

Plans for data processing in spring 2020 35th B2GM: DP session 23/01/2020

Stefano Lacaprara, Marco Milesi

INFN Padova, The University of Melbourne

Summary

- Status from last B2GM
 - proc10 prediction at BPAC vs reality
 - GoodRuns: issues (runDB, DS, grid)
 - Bucket8 status
- Tools: status and desiderata
- Resources assessment for spring run
 - Both local and grid
- HLT and analysis skim integration
- Plan for future processing: 100-150 /fb by June

Status since last B2GM proc10 and bucket8

Proc10 status

- HLT_skims DONE ~20/12 (T_{proc}: ~2 d)
- Local (KEKCC) All events DONE 18/1 (T_{proc}: ~27 d). Initial ETA ~1/1 (T_{proc}: ~10 d)
 - Different reasons, understood and fixed (when possible):
 - b2_prod 1500->400 cores midway (now back to 1500, thanks Hara-san!)
 - Failures (due to temporary cvmfs glitch) not caught immediately.
- Good runs list provided.
 - Offline luminosity not yet available https://agira.desy.de/browse/BIIDP-2338
- All information on Confluence page:
 - https://confluence.desy.de/display/BI/Processing+2019a-b#Processing2019a-b-Processing10details
- Please report any additional issue you might find in **BIIDP-2388**

Proc10 on the grid

- A long and painful story.
- Multiple ProdID submitted
 - Limit set to 100 runs per ProdID
 - Additional ProdIDs submitted later due to various issues:
 - Mistake with our script for exp7 run<926
 - 4S_offres and 4S_scan runs invalidated and resubmitted with proper metadata and path
 - Few RAW files were missing on the grid for exp7 run<925

- In total 20 ProdID: 18 valid, 2 cancelled 100% DONE
 - Exp7: 9629 9630 9631 9632 9633 9634 9863
 - Exp8 4S: 9635 9636 9637 9638 9639 9640 9641 9642 9643
 - Exp8 4S_offres: 9777
 - Exp8 4S_scan: 9776

Proc10 on the grid (II)

Only RawProcessing jobs shown, don't know how to show merge jobs just for this campaign (and not from MC13 also)

- A very nice start (both BNL and KEKCC) 70-30
 - Up to **4.3k jobs running**
- Then several issues at BNL
 - Jobs seen as stalled
 - Long ticket BIIDCO-2194
 - Problem not understood
 - Possibly related to SL6/SL7 watchdog
 - Still investigating
 - Prod w/o progress for several days
 - Last peak is the very last processing for run <926

Failure rate: all failures at BNL.

- Initially issues with a WN at BNL (cvmsfs) fixed
- Two crashes in basf2: input files removed and tickets opened
- Then tons of stalled jobs killed and resubmitted (automatically by DIRAC)
 - 30% of total jobs

Bucket 8 processing

- Calibration (including cdst) by AirFlow (Umberto/David)
 - cdst processing will start today: initial test during last night
 - (yes, there are people working even after B2 party)
- Final processing as usual:
 - First HLT_SKIM (including hlt_hadrons) at KEKCC
 - Might consider to run first hlt_hadrons,
 - and then the others (**bhabha**, **gammagamma**, **mumu2trk**) to finish sooner
 - Process all events on the grid (+ KEKCC backup processing?)
 - Grid processing will start in parallel with hlt_skims at KEKCC
- Timescale: L(exp10)=4 fb-1
 - Hlt_skims 0.3 day per fb⁻¹=> **1.5 days**
 - We will know from cdst processing for calibration
 - All events local: x12 (based on proc10 statistics) => 2 weeks
 - Do we want to do this? [well, we probably will anyway, if no clash for LSF occupancy]
 - All events on the grid (based on bucket7) : ~1 week + merging delays
 - Provided we don't face same issues as for proc10...+ N_{davs} contingency?

Breakin

Tools: status and needs

Grid monitoring tools

- DIRAC/gb2_prod have good monitoring capabilities, but we'd like to have.
 - Progress (eg running jobs vs time) for a given campaign for all jobs **RawProc** and **Merge**
 - Now we don't know how to distinguish merge jobs for Data or MC
 - Command line tools:
 - gb2_prod_status not so useful if something is not right
 - gb2_prod_summary give a lot of informations, which are not easy to read
 - In particular when jobs are resubmitted due to grid-related failure
 - We have a dedicated tool which parses the output and provide easier to read status *per run*
 - Would like something similar "natively" in gb2_prod_tools (no parsing!)

Data Shift for data processing

- DP managers now babysit grid processing: this will continue, but we also have dedicated Data Processing shifters, that can do part of the monitoring
 - Now DP shifter is monitoring sites w/o particular emphasis on Data Processing.
 - Eg: a problem of failed jobs at BNL is treated as a problem in any other random site
- TODO:
 - Better communication with DP shifters
 - Eg: keep <u>https://confluence.desy.de/display/BI/Computing+OperationStatus</u> up to date
 - Provide RawProcessing oriented view in DIRAC
 - Eg: show status of all job in the current campaign: waiting, running, done, failed, etc
 - Define action (open jira, ggus tickets, mail relevant people)
 - Issues during RawProcessing should escalate properly.

Proc10 on Dataset Searcher

- Upload of LPN on DS last step of grid processing
- No major issue
 - Procedure well documented and smooth.
- So far we are uploading all runs, since we are processing all runs
 - \circ \quad But we need to filter only the good runs
 - It would be nice to interface DS with RunDB to do this automatically
 - And have RunDB as single authoritative source of Good/Bad runs
 - For the time being, we have a script which does this
 - Provide a list of LPN for good runs to be fed to gbasf2 --input_dslist
- Eventually the purging of bad runs can be done automatically by DS querying RunDB

RunRegistry RunDB

THE UNIVERSITY OF MELBOURNE

- From DP point of view can be used for:
 - Good/Bad runs
 - Offline Luminosity per run
 - Both are processing dependent
 - proc10 bad run can be good for proc11
- What if some jobs of a run failed (eg basf2 crash on m/N files)?
 - Process a run. Input 100'000 events, processed 90'000 (10k jobs crashed)
 - we lose 10% of events (so luminosity) because of DP.
 - Rest of run is good!
 - We already have # of triggers per run
 - If we put #of events successfully processed by DP, we keep track of DP efficiency
 - Also this is processing dependent
- DP need fields in RunDB which are processing dependent.
 - Also proper API to upload values
- Technical discussion with Martin et al later today or tomorrow (tbc)

Stefano Lacaprara, INFN Padova

Martin's talk later

GoodRuns - BadRuns on the grid

gbasf --input_dslist GoodRunLPNList.txt ... works BUT

- Proc10 LPN good run list contains 17271 jobs LPNs (for 983 runs)
 - ~170k jobs in total, merge factor 10, 2'779'433'521 events, Size: ~5 TB
 - Average file size: 300 MB (small!).
 - Side remarks: Need to move to merge by target size asap
- Anyway: if we pass full LPN list to gbasf2 -> 17k jobs
 - If we want to group jobs together (eg -n 10) same jobs can request input files from different runs, which are not guaranteed to be in the same SE.
 - Input file match fails, job does not start.
- The problem would be exactly the same if DS would be already integrated with RunsDB and provide good runs.
 - So, now only solution is to have many **983 projects** (one per run)
 - or **17k short jobs** (1 project)
- Issue: dataset is defined now as a run. Ok for MC (1 run per ProdID), not for Data
 - What if I want to process all runs of a campaign?
 - At most 1 jobs per run (ok), but smart job grouping is needed

Spring run 2020a: resources

Local KEKCC Resources

Used proc10 statistics to get a metric of "processing CPU time per fb⁻¹"

Prediction (e.g.): **Bucket 8** (~4 1/fb) HLT skim production: ~1.5 d (N_{cores} =1500), ~2 d (N_{cores} =1000), ~4.5 d (N_{cores} =400) (all events production): ~6 d (N_{cores} =1500), ~10 d (N_{cores} =1000), ~24 d (N_{cores} =400)

Local Resources

- Plan is to do at KEKCC only cdst production for calibration
 - Current estimate is ~0.3 days per 1/fb with 1500 cores for 4 hlt_skims streams
 - We will have 1500 until July 20th
- From Ijima'san plenary talk:
 - Data quality values available run by run to the CR shifters
 - $\blacksquare \quad mirabelle \rightarrow dqm$
- This requires some kind of express (?) reco (like the Unofficial we had so far)
 - Full dataset? Or some sampling?
 - HLT_hadron (1.5% of data) -> cdst/mdst? -> offline skims or more?
 - To be performed at KEKCC (or at BNL?)
- If we aim to 100/fb in 100 days, 1/fb per day (on average):
 - ~200 cores needed for continuous hadron processing
- Need to integrate offline-skims to mdst to fast processing

Grid resources for 100/fb

- Now Data processing runs at BNL and KEKCC
- Proc10 had max 4.3k jobs in parallel
 - Bucket7 had ~2 k jobs (~all at BNL)
- Processing all events:
 - Bucket7 2.9/fb in 1 week
 - Rescale: 6/fb per week of processing

• To process 100/fb we need ~17 weeks

- If we process only selected HLT_skims (say ~30%)
 - **5 weeks** plus contingency
- If we process only HLT_hadron (10%)
 - 2 weeks
- The actual time to get all process DONE (and so available to user) will be longer: merge!
 - Will we have more resources by summer?

HLT and analysis skim

HLT and analysis skim in mdst processing

- Now analysis is performed on hlt_skims (hadron)
- Eventually, analysis will be run on analysis skim
 - Possibly (likely?) based on hlt_hadron
- Now ana_skim are processed independently by Racha (next talk), who submits jobs after all mdst production is done
 - If people is supposed to use analysis skims as input (we are pushing toward this)
 - data is fully available only when skim jobs are done
 - Non negligible delay: we are not taking this into account now
 - Or forget about analysis_skim and use directly hadron skim
 - same problem now for continuum MC.
- The plan is to integrate analysis_skim into mdst processing to provide them together with mdst (discussed with Racha)
 - Following is what we would like to do, need to test if doable with current gb2_prod tools
 - Or need to work with DC expert to find a solution

Data Processing schema (near future)

INFN

THE UNIVERSITY OF

HLT processing

- Goals:
 - Provide fast reconstruction up to analysis skim for physics relevant data
 - Reduce staging stress for SE to process only a fraction of staged RAW
- How:
 - Do together mdst production **and** analysis skims from hlt_hadron skim
 - Low multiplicity will need to run on all events
 - Unless a HLT_lowMult skim will become available
 - Just run udst skimming after the mdst production
 - Save multiple udst (similar to what ana_skim is doing)
 - This requires to stage full RAW file for processing
 - Unless HLT_RAW are available on the grid
 - Can be produced by DP
 - Stage all RAWs, low CPU, hard I/O, and write RAW_SKIM. BAD!
 - At ONLINE full RAW are already on disk, and **sroot->root** conversion can produce multiple stream:
 - To run on hlt_hadron need to stage only a fraction of RAW, not all! GOOD.

Data Processing schema (future) INFN THE UNIVERSITY O MELBOURNE GRID Online Calibration Time -12 Raw **HLT skim** Raw HLT Skim proc Raw Steps (in order) 112 **HLT skim Core Computing** ۲ Full proc Raw DP prompt HLT skimming **DP cDST for calibration** Filter and process а. from all raw DP m/cDST for HLT skim • **mDST** Also on grid а. **cDST mDST DP mDST for all events** Only on grid а. **DP Offline skims** • analysis **DP Analysis skims** • 24 skims

Plan

Processing plans for 2020

- Expectation for FPCP (due May 1):
 - ProcXX (2019a-c) plus prompt reprocessing of data collected March 1 April 1 (2020a?)
- Expectation for ICHEP (due June 30):
 - ProcYY (2019a-c, 2020a?) plus prompt reprocessing of data collected April 1 June 1
- "Aggressive" datasets including prompt reprocessing of newest data can be added upon availability

Tentative plan for Spring

The next two major conferences are:

 FPCP 8/7 - ICHEP 30/7

- Showing results including a large fraction of the data taken in 2020 will not be trivial;
- Counting backward: 1-2 weeks for CWR plus 2-4 weeks for RCR
 - So, data needed about 1-2 months before conference (top up possible of course)
 - Namely mid April for FPCP
 - Beginning of mid June for ICHEP
- Proc11 in march (?), before the arrival of large amount of new exp12 data
 - Including exp 7+8+10
 - Which release? Rel5 expected April/May (maybe too late)
- Then prompt processing (buckets) for FPCP
- And possibly a proc12 in may (?) for part of exp12 data for ICHEP
 - **Proc13** with full **exp12** (plus 7-8-10?) **later in summer**

Backup

Int lumi (Exp8) = 5.8 1/fb

	ALL events	Σ HLT skims	
	mdst	mdst	cdst
<tb fb<sup="">-1></tb>	0.97	0.14	10
<n<sub>jobs/fb⁻¹></n<sub>	29k	4.3k (hlt_hadron: 600)	
<t<sub>job>_{CPU}</t<sub>	1.9 h	Avg: 2.5 h (hlt_hadron: 4.7 h)	
<t<sub>job>_{turnaround}</t<sub>	36 h	Avg: 11.6 h (hlt_hadron: 14 h)	

$$= (1/N_{cores})^{*} < T_{job} > _{CPU}^{*} < N_{jobs}/fb^{-1}>$$

HLT retention rate

 NB: Exp10 HLT (mostly) ran in "monitoring" mode → no online event filtering, just flagging.