theta_{x_{\Lambda}, p_{\Lambda}}, x_{\Lambda} , \sigma_{\Lambda}^{zz}, p\text{-val}.$		
	: e^- , μ^- , K, π , p (Λ from p and π). ch computed once for each particle: exclusive 108 variables		

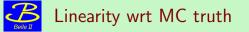


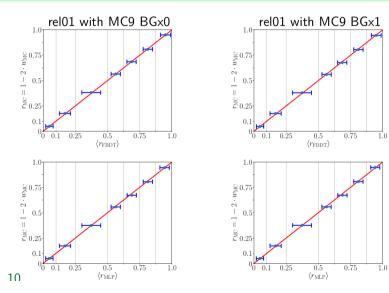

- Starting info: Objects in the Tag Side (ROE)
- possibly also from other categories (eg KaonPion)
- MVA (FBDT) to determine the tag flavour and tag probability $y_{cat} = q \cdot r \in [-1, 1]$
- might have different target for each category (eg different K or ℓ)
 - consider that with higher y_{cat}
- $\bullet\,$ Training of MVA on $B^0\to J/\psi\,K^0_S$

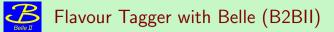

 y_{cat} for each category is then passed to the **Combiner** which return a single value of $q \cdot r$ for each candidate.

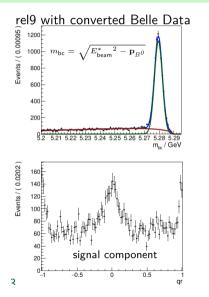


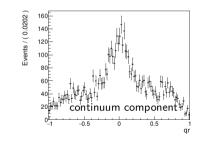


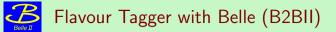

FBDT used as default, FANN (MLP) as a cross check

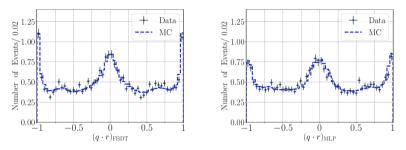











- Splot performed with converted Belle data using m_{bc} as discriminating variable.
- Full Belle 0.8 ab⁻¹ $B^0 \rightarrow J/\psi K_S^0$

Belle Data distribution weighted with splot output variable (signal component).

Nice overlap of converted Belle MC and data ©.

- $\varepsilon_{\text{Eff}} = 34.2\%$ on converted Belle MC (Belle $\sim 29\%$) ©.
- Deep neural network flavor tagger reached 34.4% on converted Belle MC.

- Belle2 Starter-Kit
 - Confluence
 - stash
 - We will go through B2T_Advanced_3_FlavorTagger now
- Tutorial script
 - analysis/examples/tutorials/B2A801-FlavorTagger.py
- Tutorial for use with B2BII converted MC or data:
 - analysis/examples/tutorials/B2A801-FlavorTagger-BelleMC.py
- Training and validation plots performed at kekcc with the script flavorTaggerValidatorInParalell.sh in /home/belle2/abudinen/public/release1ValidationScripts/
 - Example if you want to train by yourself
- Confluence page:
 - https://confluence.desy.de/display/BI/Physics+FlavorTagger
- B2TIP report

Additional or backup slides

Diberder, F. L. (1990). Precision on CP -Violation Measurements and Requirement on the Vertex Resolution. Technical Report BaBar Analysis Document #34. H. Albrecht et al (1994). Kaons in flavor tagged B decays. Z.Phys C62.

R.Cahn (2000). TagMixZ and its Application to the Analysis of CP Violation. Technical Report BaBar Analysis document #17.