

# TDCPV WG status and $B^{0} \rightarrow \eta' K^{0}_{S}$ analysis) 12th Belle II Italian Meeting 16/12/2019

#### Stefano Lacaprara

**INFN** Padova

#### Outline



#### • Status of TDCPV WG:

- B<sup>0</sup> lifetime measurement
- $sin(2\phi_1)$  measurement from  $B^0 \rightarrow J/\psi K^0_{S}$ 
  - CP-side and Tag-side Vertex studies
  - Flavour tagger validation

- $B^0 \rightarrow \eta' K^0_{S}$ 
  - $\circ$  **η'** in Phase III data
  - Study on MC12

## $\tau(B^0)$ hadronic

Reem (IPHC Strasbourg) BELLE2-NOTE-PH-2019-017



- No flavour tagging needed,
- Using simple Δt resolution function
  - 3 gaussian
  - Not using event per event resolution
- 6 fully reconstructed hadronic final states.
  - In common with BToCharm WG

| <b>B</b> ⁰ | channels :                                                            |
|------------|-----------------------------------------------------------------------|
| —          | $B^0 \rightarrow D^- \rho^+$ , $D^- \rightarrow K^+ \pi^- \pi^-$      |
| _          | $B^{0} \rightarrow D^{-} \pi^{+}$ , $D^{*} \rightarrow D^{0} \pi^{-}$ |
| _          | $B^0 \rightarrow D^{*-} \pi^+$ ,                                      |
| -          | $B^0 \rightarrow D^{*-} \rho^+$                                       |
| -          | $B^{0} \rightarrow D^{*-}a1^{+}$                                      |

| D <sup>0</sup> channels                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $D^{0} \rightarrow K^{-} \pi^{+}$ $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ $D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{0}$                                                                                                                                                                        |
| $\begin{array}{l} a \mathcal{1}^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \ \pi^{\scriptscriptstyle +} \ \pi^{\scriptscriptstyle +} \ \pi^{\scriptscriptstyle -} \\ \rho^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \ \pi^{\scriptscriptstyle 0} \end{array}$ |

| Decay                        | Selection efficiency<br>% |
|------------------------------|---------------------------|
| $B^0 \to D^- \pi^+$          | 20                        |
| $B^0 \rightarrow D^- \rho^+$ | 10                        |
| $B^0 \to D^{*-} \pi^+$       | 22                        |
| $B^0 \to D^{*-} \rho^+$      | 8                         |
| $B^0 \to D^{*-} a_1$         | 6.6                       |

 $B^{0}$ ->  $D^{-} a_{1}^{+}$  excluded due to high background



#### Exp8 - O(1000) candidates



#### Lifetime extraction

#### BELLE2-NOTE-PH-2019-017



- UML fit on  $\Delta t$  with full pdf
  - Signal/BB/continuum
  - Fixing some parameters from MC
- Test on MC 80/fb
  - Data stil blind



$$P_{all}(\Delta t) = f_s \left( \begin{array}{c} P_{sig}(\Delta t) + f_{b\overline{b}} P_{b\overline{b}}(\Delta t) + (1 - f_s - f_{\overline{b}}) P_{cont}(\Delta t) \\ P_{sig}(\Delta t) = \int_{-\infty}^{+\infty} \mathcal{P}_{th}(\Delta t') \mathcal{R}_{sig}(\Delta t - \Delta t') d\Delta t'. \\ \mathcal{P}_{th}(\Delta t) = \frac{1}{2\tau_B} \exp\left(-\frac{|\Delta t|}{\tau_B}\right). \end{cases}$$

| $f_{s1}$      | $0.4\pm0.05$          |
|---------------|-----------------------|
| $\mu_{s1}$    | $-0.0091 \pm 0.09$    |
| $\sigma_{s1}$ | 0.451                 |
| $f_{s2}$      | $0.45\pm0.054$        |
| $\mu_{s2}$    | $-0.34\pm0.11$        |
| $\sigma_{s2}$ | 1.23                  |
| $f_{s3}$      | $1 - f_{s1} - f_{s2}$ |
| $\mu_{s3}$    | $-0.8\pm0.21$         |
| $\sigma_{s3}$ | 4.09                  |
| $	au_{B^0}$   | $1.52\pm0.019$        |

## Working on systematics

Target: Moriond

4

#### $sin(2\phi_1)$ measurement from $B^0 \rightarrow J/\psi K^0_{s}$



#### Signal reconstruction is ready since this summer

| Mode                          | Belle II, 2019 data    |                   | Belle II, MC expectation |                     | Belle, 2001 data [2] |                     |
|-------------------------------|------------------------|-------------------|--------------------------|---------------------|----------------------|---------------------|
|                               | $2.62 \text{ fb}^{-1}$ | $1 { m ~fb^{-1}}$ | $2.62 \mathrm{~fb}^{-1}$ | $1 \text{ fb}^{-1}$ | $10.5~{\rm fb}^{-1}$ | $1 \ {\rm fb}^{-1}$ |
| $B^0  ightarrow J/\psi K^0_S$ | $26.9\pm5.2$           | $10.3\pm2.0$      | 27.5                     | 10.5                | 123                  | 11.7                |

• Expected O(100) events with 10/fb

VOLUME 86, NUMBER 12 PHYSICAL

PHYSICAL REVIEW LETTERS

19 MARCH 2001

0

counts / (10 MeV)

#### Measurement of the *CP* Violation Parameter $\sin 2\phi_1$ in $B_d^0$ Meson Decays

A. Abashian,<sup>44</sup> K. Abe,<sup>8</sup> K. Abe,<sup>36</sup> I. Adachi,<sup>8</sup> Byoung Sup Ahn,<sup>14</sup> H. Aihara,<sup>37</sup> M. Akatsu,<sup>19</sup> G. Alimonti,<sup>7</sup> K. Aoki,<sup>8</sup>

We present a measurement of the standard model *CP* violation parameter  $\sin 2\phi_1$  (also known as  $\sin 2\beta$ ) based on a 10.5 fb<sup>-1</sup> data sample collected at the Y(4S) resonance with the Belle detector at the KEKB asymmetrie  $e^+e^-$  collider. One neutral *B* meson is reconstructed in the  $J/\psi K_S$ ,  $\psi(2S)K_S$ ,  $\chi_{c1}K_S$ ,  $\eta_c K_S$ ,  $J/\psi K_L$ , or  $J/\psi \pi^0$  *CP*-eigenstate decay channel and the flavor of the accompanying *B* meson is identified from its charged particle decay products. From the asymmetry in the distribution of the time interval between the two *B*-meson decay points, we determine  $\sin 2\phi_1 = 0.58^{+0.32}_{-0.34}(\text{stat})^{+0.09}_{-0.10}(\text{syst})$ .



## Preparation and test of analysis tools



- Δt measurement, control samples, wrong tag fraction, Δt resolution
- A plan with work sharing is in place, involving many people and groups
- Italian contribution:
  - Fernando
    - FlavourTagger
  - Benjamin:
    - B<sup>0</sup> -> J/psi K
    - Hard for winter conf maybe?
  - Chiara (now J)-
    - Had control sample
- Stefano Lacaprara, INFN Padova

| Items                                          | November |        | Dece              | ember    |               | January     | Febura          |
|------------------------------------------------|----------|--------|-------------------|----------|---------------|-------------|-----------------|
| CP-side reconstruction                         |          |        |                   |          |               |             |                 |
| J/psi Ks S/B fractions                         |          |        |                   |          |               |             |                 |
| J/psi Ks Bkg Dt                                |          |        |                   |          | Yusa          |             |                 |
| J/psi KL S/B w KLM                             |          |        | Benjamin          |          |               |             |                 |
| J/psi KL S/B w KLM+ECL                         |          |        |                   |          |               | Benjamin    |                 |
| CP-side vertex                                 |          |        |                   |          |               |             |                 |
| Determination of standard option               |          |        |                   |          |               |             |                 |
| Check shape dependence to signma_z and e       | chi^2    |        |                   |          |               |             |                 |
| Tag-side vertex                                |          |        |                   |          | 1.1           |             |                 |
| Improving tagV module, testing BTube with R    | a        |        | Thibaud           |          |               |             |                 |
| Add IPtube constraint to KFit                  |          |        |                   | Tanigawa |               |             |                 |
| Determination of standard option               |          |        |                   |          |               |             |                 |
| Flavor tagging                                 |          |        |                   |          |               |             |                 |
| Skim, reconstruction and selection of control  |          |        | Femanon           |          |               |             |                 |
| Simultaneous fit to determine effcies, w and I |          |        | 1.1.1.00.1.00.0.0 | Co       |               |             |                 |
| Hadronic control sample                        |          |        |                   |          |               |             |                 |
| MC sample                                      |          | Chiara |                   |          |               |             |                 |
| data sample                                    |          | Chiara |                   |          |               |             |                 |
| list up necessary parameters for fitter        |          | Onuki  |                   |          |               |             |                 |
| prepare definition file for fitter             |          |        |                   | Onuki    |               | Torretfo    | Mariand         |
| Semi-leptonic control sample                   |          |        |                   |          |               | Target to   | rivioriona      |
| MC sample                                      | 2        | Thomas |                   |          |               |             |                 |
| data sample                                    |          | Thomas |                   |          |               |             |                 |
| list up necessary parameters for fitter        |          | Yusa   |                   |          |               |             | 1               |
| prepare definition file for fitter             |          |        |                   | Yusa     | <u>4</u>      |             |                 |
| Resolution function                            |          |        |                   |          | 14 10         |             |                 |
| fit MC and determine non-primary track part    |          |        |                   |          | Yusa, Onuki   |             |                 |
| fit data ande determine detector part          |          |        |                   |          |               | Yusa, Onuki |                 |
| fit data and determine resolution and wtag     |          |        |                   |          |               | Yusa, Onuki |                 |
| CP fit                                         |          |        |                   |          |               |             |                 |
| modify fitter (hadronic part)                  |          |        |                   |          | Onuki, Chiara | 19 C        |                 |
| modify fitter (semi-leptonic part)             |          |        |                   |          | Yusa          |             |                 |
| discussion for blind open and fit to data      |          |        |                   |          |               |             |                 |
|                                                |          |        |                   |          |               |             | B2GM (Feb. 3-7) |
| TD fits of control and signal channels         |          |        |                   |          |               |             |                 |

Todav

## Tag Vertex issues

- Current algo is TagV, based internally on RAVE (CMS).
  - Lack of developers for TagV and no support for RAVE
    - Investigating use of KFit in place of RAVE
  - Personpower needed, you are welcome to join!
- Due to nano beam, the IP constraint is tricky to use
  - IP constraint is wrong if B flies long time
  - Using IP constraint can bias the Tag Vertex Z residuals
  - Elongating along B boost better but not yet perfect





#### Tag Vertex Fit

- Btube constraint
- Propagate B<sub>sig</sub> to beamspot
  - Get the vertex of both B
  - Compute flight direction of B<sub>TAG</sub>
  - Use the tube as a constraint on tag side
  - <u>https://agira.desy.de/browse/BIIANA-120</u>



Sourav (Tel Aviv), Thibaud (MPI)





#### Btube vs other constraint





- RMS and mean vs Δz<sub>MC</sub> for various constraint
- Breco is the actual standard de-facto



- Efficiency vs  $\Delta z_{MC}$ : as good as Breco
- Btube has no (or little) bias vs  $\Delta z_{MC}$

2.5

-2.5

0.0

 $\Delta z^{MC} \mu m$ 

Mean vs ∆z<sub>мc</sub>

• Next step is test with KFit in place of RAVE

IP const.

no const. boost

10.0

BTube

Breco

7.5

5.0

• Test on data: fit mixing and lifetime

## CP-side vertex: IP constraint w/ KFit





#### Flavor tagger validation

Fernando (TS) Colm (IPMU)



- Use fully-hadronic self-tagged B<sup>0</sup> decay
- **Use Time Integrated PDF** 
  - signal flavour **a** flavour and tag-side  $\beta$ ,  $\chi_d$  B meson mixing Ο

$$\mathcal{P}^{ ext{Obs}}_{lphaeta} = rac{arepsilon}{2} [1 - lphaeta(lpha\cdot\Delta w + (1-2w)\cdot(1-2\chi_d))]$$

- From fit get:  $\boldsymbol{\varepsilon}_{i}, w_{i}, \Delta w_{i}$ for i=1,7 bins (r=|1-2w|)
- Closure test on MC ok
- Working toward a full fit



#### Control Samples (same as $\tau(B^0)$ )



Plus neutral modes

FBDT qrCombined FANN grCombined DNN grCombined



# Status of $B^0 \rightarrow \eta' K^0_s$

- η' in phase 3
- $\eta' \rightarrow \eta( \rightarrow \gamma \gamma) \pi^+ \pi^-$  in MC12

## Introduction



Stefano Lacaprara, INFN Padova

Shaded  $\eta' \rightarrow \eta \pi \pi$ , white all (including  $\eta' \rightarrow \rho \gamma$ )

### Plan (today)



- Rediscover  $\eta$  and  $\eta'$  in all final states, and compare with MC expectation
- Study selection and efficiency for  $B^0 \rightarrow \eta' K^0_s$  in MC
  - $\circ \quad \mathbf{\eta'} \to \mathbf{\eta} (\to \gamma \gamma) \, \pi^+ \pi^-,$
  - $\circ \quad \mathbf{\eta'} \to \mathbf{\eta} (\to \pi^+ \pi^- \pi^0) \ \pi^+ \pi^-,$
  - $\circ \quad \eta' \rightarrow \rho (\rightarrow \pi^{+} \pi^{-}) \gamma$
- Apply selection to generic Run dependent MC to check signal yield
  - Setup and 2D fit on  $M_{bc}$ - $\Delta E$  for signal extraction (not today but ready)
- Study Data continuum and side bands for background assessment
- Repeat for B<sup>+</sup>
- Document everything
- Finalize selection for Data
  - Review process toward unblinding
- Systematics and unblinding



#### $\eta$ rediscovery in phase3 (and 2) $\rightarrow \pi^{+}\pi^{-}$ ) $\gamma$ $\eta' \rightarrow \eta (\rightarrow \pi^+ \pi^- \pi^0) \pi^+ \pi^ \eta' \rightarrow \rho($ $\eta' \rightarrow \eta (\rightarrow \gamma \gamma) \pi^+ \pi^-$ GeV Belle II 2019 Preliminary GeV/c^2 3500 Belle II 2019 Preliminary 0.0015 GeV Phase 3 - exp 7+8 -∓- Data Belle II 2019 Preliminary 🕂 Data 0.002 ( Phase 3 - exp 7+8 250 Fit — Fit Phase 3 - exp 7+8 $3000 - Ldt = 6.100 \ fb$ 1000 $\int Ldt = 6.100 \ fb^{-1}$ $\int Ldt = 6.1 \ fb^{-1}$ Signal Signal Events / ( 0.001 Background Background Events / ( 600 1500 $(1.38 \pm 0.14) 10^3 candidates$ $Yield = (5.40 \pm 0.31)10^{3} cands$ (5.22 ± 0.16)10<sup>3</sup>candidates - Data $= (955.10 \pm 0.59) MeV/c^{2}$ $1000 - \mu = (953.8 \pm 0.4) MeV/c^2$ $\mu = (957.13 \pm 0.10) MeV/c^2$ - Fit $= (8.93 \pm 0.69) MeV/c^2$ $\sigma = (3.12 \pm 0.14) MeV/c^2$ $\sigma = (7.5 \pm 0.4) MeV/c^2$ Signal >0.40 GeV ->0.40 GeV E,>0.6 GeV E >0.6 GeV Background Ш lln lln M (GeV) 0.95 $M_{\gamma\gamma\pi^+\pi^-}(GeV/c^2)$ M (GeV)

- $\pi^0 \rightarrow \gamma \gamma$ ,  $\eta \rightarrow \gamma \gamma$ ,  $\eta \rightarrow \pi^+ \pi^- \pi^0$  and phase2 in backup
- For  $\rho(\rightarrow \pi^+\pi^-) \gamma$  applied a  $\pi^0$  veto: S/B improved
  - TreeFitter w/ mass constraint on  $\eta/\pi^0$ , not on  $\rho$
- Very good agreement with MC: peak position, width, and yield
- At Belle width: 2.7 vs 3.12 MeV ( $\gamma\gamma\pi^+\pi^-$ ) and 8.8 vs 7.5 MeV ( $\rho\gamma$ )

BELLE2-NOTE-PH-2018-038

# Efficiency $\mathsf{B}^0 \to \eta' (\to \eta (\to \gamma \gamma) \pi^+ \pi^-) \mathsf{K}^0_{\mathsf{S}} (\to \pi^+ \pi^-)$

- Signal efficiency and SxF varied a lot depending:
  - MC campaign (simulated beam background)
  - Basf2 release (issue and improvement on reconstruction, mostly tracking and vertexing)

| MC Campaign/Release  | Efficiency | SxF   |
|----------------------|------------|-------|
| MC7/Rel-09 (B2TIP)   | 23 %       | 3.8 % |
| MC9/Rel-02           | 22 %       | 6.7 % |
| MC10/Rel-02          | 11 %       | 3.5 % |
| MC12b/Rel-03         | 19 %       | 4.5 % |
| MC12b/Rel-04         | 37 %       | 9.3 % |
| " Best Cand -SxF BDT | 34 %       | 4.0 % |



Optimized for Efficiency, not (yet) for SxF suppression. Just using old (B2TIP) cuts, including SxF BDT (see backup)

#### Pdf: Signal - SxF - Bkg - BB





#### Test on Run Dependent MC12d





**Continuum (+***r***) + BBar** L = 10 /fb

| DS     | Exp'd | Seen |  |
|--------|-------|------|--|
| Signal | ~10   | 3    |  |
| Bkg    | ~100  | 40   |  |
| BB     | ~3    | 1    |  |

A quick test, much to be understood yet.

Data still blind Will look at SB and continuum

## Summary



- TDCPV WG plan for Moriond
  - $\circ$  B<sup>0</sup> lifetime with hadronic modes
  - First TD B0  $\rightarrow K_{S}^{0} J/\psi$  measurement
- Rediscovery of hadronic penguin  $B^0 \rightarrow \eta' K^0_{S}$ 
  - Very good  $\eta$ ' signal seen on data
  - Very good efficiency with release 4
  - First test on Run dependent MC
  - Difficult for Moriond
    - Short timescale and personpower issue: will try anyway.



# Backup



## B<sup>0</sup> lifetime measurement



- Measurement of B meson lifetimes with hadronic decay final states
  - Phase III data,
  - IPHC Strasbourg, Reem Rasheed et al
    - BELLE2-NOTE-PH-2019-017
    - Status: in review by conveeners, soon to go to RC
- No flavour tagging needed, simple Dt resolution function
  - 6 fully reconstructed hadronic final states. In common with BToCharm WG

| • | B <sup>0</sup> | channels :                                                       | D <sup>0</sup> channels                                                             |
|---|----------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|   | _              | $B^0 \rightarrow D^- \rho^+$ , $D^- \rightarrow K^+ \pi^- \pi^-$ | $D^0 \rightarrow K^- \pi^+$                                                         |
|   | _              | $B^0 \rightarrow D^- \pi^+$ , $D^* \rightarrow D^0 \pi^-$        | $D^0 \rightarrow K^- \pi^+ \pi^0$                                                   |
|   | _              | $B^{ m o}  ightarrow D^{st -} \pi^{st}$ ,                        | $D^{\circ} \rightarrow K^{\circ} \pi^{+} \pi^{+} \pi^{-}$                           |
|   | -              | $B^0 \rightarrow D^{*} \rho^+$                                   |                                                                                     |
|   | -              | B <sup>o</sup> → D*- a1+                                         | $aI^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$ $\rho^{+} \rightarrow \pi^{+} \pi^{0}$ |
|   |                |                                                                  | P                                                                                   |

| Decay                        | $\begin{array}{c} \text{Selection efficiency} \\ \% \end{array}$ | $\sigma_{effe}$ (statistical) % |  |  |
|------------------------------|------------------------------------------------------------------|---------------------------------|--|--|
| $B^0 \rightarrow D^- \pi^+$  | 20                                                               | 0.04                            |  |  |
| $B^0 \rightarrow D^- \rho^+$ | 10                                                               | 0.03                            |  |  |
| $B^0 \to D^{*-} \pi^+$       | 22                                                               | 0.043                           |  |  |
| $B^0 \to D^{*-} \rho^+$      | 8                                                                | 0.025                           |  |  |
| $B^0 \rightarrow D^{*-}a_1$  | 6.6                                                              | 0.019                           |  |  |

 $B^{0} \rightarrow D^{-} a_{1}^{+}$  excluded due to hig background

## Δt model and fit (MC only)

- Convolution of physics
- $\mathcal{P}_{th}(\Delta t) = \frac{1}{2\tau_B} \exp\left(-\frac{|\Delta t|}{\tau_B}\right).$
- And resolution function

$$P_{sig}(\Delta t) = \int_{-\infty}^{+\infty} \mathcal{P}_{th}(\Delta t') \mathcal{R}_{sig}(\Delta t - \Delta t') d\Delta t'.$$

- Not using the event-based uncertainty
  - $\circ$  ~ No dependency of  $\Delta z$  residual on  $\Delta t_{_{MC}}$
- Simplified model:

Stefano Lacaprara, INFN Pauova

- triple gaussian separately for signal and tag side
- For signal, continuum, BB

1400

1200

1000

800

600

400

200

Events/(0.0004 cm)









## Signal in MC and Data



• 2D fit on Mbc and DE with signal, BB, and continuum contribution



- In data (exp8 only), O(1000) candidates
- Clean signal
  - $f_{sig} \sim 53\%$  in signal region (0.4 for MC)



## Δt model and fit (MC only)

- Convolution of physics
- $\mathcal{P}_{th}(\Delta t) = \frac{1}{2\tau_B} \exp\left(-\frac{|\Delta t|}{\tau_B}\right).$
- And resolution function

$$\mathsf{P}_{sig}(\Delta t) = \int_{-\infty}^{+\infty} \mathcal{P}_{th}(\Delta t') \,\mathcal{R}_{sig}(\Delta t - \Delta t') \mathrm{d}\Delta t'.$$

- Not using the event-based uncertainty
  - $\circ$  ~ No dependency of  $\Delta z$  residual on  $\Delta t_{_{MC}}$
- Simplified model:
  - triple gaussian separately for signal and tag side
  - For signal, continuum, BB

1400

1200

1000

800

600

400

200

Events/(0.0004 cm)







#### Lifetime extraction

- UML fit on  $\Delta t$  with full pdf  $P_{all}(\Delta t) = f_s P_{sig}(\Delta t) + f_{b\bar{b}} P_{b\bar{b}}(\Delta t) + (1 f_s f_{\bar{b}}) P_{cont}(\Delta t).$ 
  - Fixing some parameters from MC
- Test on MC 80/fb

signal

bb bkg

con bkg

1200

1000

800

600

400

200

0

-10

Events/(0.2 ps)

• Data stil blind

 $\mathcal{R}_{sig}(\Delta t) = f_{s1} \mathcal{N}(\Delta t; \, \mu_{s1}, \sigma_{s1}) + f_{s2} \mathcal{N}(\Delta t; \, \mu_{s2}, \sigma_{s2}) + (1 - f_{s1} - f_{s2}) \mathcal{N}(\Delta t; \, \mu_{s3}, \sigma_{s3})(4)$ 





| $f_{s1}$      | $0.4 \pm 0.05$        |
|---------------|-----------------------|
| $\mu_{s1}$    | $-0.0091 \pm 0.09$    |
| $\sigma_{s1}$ | 0.451                 |
| $f_{s2}$      | $0.45\pm0.054$        |
| $\mu_{s2}$    | $-0.34\pm0.11$        |
| $\sigma_{s2}$ | 1.23                  |
| $f_{s3}$      | $1 - f_{s1} - f_{s2}$ |
| $\mu_{s3}$    | $-0.8\pm0.21$         |
| $\sigma_{s3}$ | 4.09                  |
| $	au_{B^0}$   | $1.52\pm0.019$        |

 $P_{sig}(\Delta t) = \int_{-\infty}^{+\infty} \mathcal{P}_{th}(\Delta t') \,\mathcal{R}_{sig}(\Delta t - \Delta t') \mathrm{d}\Delta t'.$ 

Working on systematics

Target: Moriond



#### Flavor tagger validation

- Use fully-hadronic self-tagged B<sup>0</sup> decay
- Use Time Integrated PDF
  - $\circ$  signal flavour  $\alpha$  flavour and tag-side  $\beta$

$$\mathcal{P}^{ ext{Obs}}_{lphaeta} = rac{arepsilon}{2} [1 - lphaeta(lpha\cdot\Delta w + (1-2w)\cdot(1-2\chi_d))]$$

- ε Tagging efficiency
- w wrong tag probability
- $\Delta w$  (B vs Bbar w)
- a flavour of signal side B (self tagged)
- β flavour of tag side B (flavour tagger)
- $\chi_d$  B meson mixing
- From fit get:  $\boldsymbol{\varepsilon}_{i}, w_{i}, \Delta w_{i}$ 
  - for i=1,7 bins (r=|1-2w|)

Fernando (TS) Colm (IPMU)



Control Samples (same as  $\tau(B^0)$ )



Plus neutral modes

#### Results on MC: total effective eff



On MC: testing fit machinery Also  $\boldsymbol{\varepsilon}_i, \boldsymbol{w}_i, \Delta \boldsymbol{w}_i$  measured Good match with MC truth



Stefano Lacaprara, INFN Padova

Write 2D fit for with components for signal, continuum and BBar

 $\mathcal{P}_{\mathrm{Sig}} = \mathcal{P}(\Delta E) imes \mathcal{P}(M_{bc} | \Delta E) imes \mathcal{P}(arepsilon, w, \Delta w, lpha, eta)$ 



## MPI fit method



- UML fit for TDCPV assumes that  $\Delta t$  resolution is independent on measured parameters and efficiency uniform in  $\Delta t$ ,  $\Delta t_{true}$ . What if not.
- Reweight MC sample to get pdf of each event, instead of a analytic common pdf (eg tri-gaussian)
  - MC/Data discrepancy are cured by smearing MC quantities  $\Delta t'_{rec} = \Delta t_{rec} + G(\alpha \cdot \delta(\Delta t_{rec}))$ 
    - α can be extracted from the fit
  - $\circ$  ~ Use control sample (no CPV) to get  $\alpha$  (smearing factor) from data
- Same fit to extract  $\tau(B^0) \tau(B^+)$ ,  $\delta m$ , S, and  $w_i$ ,  $\Delta w_i$ , as well as smearing factor
  - Tested on MC12b (MC vs MC, no smearing needed not found)
  - And Belle w/ B2BII
  - Strong correlation  $\tau$   $\alpha$

|                                  | S                 | au(ps)            | $\delta m (ps^{-1})$ | $\alpha_{smear}$ |
|----------------------------------|-------------------|-------------------|----------------------|------------------|
| assistive MC                     | 0.69              | 1.535             | 0.502                |                  |
| Belle data $J/\psi(\mu\mu)K_S^0$ |                   |                   |                      |                  |
| 1 par. MPI TDCPV                 | $0.595 \pm 0.042$ | 1.525 (fixed)     | 0.507~(fixed)        |                  |
| 3 par. MPI TDCPV                 | $0.586 \pm 0.042$ | $1.641 \pm 0.030$ | $0.543 \pm 0.039$    | -                |
| 4 par. MPI TDCPV                 | $0.621 \pm 0.046$ | $1.536 \pm 0.049$ | $0.554 \pm 0.041$    | $0.71\pm0.13$    |
| $PRL (2012) J/\psi K_S^0$        | $0.670 \pm 0.029$ | 1.525~(fixed)     | $0.507 \ (fixed)$    | 28               |

#### Final states considered (Belle)



- $\eta' \rightarrow \eta \pi^+ \pi^-$ : BR=42.6%  $\circ \eta \rightarrow \gamma \gamma$ : BR=38.41%  $\circ \eta \rightarrow \pi^+ \pi^- \pi^0$ :BR=22.94% •  $\eta' \rightarrow \rho(\rightarrow \pi^+ \pi^-)\gamma$ : BR=28.9%  $\circ$  Including non resonant  $\pi^+ \pi^- \gamma$ •  $K_{S}^0 \rightarrow \pi^+ \pi^-$ : BR=69.2 %
- In Belle, most of signal comes from
- $\eta' \rightarrow \rho(\rightarrow \pi^+ \pi^-) \gamma$

 $\eta \to \pi^+ \pi^- \pi^0$  was not used in this analysis, only  $\eta \to \gamma \gamma$ 

| Mode                      | $N_S$                        | $\boldsymbol{\Sigma}$ | $\epsilon$ (%) | $\epsilon B_{s}(\%)$ | $BF(10^{-6})$    |
|---------------------------|------------------------------|-----------------------|----------------|----------------------|------------------|
| $\eta'_{\eta\pi\pi}K^+$   | $28.9^{+6.5}_{-5.7}$         | 9.4                   | 21.7           | 3.78                 | $69^{+15}_{-14}$ |
| $\eta'_{\rho\gamma}K^+$   | $42.5_{-8.3}^{+9.1}$         | 7.5                   | 14.2           | 4.18                 | $92^{+20}_{-18}$ |
| $\eta'_{\eta\pi\pi}\pi^+$ | $0.0^{+1.2}_{-0.0}$          | 0.0                   | 23.7           | 4.11                 | _                |
| $\eta'_{ ho\gamma}\pi^+$  | $0.0\substack{+5.6 \\ -0.0}$ | 0.0                   | 15.4           | 4.55                 | -                |
| $\eta'_{\eta\pi\pi}K^0$   | $6.4^{+3.4}_{-2.7}$          | 3.5                   | 20.8           | 1.25                 | $46^{+25}_{-20}$ |
| $\eta'_{\rho\gamma}K^0$   | $10.1^{+4.4}_{-3.6}$         | 4.0                   | 11.5           | 1.16                 | $79^{+34}_{-28}$ |





 $\eta \rightarrow \gamma \gamma$ 





 $\eta \rightarrow \pi^+ \pi^- \pi^0$ 







- Good signal also in Phase2 (see backup)
- Good agreement with MC12d MC (run dependent)
  - $\circ$  For position, width, and yield
  - Width for  $\eta \rightarrow \gamma \gamma$  at Belle 12 MeV (Belle2 13.9 MeV)

 $\eta' \rightarrow \eta( \rightarrow \gamma \gamma) \pi^+ \pi^-$ 





 $\eta' \rightarrow \eta( \rightarrow \pi^+ \pi^- \pi^0) \pi^+ \pi^-$ 



M (GeV)





#### SxF Mitigation: fastBDT



Signal SxF

Almost 100% of SxF from  $\eta(\rightarrow \gamma \gamma)$ .



10 0.001 0.003

101

102

10-

10

10

10-

107

-1.00-0.75 -0.50 -0.25



 $\eta$ ' vertex variables

0.25 0.50

#### SxF FastBDT output





#### Correlation (for signal)



