

$B^0 \rightarrow K^* \mu \mu$ at CMS: status and perspective KMI, Nagoya 22/01/2020

Stefano Lacaprara

INFN Padova

About myself

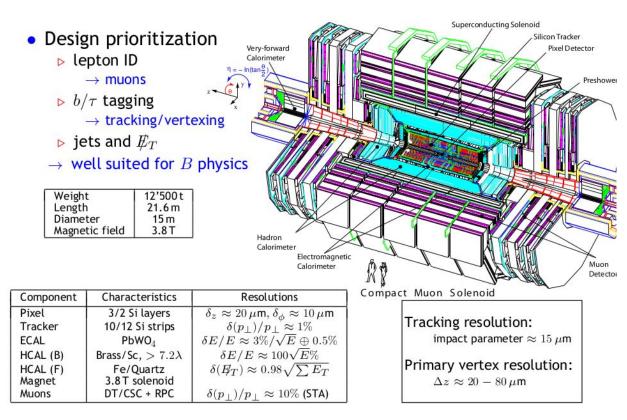
- PhD in physics in Padova
 - Development of High Level Trigger algorithm for the CMS experiment for events with muons in the final state (2002)
- Currently Staff Researcher at INFN Padova, Italy
 - Gruppo 1 coordinator for Padova (physics at accelerator)
- Member of CMS 1999-now (phasing out, currently 10%)
 - Muon reconstruction responsible
 - EWK conveener
 - Workload management
 - Computing technical coordinator
 - B-physics: Rare decay and angular analysis coordinator
- Member of Bellell 2015- now
 - Data processing manager
 - TDCPV working group conveener

Outline

- Introduction
 - Physics motivation
- B⁰->K* μμ measurement
- B⁺->K⁺ μμ measurement
- Perspective
 - Other b->sll angular measurements
 - Parking
 - R(K*)
- Conclusion

B-physics at CMS

- In addition to high pT physics (SM, Higgs, searches) CMS can give significant contribution to beauty and heavy flavour physics
 - in some field able to compete with a dedicated experiment as LHCb

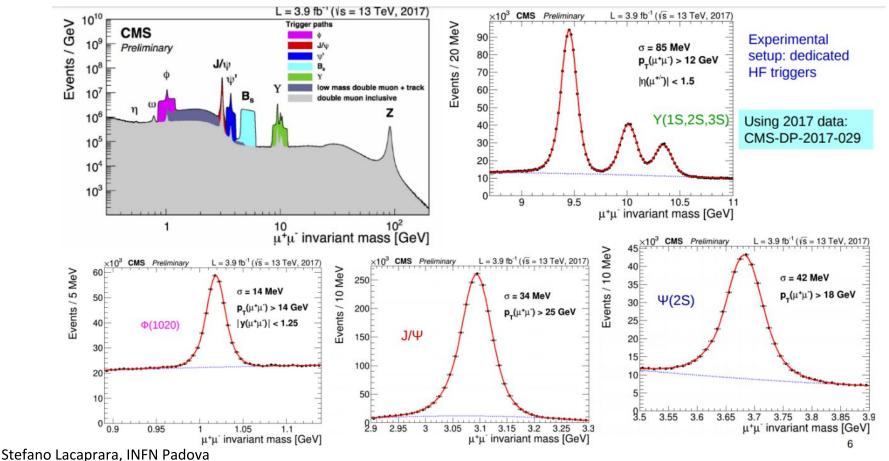

• Key elements:

- Large production x-section at LHC
- Excellent tracking and muon id performances
- Flexible trigger system able to collect data at high luminosity and large pile up

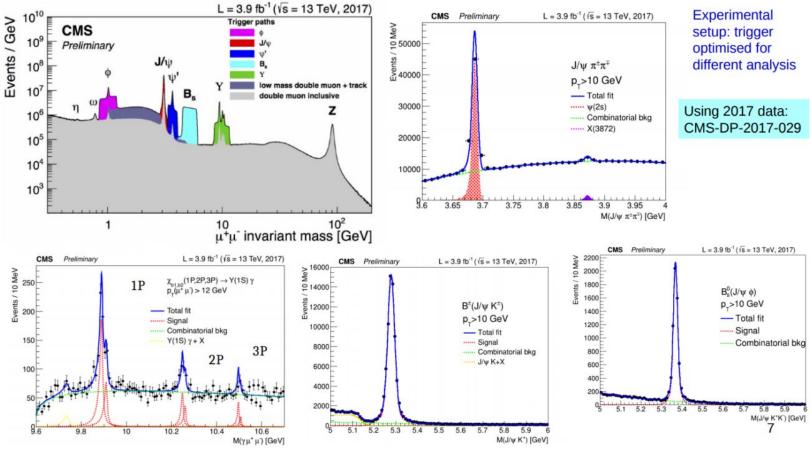
• Trigger for B-physics:

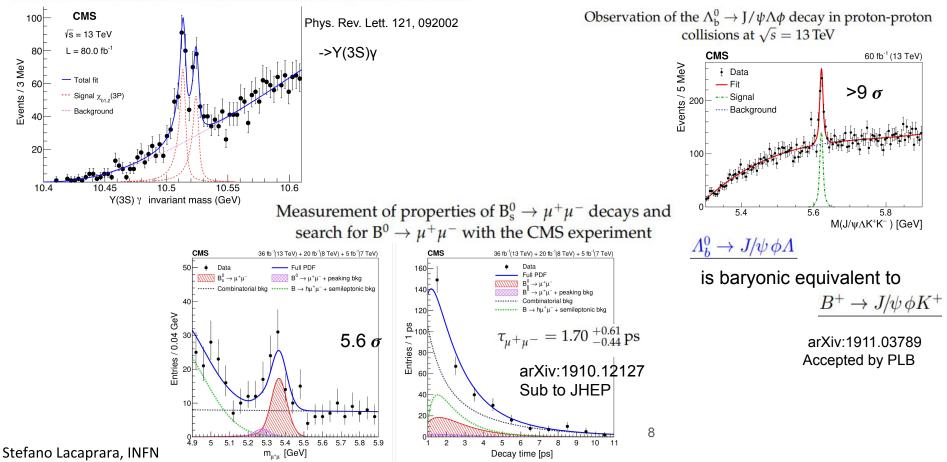
- L1: hardware trigger based on muons
- **HLT**: full tracking and vertexing, specific trigger paths for each analysis
 - "displaced" J/ψ, ψ'
 - "displaced" $\mu^+\mu^-$
 - $B_s^0 \rightarrow \mu^+ \mu^-$: no displacement, but strict inv mass cut

CMS detector in a nutshell



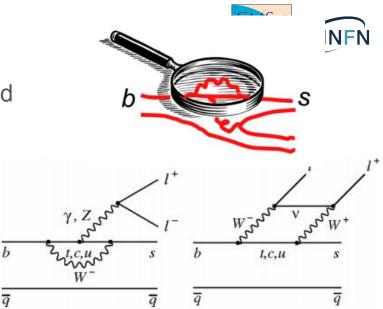
- Excellent muon-ID capability
- Low fake rate
- All silicon tracker
 - high granularity, low occupancy
- well described by MC simulation
- Pixel detector
- \circ 100 × 150 μ m² pixel size
- $\circ~$ substantial charge sharing (low V $_{\rm bias}$)
- excellent resolution in rφ and z
- Essential in high-pileup environment!


CMS trigger for B physics


Results using 2017 13 TeV data

Some recent examples (not covered today)

Observation of the $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ and Measurement of their Masses


$B^0 \rightarrow K^* \mu\mu$ angular analysis

Stefano Lacaprara, INFN Padova

9

Physics case

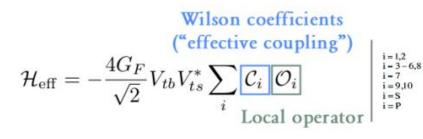
- b → sl⁺l⁻ is a FCNC decays, doubly suppressed in SM.
 - Penguin and box mediated
- Good test to probe new physics via angular analysis and BR measurement
 - New physics can enter in the loop

- $B^0 \rightarrow K^{*0} \mu \mu$ decay
 - Trigger possible via the µµ pair: no peak in invariant mass but displaced tracks
 - Fully charged final state: can be reconstructed at CMS
 - $\circ \quad \mbox{Flavour eigenstate identified via K^{*0} $\rightarrow $K^{-}$$ π^{+} decay}$
 - No PID (K/π separation) at CMS
 - Statistics not very high O(1000) events in whole q² range
 - Need some smart way to perform fit in q² bins in spite of low stat.

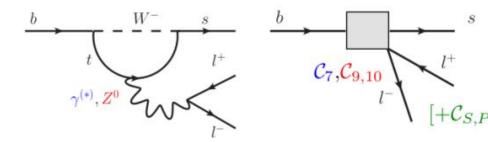
Effective operator expansion

Rare b decays are a multi-scale problem: $\Lambda_{\rm NP}^2 \gg m_W \gg m_b > \Lambda_{QCD}$

FCNC effective hamiltonian described as operator product expansion

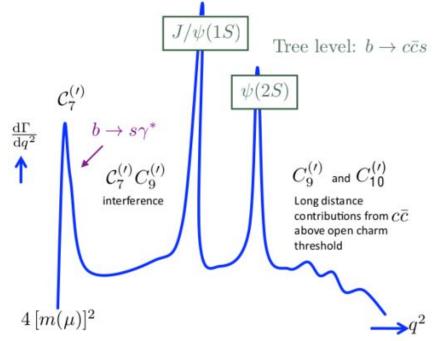

Tree

Gluon penguin Photon penguin


Electroweak penguin

Higgs (scalar) penguin

Pseudoscalar penguin


Sensitivity to Wilson coefficients

- The Wilson coefficients encode short-distance contributions and possible NP effects
- SM prediction for Wilson coefficients available
- Different processes sensitive to different Wilson coefficients

•
$$B_{(s)}^{0} \rightarrow l^{+}l^{-}$$

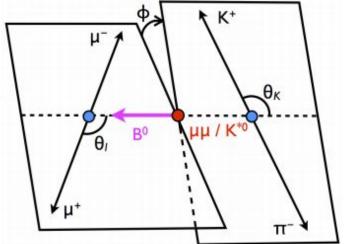
 $[\mathcal{C}_{10}, \mathcal{C}_{S}, \mathcal{C}_{P}]$
• $b \rightarrow sl^{+}l^{-}$
 $[\mathcal{C}_{7}, \mathcal{C}_{9}, \mathcal{C}_{10}]$

Sensitivity to Wilson coefficient vs q²

di-muon invariant mass squared, q²

$$\mathcal{O}_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{\mathbf{s}} \gamma_{\mu} \mathbf{P}_{\mathbf{L}} \mathbf{b}) \ (\bar{\ell} \gamma^{\mu} \ell)$$
$$\mathcal{O}_{10} = \frac{e^{2}}{16\pi^{2}} (\bar{\mathbf{s}} \gamma_{\mu} \mathbf{P}_{\mathbf{L}} \mathbf{b}) \ (\bar{\ell} \gamma^{\mu} \gamma_{\mathbf{5}} \ell)$$

- And different regions of q²=M²_{μμ} are sensitive to different current type
- Eg: new vector or axial-vector currents (C₉ and C₁₀) and virtual photon polarization (C₇)
- No reliable prediction for the region between the two resonances
- Optimized parameters, P⁽⁺⁾
 - combination of Wilson coeff.:
 - less dependent on hadronic form factor.
- Robust SM prediction available

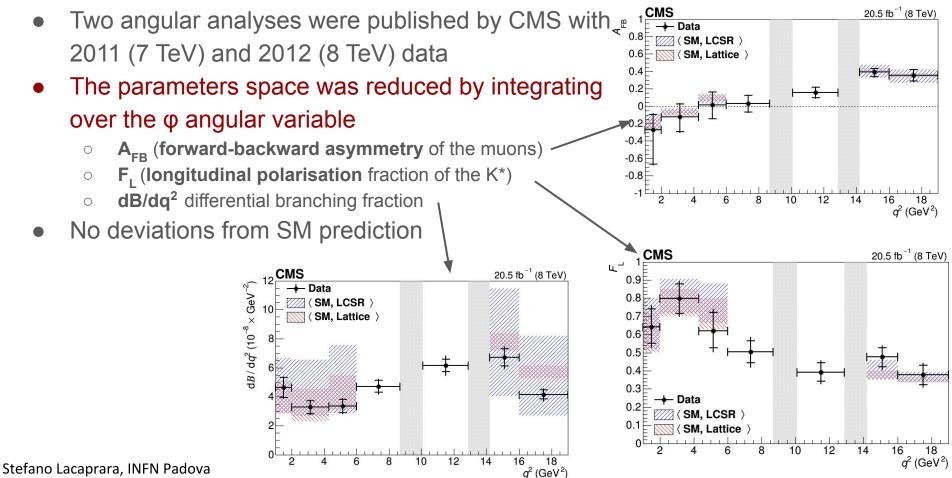

$B^0 \to K^{*0} \mu^+ \mu^- \to K^+ \pi^- \mu^+ \mu^-$ angular analysis

- Decay is fully described by three angles: θ_{I} , θ_{K} , ϕ , and $q^{2} = M^{2}_{\mu\mu}$
 - \circ θ_{I} , the decay angle of the dimuon system
 - $\circ \quad \theta_{_{\!\!\!\!K}}$, the decay angle of the K^{*0}
 - \circ ϕ , the angle between the two decay planes
- The q² range has been divided in 9 bins
 - **7 signal bins**, in each of them the angular analysis is performed independently
 - **2 control-region bins**, covering the two resonant decays

$$\blacksquare \quad \mathsf{B}^0 \to \mathsf{J}/\psi\mathsf{K}^{*0}$$

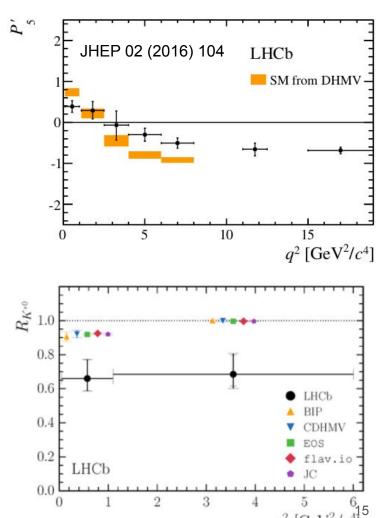
 $\blacksquare \quad B^0 \to \psi(2S) K^{*0}$

Phys. Lett. B 781 (2018) 517-541 Phys. Lett. B 753 (2016) 424-448 Phys. Lett. B 727 (2013) 77



CMS INFN

Old CMS analyses


Phys. Lett. B 727 (2013) 77 Phys. Lett. B 753 (2016) 424-448

LHCb measurement of P'₅

- In 2016 LHCb measured for the first time the complete set of angular parameters
 - Tension with SM prediction for P'₅ parameter,
 - Both in 2011 and 2012 data
- φ angular distribution is sensitive to P'₅
 - Our integration of that variable makes our old analysis not sensitive to P'₅
- Setup a task force to repeat the analysis including the φ dependency with focus on independent measurement of P'₅ parameter.
 - Same dataset, same selection, different fit
- Since then interesting measurement on R(K^(*)) by LHCb have switched a bit the focus on LFV
 - \circ More on R(K*) in CMS later

Full angular analysis very hard with low statistics: focus on P'₅

- Final state $K^+\pi^-\mu^+\mu^-$ has contribution from P-wave (K^{*}), S-wave, and interference
- in total, it has 14 parameters: fold around $\varphi = 0$ and $\theta_{\ell} = \pi/2$ to reduce them

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \mathrm{d}\cos\theta_I \mathrm{d}\cos\theta_\mathrm{K} \mathrm{d}\phi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[(F_\mathrm{S} + A_\mathrm{S}\cos\theta_\mathrm{K}) \left(1 - \cos^2\theta_I \right) + A_\mathrm{S}^5 \sqrt{1 - \cos^2\theta_\mathrm{K}} \sqrt{1 - \cos^2\theta_I} \cos\phi \right] \right. \\ \left. + \left(1 - F_\mathrm{S} \right) \left[2F_\mathrm{L}\cos^2\theta_\mathrm{K} \left(1 - \cos^2\theta_I \right) + \frac{1}{2} \left(1 - F_\mathrm{L} \right) \left(1 - \cos^2\theta_\mathrm{K} \right) \left(1 + \cos^2\theta_I \right) \right. \\ \left. + \frac{1}{2} P_1 (1 - F_\mathrm{L}) (1 - \cos^2\theta_\mathrm{K}) (1 - \cos^2\theta_I) \cos 2\phi \right. \\ \left. + 2P_5'\cos\theta_\mathrm{K} \sqrt{F_\mathrm{L} \left(1 - F_\mathrm{L} \right)} \sqrt{1 - \cos^2\theta_\mathrm{K}} \sqrt{1 - \cos^2\theta_I} \cos\phi \right] \right\}$$

• 6 angular parameters left: fit with all of them free to float shows convergence issues

• Final state $K^+\pi^-\mu^+\mu^-$ has contribution from P-wave (K^{*}), S-wave, and interference

• in total, it has 14 parameters: fold around $\varphi = \not{0}$ and $\theta_{\ell} = \pi/2$ to reduce them

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^{2}}\frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{l}\mathrm{d}\cos\theta_{K}\mathrm{d}\phi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[\left(F_{\mathrm{S}} + A_{\mathrm{S}}\cos\theta_{\mathrm{K}}\right) \left(1 - \cos^{2}\theta_{l}\right) + A_{\mathrm{S}}^{5}\sqrt{1 - \cos^{2}\theta_{\mathrm{K}}}\sqrt{1 - \cos^{2}\theta_{l}}\cos\phi \right] \right. \\ \left. + \left(1 - F_{\mathrm{S}}\right) \left[2F_{\mathrm{L}}\cos^{2}\theta_{\mathrm{K}}\left(1 - \cos^{2}\theta_{l}\right) + \frac{1}{2}\left(1 - F_{\mathrm{L}}\right) \left(1 - \cos^{2}\theta_{\mathrm{K}}\right) \left(1 + \cos^{2}\theta_{l}\right) \right. \\ \left. + \frac{1}{2}P_{1}(1 - F_{\mathrm{L}})(1 - \cos^{2}\theta_{\mathrm{K}})(1 - \cos^{2}\theta_{l})\cos2\phi \right] \right\}$$

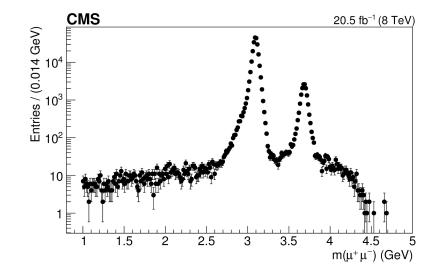
• 6 angular parameters left: fit with all of them free to float shows convergence issues

Final state K⁺π⁻μ⁺μ⁻ has contribution from P-wave (K^{*}), S-wave, and interference
in total, it has 14 parameters: fold around φ = 0 and θ_ℓ = π/2 to reduce them

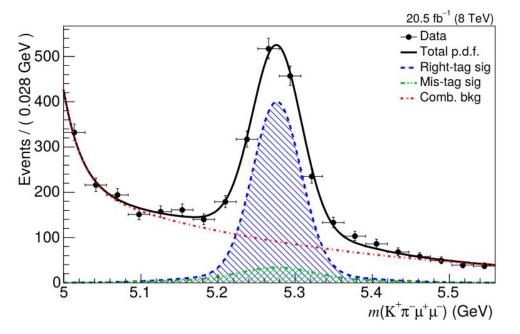
$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \mathrm{d}\cos\theta_I \mathrm{d}\cos\theta_\mathrm{K} \mathrm{d}\phi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[(F_\mathrm{S}) + (A_\mathrm{S}) \cos\theta_\mathrm{K} \right) \left(1 - \cos^2\theta_I \right) + A_\mathrm{S}^5 \sqrt{1 - \cos^2\theta_\mathrm{K}} \sqrt{1 - \cos^2\theta_I} \cos\phi \right] \right. \\ \left. + \left(1 - (F_\mathrm{S}) \right] \left[2F_\mathrm{L} \cos^2\theta_\mathrm{K} \left(1 - \cos^2\theta_I \right) + \frac{1}{2} \left(1 - (F_\mathrm{L}) \left(1 - \cos^2\theta_\mathrm{K} \right) \left(1 + \cos^2\theta_I \right) \right) \right. \\ \left. + \frac{1}{2} P_1 \left(1 - (F_\mathrm{L}) \left(1 - \cos^2\theta_\mathrm{K} \right) \left(1 - \cos^2\theta_I \right) \cos 2\phi \right. \\ \left. + 2P_5' \cos\theta_\mathrm{K} \sqrt{F_\mathrm{L}} \left(1 - (F_\mathrm{L}) \sqrt{1 - \cos^2\theta_\mathrm{K}} \sqrt{1 - \cos^2\theta_I} \cos\phi \right] \right\}$$

• 6 angular parameters left: fit with all of them free to float shows convergence issues

• F_L , F_S , and A_s fixed from previous CMS measurement


Final state K⁺π⁻μ⁺μ⁻ has contribution from P-wave (K*), S-wave, and interference
in total, it has 14 parameters: fold around φ = 0 and θ_ℓ = π/2 to reduce them

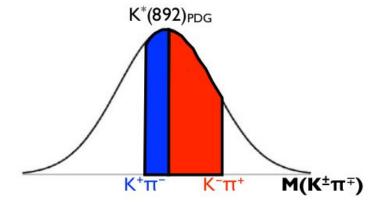
$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \mathrm{d}\cos\theta_I \mathrm{d}\cos\theta_\mathrm{K} \mathrm{d}\phi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[(F_\mathrm{S} + A_\mathrm{S}\cos\theta_\mathrm{K}) \left(1 - \cos^2\theta_I \right) + A_\mathrm{S}^5 \sqrt{1 - \cos^2\theta_\mathrm{K}} \sqrt{1 - \cos^2\theta_I} \cos\phi \right] \right. \\ \left. + \left(1 - F_\mathrm{S} \right) \left[2F_\mathrm{L}\cos^2\theta_\mathrm{K} \left(1 - \cos^2\theta_I \right) + \frac{1}{2} \left(1 - F_\mathrm{L} \right) \left(1 - \cos^2\theta_\mathrm{K} \right) \left(1 + \cos^2\theta_I \right) \right. \\ \left. + \frac{1}{2} \left(P_1 \right) - F_\mathrm{L} \right) \left(1 - \cos^2\theta_\mathrm{K} \right) \left(1 - \cos^2\theta_I \right) \cos 2\phi \right. \\ \left. + \left(2P_5 \right) \cos\theta_\mathrm{K} \sqrt{F_\mathrm{L} \left(1 - F_\mathrm{L} \right)} \sqrt{1 - \cos^2\theta_\mathrm{K}} \sqrt{1 - \cos^2\theta_I} \cos\phi \right] \right\}$$


- 6 angular parameters left: fit with all of them free to float shows convergence issues
- F_L , F_S , and A_s fixed from previous CMS measurement
- P_1 and P'_5 measured, A_s^5 nuisance parameter

Signal selection

- Trigger selections
 - L1: dimuon low p_T
 - dedicated High-Level Trigger path:
 - \circ Low $p_{\scriptscriptstyle T}$ dimuon, displaced, low invariant mass
- Offline selections
 - $\circ \quad \mu : p_{T}^{\ \mu} > 3.5 \ GeV, \ p_{T}^{\ \mu\mu} > 6.9 \ GeV,$
 - with high-quality displaced vertex
 - $\circ \quad \ \ \mathbf{h:} \ \ p_{T}^{\ \ h} > 0.8 \ GeV, \ \ |M(K\pi) M_{K*}| < 90 \ MeV,$
 - $M_{KK} > 1.035$ (ϕ veto), displaced from the primary vertex
 - **B**⁰: $p_T > 8$ GeV, $|\eta| < 2.2$, with four-body displaced vertex requirement and global momentum alignment
- both B⁰ and B⁰-bar considered
- J/ψ and ψ ' resonances used as control regions and treated in the same way.
 - \circ ~ anti radiation cut against feed-down of J/ ψ and ψ^{\prime}

Signal sample and B Tagging



Dataset: 2012 8 TeV Data: 20.5 fb⁻¹

Signal sample: ~1400 events in all q² regions

- No $\mathbf{K}/\mathbf{\pi}$ PID at CMS
 - The CP-state is assigned based on the closest mass hypothesis to K^{*0}_{PDG} mass.

- This is a B⁰ not a B⁰-bar event
- mistag rate **14%**, measured on MC

Full pdf description

$$\begin{aligned} \text{p.d.f.}(m,\cos\theta_{\text{K}},\cos\theta_{l},\phi) &= Y_{S}^{C} \cdot \left(S^{R}(m) \cdot S^{a}(\cos\theta_{\text{K}},\cos\theta_{l},\phi) \cdot \epsilon^{R}(\cos\theta_{\text{K}},\cos\theta_{l},\phi) \\ &+ \frac{f^{M}}{1-f^{M}} \cdot S^{M}(m) \cdot S^{a}(-\cos\theta_{\text{K}},-\cos\theta_{l},-\phi) \cdot \epsilon^{M}(\cos\theta_{l},\cos\theta_{\text{K}},\phi) \right) \\ &+ Y_{B} \cdot B^{m}(m) \cdot B^{\cos\theta_{\text{K}}}(\cos\theta_{\text{K}}) \cdot B^{\cos\theta_{l}}(\cos\theta_{l}) \cdot B^{\phi}(\phi). \end{aligned}$$

Full pdf description

$$p.d.f.(m, \cos\theta_{\rm K}, \cos\theta_{l}, \phi) = Y_{S}^{C} \cdot \left(S^{R}(m) \cdot S^{a}(\cos\theta_{\rm K}, \cos\theta_{l}, \phi) \cdot \epsilon^{R}(\cos\theta_{\rm K}, \cos\theta_{l}, \phi) + \frac{f^{M}}{1 - f^{M}} \cdot S^{M}(m) \cdot S^{a}(-\cos\theta_{\rm K}, -\cos\theta_{l}, -\phi) \cdot \epsilon^{M}(\cos\theta_{l}, \cos\theta_{\rm K}, \phi) \right) + Y_{B} \cdot B^{m}(m) \cdot B^{\cos\theta_{\rm K}}(\cos\theta_{\rm K}) \cdot B^{\cos\theta_{l}}(\cos\theta_{l}) \cdot B^{\phi}(\phi).$$

Signal components for correctly-tagged and mis-tagged events, each composed by:

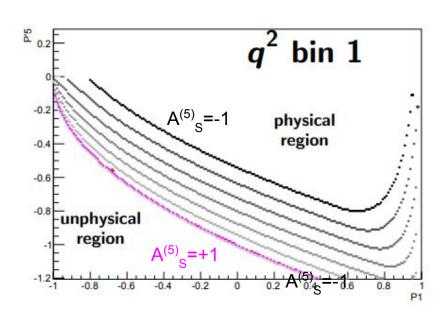
- double-Gaussian mass shape
- angular decay rate
- 3D efficiency function

Full pdf description

$$p.d.f.(m, \cos\theta_{\rm K}, \cos\theta_{\rm I}, \phi) = Y_{S}^{C} \cdot \left(S^{R}(m) \cdot S^{a}(\cos\theta_{\rm K}, \cos\theta_{\rm I}, \phi) \cdot \epsilon^{R}(\cos\theta_{\rm K}, \cos\theta_{\rm I}, \phi) + \frac{f^{M}}{1 - f^{M}} \cdot S^{M}(m) \cdot S^{a}(-\cos\theta_{\rm K}, -\cos\theta_{\rm I}, -\phi) \cdot \epsilon^{M}(\cos\theta_{\rm I}, \cos\theta_{\rm K}, \phi) \right) + Y_{B} \cdot B^{m}(m) \cdot B^{\cos\theta_{\rm K}}(\cos\theta_{\rm K}) \cdot B^{\cos\theta_{\rm I}}(\cos\theta_{\rm I}) \cdot B^{\phi}(\phi).$$

Signal components for correctly-tagged and mis-tagged events, each composed by:

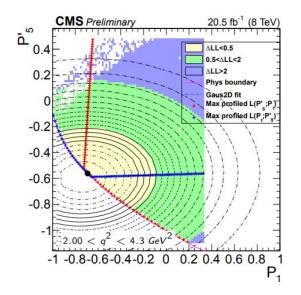
- double-Gaussian mass shape
- angular decay rate
- 3D efficiency function


Background component

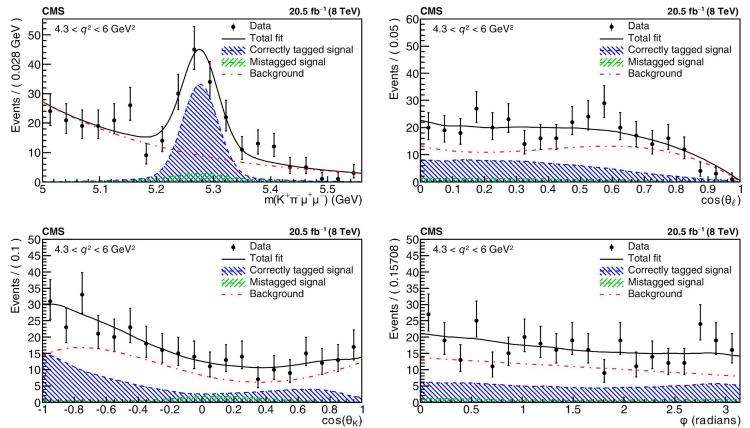
- exponential mass shape
- polynomial shape for each angular variable
- factorisable angular component tested

Validity range

- Final fit performed with 6 parameters: P'₅,P₁, F_L, F_S, A_s, A⁽⁵⁾_S (interference P-S wave)
- Not all phase space is allowed:
 - Positive pdf for P-wave: $(P'_5)^2 1 < P_1 < 1$
- Interference term complex
 - Boundary depends on all other parameters
 - In particular P'₅,P₁
- This caused a lot of fit convergence issue
- Required dedicated fit algorithm

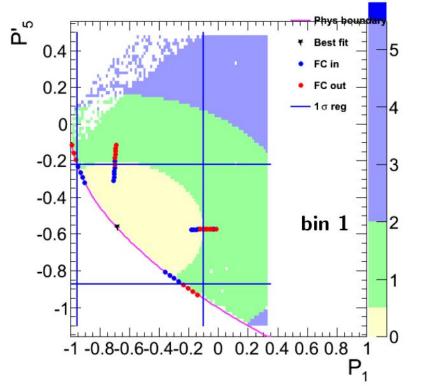

Fit algorithm

$$\begin{aligned} \text{p.d.f.}(m,\cos\theta_{\text{K}},\cos\theta_{l},\phi) &= Y_{5}^{C} \cdot \left(S_{i}^{R}(m) \cdot S_{i}^{a}(\cos\theta_{\text{K}},\cos\theta_{l},\phi) \cdot \epsilon_{i}^{R}(\cos\theta_{\text{K}},\cos\theta_{l},\phi) \\ &+ \frac{f_{i}^{M}}{1 - f_{i}^{M}} \cdot S_{i}^{M}(m) \cdot S_{i}^{a}(-\cos\theta_{\text{K}},-\cos\theta_{l},-\phi) \cdot \epsilon_{i}^{M}(\cos\theta_{\text{K}},\cos\theta_{l},\phi) \right) \\ &+ Y_{B} \cdot B_{i}^{m}(m) \cdot B_{i}^{\cos\theta_{\text{K}}}(\cos\theta_{\text{K}}) \cdot B_{i}^{\cos\theta_{l}}(\cos\theta_{l}) \cdot B_{i}^{\phi}(\phi). \end{aligned}$$


- Fit performed for 7 (+2 CR) different q^2 bins
- Fit *m* side bands to determine the background shape;
- Fit whole mass spectrum with 5 floating parameters;
- used unbinned extended maximum likelihood estimator
 - discretize P₁, P'₅ space
 - maximize $\mathcal{L}(Y_S, Y_B, A_s^5)$
 - fit \mathcal{L} with 2D-gaussian
 - \blacktriangleright find abs max of ${\cal L}$ inside the physically allowed region
- \bullet stat uncert using FC construction along the 1D profiled ${\cal L}$

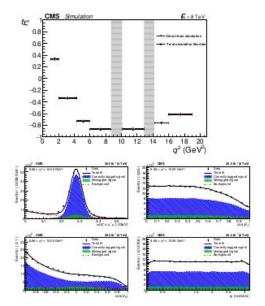
Blind procedure: fit data on signal region once fit procedure fully validated and tested on MC and CR

Fit results for bin $4.3 < q^2 < 6 \text{ GeV}^2$



Stefano Lacapiara, INFIN Faulua

Statistical uncert: Feldman-Cousins estimation


- Feldman-Cousins method used to estimate the confidence interval
- Produce a robust uncertainty estimation even in proximity of the physical boundary
- Approximation used to limit the computing usage:
 - Parameter space probed only along the profiles of the likelihood distribution in data

Fit validation

extensive fit validation with MC: used as systematics

- compare fit results with MC input values (sim mismodeling)
- compare with data-like MC (fit bias)
 - signal only correct tag
 - signal correct+wrong tag
 - signal + background
- Data control channel (J/ ψ and $\psi(2S)$), comparing fit results with PDG (F_L) (efficiency)
- compare P_1 and P'_5 on J/ ψ and $\psi(2S)$ w/ and w/o F_L fixed: no bias

$$\frac{\mathcal{B}(\mathsf{B}^{0}\to\mathsf{K^{*0}}\psi(2S))}{\mathcal{B}(\mathsf{B}^{0}\to\mathsf{K^{*0}}\mathsf{J}/\psi)} == \frac{Y_{\psi(2S)}}{\epsilon_{\psi(2S)}} \frac{\epsilon_{\mathsf{J}/\psi}}{Y_{\mathsf{J}/\psi}} \frac{\mathcal{B}(\mathsf{J}/\psi\to\mu^{+}\mu^{-})}{\mathcal{B}(\psi(2S)\to\mu^{+}\mu^{-})} = 0.480 \pm 0.008(\mathrm{stat}) \pm 0.055(\mathrm{R}_{\psi}^{\mu\mu})$$

vs PDG 0.484
$$\pm$$
 0.018(stat) \pm 0.011(syst) \pm 0.012(R_{ψ}^{ee})

Systematics

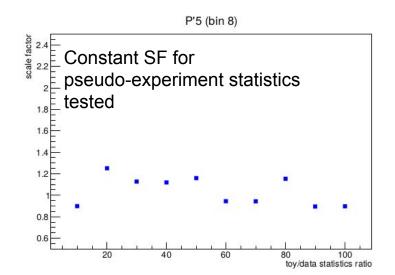
Source	$P_1(\times 10^{-3})$	$P_5'(\times 10^{-3})$		
Simulation mismodeling	1-33	10-23	9	Fit bias wi
Fit bias	5-78	10-120 🔺		background
Finite size of simulated samples	29-73	31-110		
Efficiency	17-100	5-65		MC stat d
$K\pi$ mistagging	8-110	6-66		
Background distribution	12-70	10-51		efficiency sl
Mass distribution	12	19		Efficiency
Feed-through background	4-12	3–24	· · ·	Efficiency:
$F_{\rm L}$, $F_{\rm S}$, $A_{\rm S}$ uncertainty propagation	0-210	0-210		K - mistor
Angular resolution	2-68	0.1–12		$K\pi$ mistag
Total	100-230	70-250		and propag

• Fit bias with cocktail signal MC + toy background from data side-bands

- MC stat due to limited statistics in efficiency shape evaluation
- **Efficiency**: comparing F_L on CR wrt PDG
- K π mistag evaluated in J/ ψ control region and propagated to all bins

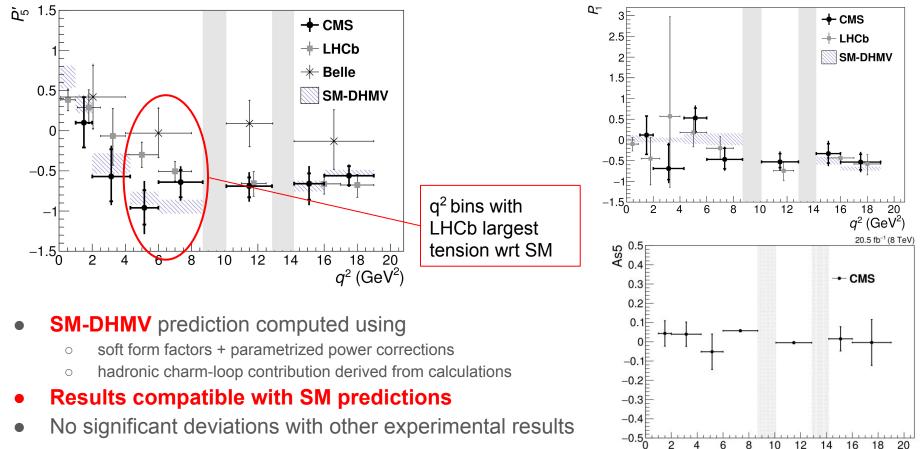
Propagation of F_L , F_S , and A_s uncertainties:

- Generate pseudo experiments, with x100 events, for each q^2 bin
- Fit with F_L, F_S, A_s free to float and with F_L, F_S, A_s fixed
- Ratio of stat. uncert. on P_1 and P'_5 with free and fixed fit used to estimate syst uncertainties


Propagation of FI, Fs, and As uncert

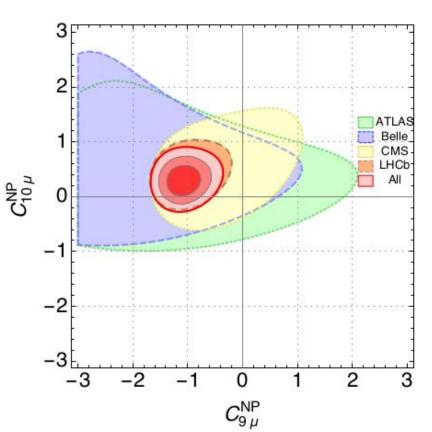
- Generate pseudo-experiments, with x100 events, for each q² bin
- Fit with F_L , F_S , A_s free to float and with F_L , F_S , A_s fixed
- Ratio of stat. uncert. on P₁ and P'₅ with free and fixed fit used to estimate syst uncertainties

$$\begin{split} \mathrm{SF} = & \frac{\sigma_{\mathit{float}}}{\sigma_{\mathit{fix}}} \\ \mathrm{Syst} = & \sigma_{\mathit{data}} \sqrt{\mathrm{SF}^2 - 1} \end{split}$$



q^2 bin	P_1		P_5'	
index	SF	syst	SF	syst
0	1.014	0.077	1.003	0.025
1	1.116	0.211	1.099	0.148
2	1.113	0.139	1.385	0.206
3	1.082	0.103	1.028	0.041
5	1.048	0.053	1.143	0.069
7	0.982	0.000	1.090	0.072
8	1.091	0.083	0.989	0.000

Results

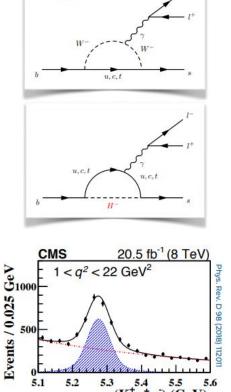


Global fit

Capdevila, B.. et al. Patterns of New Physics in $b \rightarrow s\ell+\ell$ transitions in the light of recent data. J. High Energ. Phys. 2018, 93 (2018) doi:10.1007/JHEP01(2018)093

- global fit to all available $b \rightarrow sl^+l^-$ data
 - \circ I = μ , e [Belle]
 - $\circ C_{9\mu}^{NP} = C_9 C_9^{SM}$
 - \circ 3 σ constraint for each experiment
- constraints from b \rightarrow sy, B(B \rightarrow X_sµµ) and B(B_s \rightarrow µµ) included
- 3σ constraint for each experiment
- CMS is consistent with (0,0)
 - As Belle and ATLAS
- LHCb is not
- And it drives the global fit
 - 1,2,3 σ contours shown
 - 5σ effect (?)

B+->K⁺ μμ


Phys. Rev. D 98 (2018) 112011 - arXiv:1806.00636

$B^+ \rightarrow K^+ \mu \mu$ decay: overview

- The decay $B^+ \rightarrow K^+ \mu \mu$ is a FCNC process of the type b \rightarrow sll
 - forbidden at tree level in the SM (BR \sim 4.4 x 10-7)
- New heavy particles from NP can appear in competing diagrams, affecting the differential angular distributions
- Previously studied by BABAR, Belle, CDF, and LHCb
 - no hints of beyond SM physics
- CMS analysis is based on Run 1 data at 8 TeV (20.5 fb-1)
 - \circ events selected by a displaced dimuon trigger
 - cut-based selection determined to optimise signal significance
 - \circ **2286 ± 73** signal events with 1 < q² < 22 GeV²

SM

35

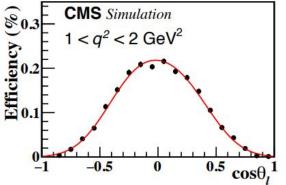
Angular analysis of the $B^+ \rightarrow K^+ \mu \mu$ decay

 B^+

- Fully described by the angle θ_1 and $q^2 = M^2_{\mu\mu}$;
 - $\boldsymbol{\theta}_{\mathbf{h}}$ angle between $\boldsymbol{\mu}^{-}$ and \mathbf{K}^{+} in the dimuon rest frame
- Angular decay rate:

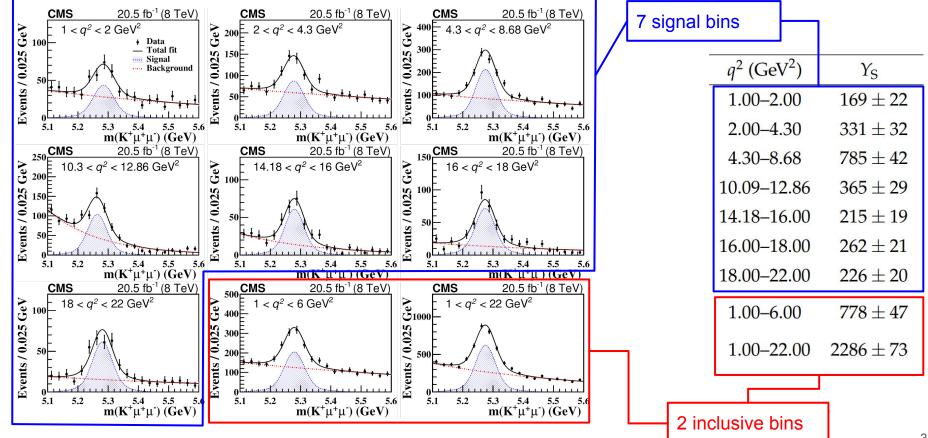
$$\frac{1}{\Gamma_{\ell}} \frac{d\Gamma_{\ell}}{d\cos\theta_{\ell}} = \frac{3}{4} (1 - F_H)(1 - \cos^2\theta_{\ell}) + \frac{1}{2}F_H + A_{FB}\cos\theta_{\ell}$$

- **A**_{FB}: forward-backward asymmetry of dimuon system
 - Expected to be zero in SM (up to small correction)
- F_H: contribution from the (pseudo)scalar and tensor amplitudes to the decay width
 - Predicted to be small as well in SM
- Range of q² divided in 9 bins:
 - 7 signal bins
 - $\blacksquare \quad Plus \ 2 \ resonant \ decays \ B^+ \to J/\psi K^+ \ and \ B^+ \to \psi(2S) K^+ \ used \ as \ control \ channel$
 - 2 additional special bins:
 - [1-6] GeV² (clean predictions) and [1-22] GeV² (full signal)

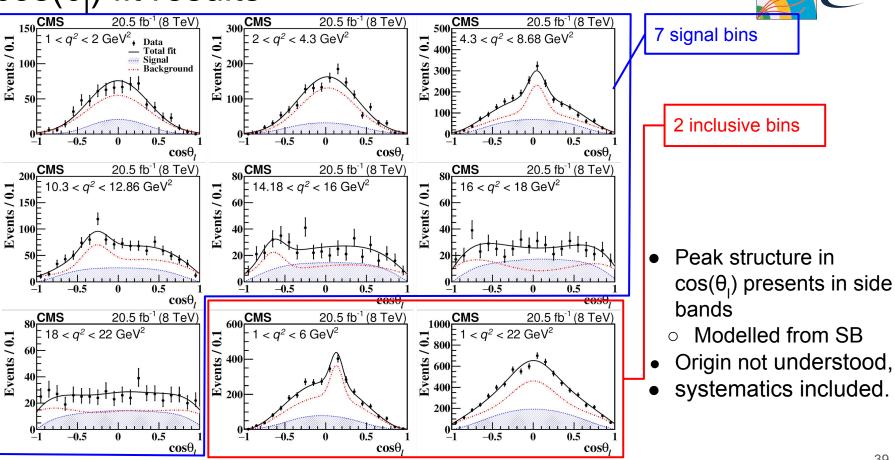

Parameter extraction

- Extended 2D UML fit
- Signal:
 - Double gaussian mass shape
 - Angular decay rate
- Efficiency:
 - From MC, parametrized with 6th-order polynomial
 - \circ ~ Validated on control region $B^{*} \rightarrow J/\psi K^{*}$ and $B^{*} \rightarrow \psi(2S)K^{*}$
- Background extracted from data side-bands
- Two-step fit:

- fit m side bands to determine the background shape (fixed in second step)
- fit whole mass spectrum with 4 floating parameters (2 yields + 2 angular param)
- Statistical uncertainty using profiled Feldman-Cousins method

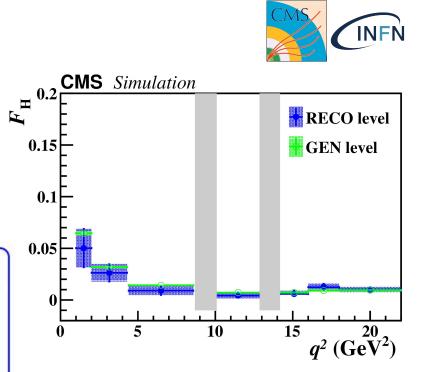


$$\begin{aligned} \text{p.d.f.}(m,\cos\theta_I) &= Y_S \cdot S_i(m) \cdot S_i^a(\cos\theta_I) \cdot \epsilon_i(\cos\theta_I) \\ &+ Y_B \cdot B_i^m(m) \cdot B_i^{\cos\theta_I}(\cos\theta_I) \end{aligned}$$


B⁺ mass distribution and signal yield

Stefano Lacaprara, INFN Padova

$\cos(\theta_{1})$ fit results



INFN

Validation and systematic


- Efficiency, fit procedure validated:
 - High statistics MC
 - Data-like statistics MC
 - Toys
 - Control regions (resonant)

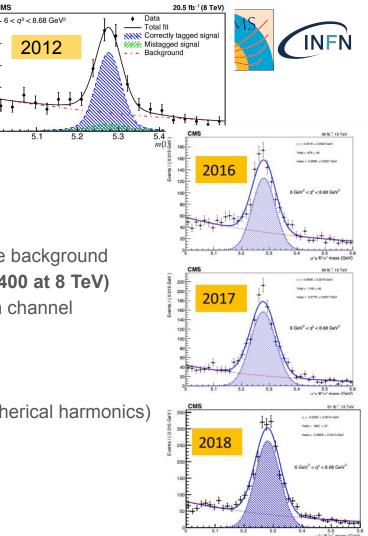
Systematic uncertainty	$A_{\rm FB}~(\times 10^{-2})$	$F_{\rm H}~(\times 10^{-2})$
Finite size of MC samples	0.4-1.8	0.9-5.0
Efficiency description	0.1-1.5	0.1-7.8
Simulation mismodeling	0.1-2.8	0.1 - 1.4
Background parametrization model	0.1-1.0	0.1-5.1
Angular resolution	0.1 - 1.7	0.1-3.3
Dimuon mass resolution	0.1-1.0	0.1-1.5
Fitting procedure	0.1-3.2	0.4-25
Background distribution	0.1-7.2	0.1-29
Total systematic uncertainty	1.6-7.5	4.4-39

Systematic dominated by

- Fit procedure
- Background description

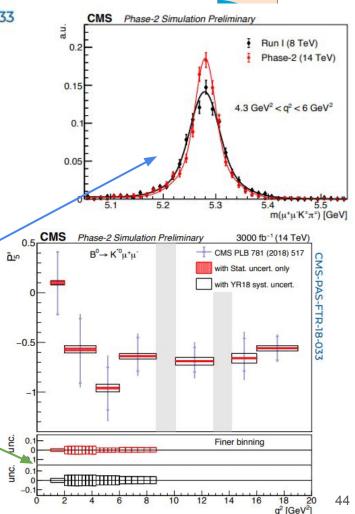
Perspective:

- Run 2: 13 TeV
- Other channels for angular analysis
- Parking data


$B^0 \rightarrow K^* \mu \mu$ at 13 TeV

- So far, CMS used 7+8 TeV data $(5+20 \text{ fb}^{-1})$
 - Other 140 fb⁻¹ collected at 13 TeV
 - o (pp->bX) increase 2x between 8->13 TeV
- Di-muon displaced trigger was active
 - harder threshold at L1 but still effective
- Foreseen improvements:
 - Optimized signal selection (BDT vs cut): higher eff, same background
 - Larger statistical sample: O(15'000) candidates (was 1400 at 8 TeV)
 - Expected O(13000 for Belle2 at 50 ab⁻¹) per lepton channel
 - Full angular fit: all parameters and correlations
 - Possibly a finer binning
 - Alternative analysis using moments method
 - Exploit orthogonality of terms of decay rate (3D spherical harmonics)

0.028

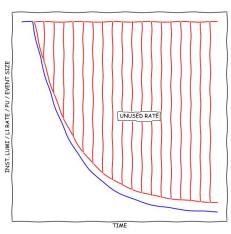

06 Forts / (

- Robust for low signal yield (more bins)
- Timescale: goal is summer 2020 (we will see)

$B^0 \rightarrow K^* \mu \mu$ at High Lumi CMS-PAS-FTR-18-033

- Extrapolated sensitivity to P'₅ with 3000 fb⁻¹
 - Expected 200 Pile Up
 - Same analysis strategy and trigger
 - Statistical improvement: expected ~700 k events in full q² range
 - Systematics scaled by factor 2: more control sample
 - Mass resolution will be better with new tracker -
- Uncertainties are estimated to improve up to a factor of 15 compared to the Run-1 result
 - Much finer binnig will be possible

Other possible measurement in CMS


CMS INFN

Chick Chick of the state of the

- $B_d^0 \rightarrow K^{*0} \mu \mu$
 - Published for Run1: BR and partial angular analisis
 - At Run2: BR and full angular analysis.
 - Yield O(15.5k) events (was 1.4 at Run1): Summer ?
- $B_s^0 \rightarrow \phi \mu \mu$
 - Not done at Run1, being done at Run2
 - Extrapolated yield O(800) events in full q² range
 - Expect BR and partial angular analysis. No self tagging final status
- $\bullet \quad B^{*} \to K^{*} \ \mu \mu$
 - Run1: full angular analysis, no BR
 - Yield O(2300) ev: extrapolated to Run2: O(25k) events
- $\bullet \quad B^{*} \to K^{**} \; \mu \mu$
 - Run1: partial angular analysis, no BR, not published yet
 - Currently in approval process: Spring?
 - Yield very low O(100) events: extrapolated O(1000) events at Run2

Parking concept

- Used with success for Run1 2012
- DAQ bandwidth exceed computing capacity for experiment
 - Can write ~1kHz on tape, cannot prompt process all of them
 - Park some of the data, to be processed later during LHC downtime
 - In particular LHC long shutdown

- On 2012, recorded ~1kHz extra data (7-18 fb⁻¹ at 8 TeV) with VBF, single photon, and B-physics trigger
 - It worked: published several paper with that data
 - "Search for exotic decays of a Higgs boson into undetectable particles and photons", Phys. Lett. B 753 (2016) 363
 - "Search for the standard model Higgs boson produced through vector boson fusion and decaying to bb", Phys. Rev. D 92 (2015) 032008
- 2018: devote all extra capacity to B-physics program

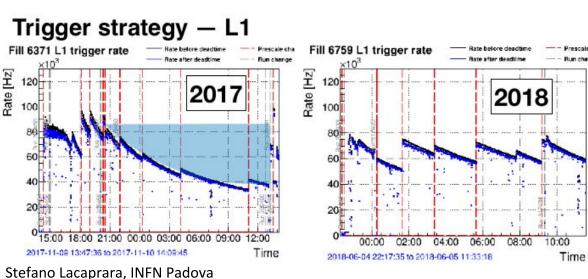
Motivation and goal

- Lepton Flavour Universality seriously challenged by R(K^(*)) measurement
 - Mostly LHCb but also Belle [also charged] (and BaBar)

$$egin{aligned} R_{K^{(*)}} &= rac{BR(B o K^{(*)} \mu \mu)}{BR(B o K^{(*)} ee)} \ R_{K}^{[1,6]} &= 0.745^{+0.090}_{-0.074} \pm 0.036 \ R_{K^{*}}^{[0.045,1.1]} &= 0.66^{+0.11}_{-0.07} \pm 0.03 \ R_{K^{*}}^{[1.1,6]} &= 0.69^{+0.11}_{-0.07} \pm 0.05 \ R_{K} &= 0.846^{+0.060}_{-0.054} - 0.014 \ \end{array}$$

- $B \to K^{(*)}ee$ eory: $R_{K}^{[1,6]} = 1.00 \pm 0.01$ $.00 \pm 0.01$, $R_{K^{*}}^{[0.045,1.1]} = 0.91 \pm 0.03$
- 1.0 BaBar Belle LHCb Run 1 LHCb Run 1 10 15 20 $q^{2} [GeV^{2}/c^{4}]$ LHCb BaBar Belle 5 10 15 20 $q^2 \left[\text{GeV}^2 / c^4 \right]$

× 2.0


1.5

LHCb

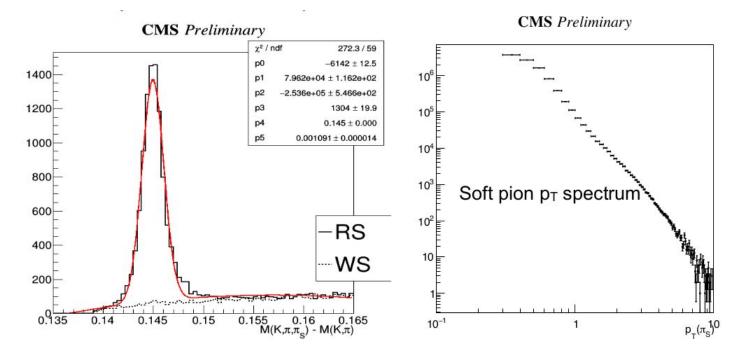
- Can CMS enter the game?
 - "Easy" for muon channel, hard for electron one: trigger is the problem
- Goal: to record ~10¹⁰ unbiased B hadron decays in 2018, using the flexibility of the CMS data taking model

B parking trigger strategy

- Trigger on Tag side: look at unbiased probe side
- L1 seed: single μ , $|\eta|$ -restricted
 - L1 is the limiting factor
- **HLT**: non isolated, displaced μ in the TAG side
 - $\circ~$ As lumi drops during LHC fill, enable lower single $\mu,~|\eta|$ -restricted, L1 threshold and increase HLT rate

Lumi (E34)	L1 seed	HLT	rate	purity	#B
1.7	Mu12er1p5	Mu12_IP6	1585	0.92	10.5M
1.5	Mu10er1p5	Mu9_IP5	3656	0.80	21M
1.3	Mu8er1p5	Mu9_IP5	3350	0.80	20M
1.1	Mu8er1p5	Mu7_IP4	6153	0.59	33M
0.9	Mu7er1p5	Mu7_IP4	5524	0.59	29M

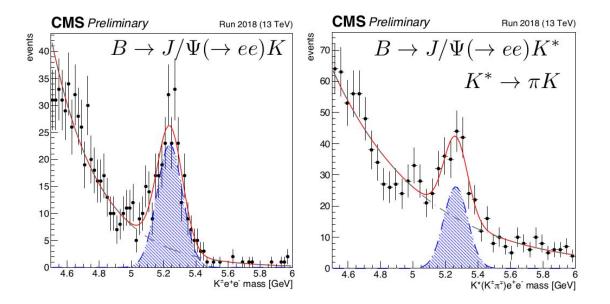
Probe is virtually unbiased!



Tag B w/ displaced µ

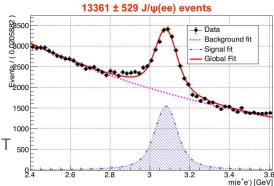
Purity

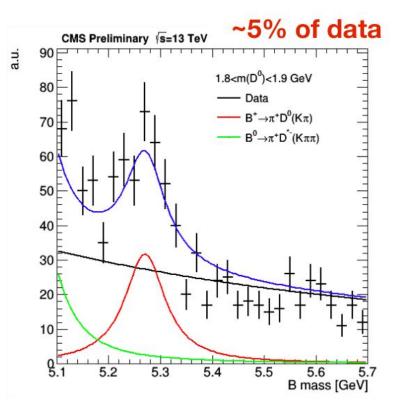
- Fraction of triggers from b-> μ decays, using B⁰->D* $\mu\nu$ -> $K\pi\pi_{s}\mu\nu$
- Average purity probe side: ~73% (using 5% of the full parked dataset)


Data collected

- An impressive success! No incident (eg saturation of DAQ/Tier0)
- Collected ~1.2 x 10^{10} triggers, or ~ 10^{10} B, 40 fb⁻¹
 - Full reconstruction finished december last year

Mode	N_{2018}	f_B [17]	B			
Generic B hadrons						
B^0_d	4.99×10^9	0.4	1.0			
B^{\pm}	4.99×10^9	0.4	1.0			
B_s	1.56×10^9	0.1	1.0			
b baryons	1.56×10^{9}	0.1	1.0			
B_c	1.25×10^{7}	0.001	1.0			
B hadrons total	1.25×10^{10}	1.0	1.0			
Interesting B decays						
$B^0 \to K^* \ell^+ \ell^-$	3290	0.4	$\frac{2}{3} \times 9.9 \times 10^{-7} \ [14]$			
$B^{\pm} \to K^{\pm} \ell^+ \ell^-$	2250	0.4	$4.51 \times 10^{-7} [15]$			


Electron reco


- First observation of these decays K, in CMS
- 5% of parked data
- Out of the box reconstruction,

 optimized for high pT electrons

- significant effort to improve electron reconstruction at low p_T
 - Combination of ECAL cluster-seeding and track-based seeding
 - x3 eff increase achieved, still some more room for improvement

First All-Hadronic Decay in CMS $B^+ \to D^0 (\to K^\pm \pi^\mp) \pi^+$

LFV program

Three main channels:

$$B^{-} \to K^{-} \ell^{+} \ell^{-}$$
$$B^{0} \to K^{*0} \ell^{+} \ell^{-} \to K^{+} \pi^{-} \ell^{+} \ell^{-}$$
$$B^{0}_{s} \to \phi^{0} \ell^{+} \ell^{-} \to K^{+} K^{-} \ell^{+} \ell^{-}$$

The third one has never been done before!

Also possible baryonic channels:

 $\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^- \to p \pi^- \ell^+ \ell^ \Xi_b^- \to \Xi^- \ell^+ \ell^- \to \Lambda^0 \pi^- \ell^+ \ell^- \to p \pi^- \pi^- \ell^+ \ell^ \Omega_b^- \to \Omega^- \ell^+ \ell^- \to \Lambda^0 K^- \ell^+ \ell^- \to p \pi^- K^- \ell^+ \ell^-$

 Charged channel (done by Belle, not by LHCb) can be interesting

 Possibly also

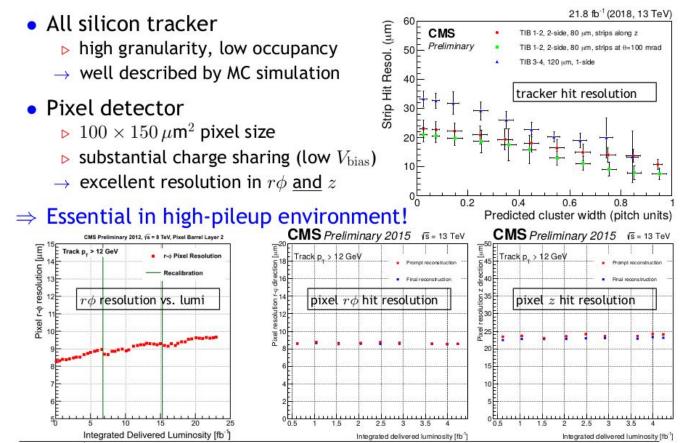
 $B^+ \rightarrow K^{*+} |_{}^+ |_{}^- \rightarrow K^0_{\ S} \pi^+ |_{}^+ |_{}^-$

- Λ_b polarization and angular distribution studied at CMS with ~6000 ev (Run1 7+8 TeV)
 - CMS, arXiv:1802.04867
- With same cuts:
 - O(20k) events in parked DS
 - Maybe O(100) non resonant I⁺I⁻ ?
- Need further investigation, as yields are probably too low; rarely discussed in the current literature
 Stefano Lacaprara, INFN Padova

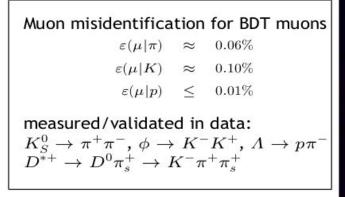
Other B Physics Topics

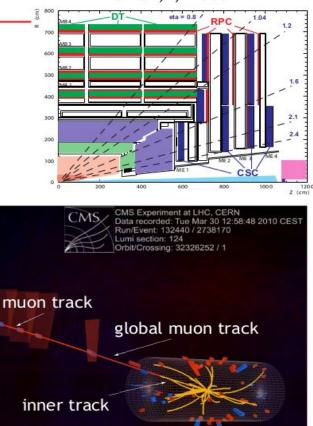
- So far, we only brainstormed other potential physics cases
- Some (rough) ideas:
 - ο Rare B_s decays: ττ, φφ, KK, Kπ, K*K* , K τ τ, K* τ τ
 - R(D^(*)) measurement
 - $\circ~$ Flavor violating decays: B (s) \rightarrow Tµ, Te
 - CP-violation in various decays, using opposite-side tagging
 - Perhaps even probe $\tau \rightarrow 3\mu$ via $3x10^8 D^{(*)}\tau v$ decays $\rightarrow D^{(*)} \mu \mu \mu v$
 - Explore CMS strengths over LHCb: K⁰_s, Λ reconstruction, and use of narrow resonances (e.g., φ, D*) to reduce backgrounds given the lack of particle ID in CMS
- Your favorite topic here

Conclusion


- B⁰->K*μμ partial angular analysis performed at CMS with Run 1, 8 TeV Data
 - $\circ~$ With 1400 signal event, no significant deviation from SM prediction for P'_5 found
 - Will perform a full angular analysis on run2: 15'000 signal events
- B⁺->K+μμ full angular analysis performed
 - no deviation as well
- 10¹⁰ unbiased B events collected in 2018 via parking which are being analyzed
 - \circ Expect competitive results on $\mathsf{R}(\mathsf{K}^{(*)})$ and many more channels
- Exciting time for B-physics in CMS

Backup


3D tracking and vertexing



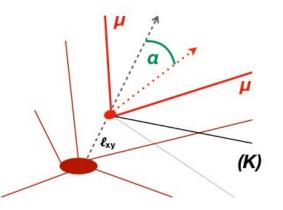
Muon reconstruction

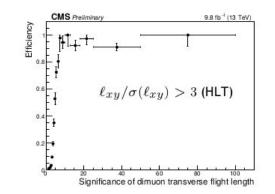
- Large muon acceptance $|\eta| < 2.4$
 - drift tubes
 - cathode strip chambers
 - resistive plate chambers
- 3 muon reconstruction algorithms
 - standalone muon: in muon system (trigger ingredient)
 - ▷ global muon ('GM'): outside-in standalone muon \rightarrow to inner track
 - ▷ 'soft' and 'BDT'

JINST, 13, P06015 JINST, 7, P10002

Displaced J/ ψ and B⁰_s $\rightarrow \mu + \mu - triggers$

- HLT 'displaced' J/ψ
 - two muons with opposite charge

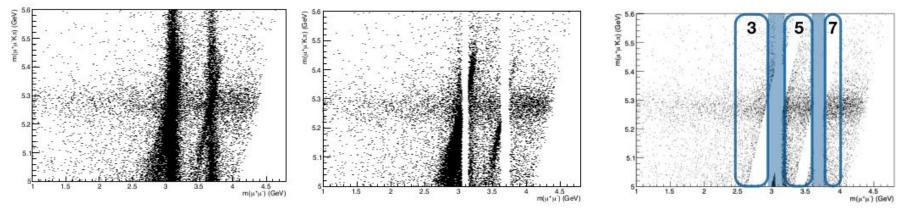

 $2.9 < m_{\mu\mu} < 3.3\,{\rm GeV}$


 $\triangleright \cos \alpha > 0.9, \mathcal{P}(\chi^2/dof) > 15\%$

- HLT 'displaced' J/ψ + track(s)
 - ▶ two muons with opposite charge $2.9 < m_{\mu\mu} < 3.3 \,\text{GeV}$
 - $\triangleright \cos \alpha > 0.9$, $\mathcal{P}(\chi^2/dof) > 15\%$
 - ▷ invariant mass requirements on tracks (targeted towards $d \rightarrow K^+ K^-$)

(targeted towards $\phi
ightarrow K^+K^-$)

- HLT $B^0_s \to \mu^+ \mu^$
 - two muons with opposite charge
 - ▷ $p_{\perp} > 4.0(3.5) \, \text{GeV}, \, \mathcal{P}(\chi^2/dof) > 0.5\%$
 - \triangleright inv. mass $4.8 < m_{\mu\mu} < 6.0 \, \text{GeV}$
 - no displacement requirement!



Anti radiation cut

- ► Remove mass window evt by evt : $|m(\mu\mu) m_{J/\psi}(m_{\psi'})| < 3\sigma_q \ (\sigma_q \approx 26 \text{ MeV})$
- ≻ Cuts combining $m_{B0} \& m_{\mu\mu}$ applied to further reject feed-through from control channels $(J/\psi(\psi') \rightarrow \mu^+ \mu^- \gamma)$:
 - > Events are rejected if $|(m(K\pi\mu\mu) m_{\mu}) (m(\mu\mu) m_{\mu})| < \Delta m$

Decay rate

$$\frac{\mathrm{d}^{4}\Gamma[\overline{B^{0}}\to\overline{K^{*0}}\mu^{+}\mu^{-}]}{\mathrm{d}q^{2}\,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi}\sum_{i}\overline{I_{i}}(q^{2})\overline{f_{i}}(\vec{\Omega}) \longrightarrow \begin{array}{l} \text{Decay rate involving b} \\ \text{quark, } i.e. \ \mathrm{B^{0}_{bar} meson} \\ \frac{\mathrm{d}^{4}\overline{\Gamma}[B^{0}\to K^{*0}\mu^{+}\mu^{-}]}{\mathrm{d}q^{2}\,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi}\sum_{i}\overline{I_{i}}(q^{2})\overline{f_{i}}(\vec{\Omega}) \longrightarrow \begin{array}{l} \text{Decay rate involving b} \\ \text{product} \\ \text{quark, } i.e. \ \mathrm{B^{0} meson} \end{array}$$

- Γ and Γ_{bar}: expression of the decay
- $f(\vec{\Omega})$: combinations of spherical harmonics
- I and Ibar: q²-dependent angular parameters (combinations of six complex decay amplitudes)

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1 - F_{\mathrm{L}}) \sin^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K \\ + \frac{1}{4}(1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_l \\ + \frac{1}{4}(1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_l \\ - F_{\mathrm{L}} \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi \\ + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi \\ + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi \\ + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi_l \sin 2$$

Decay rate

 $\frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{K}d\cos\theta_{I}d\phi} = \frac{9}{32\pi} \left[\frac{3}{4}\mathbf{F}_{L}\sin^{2}\theta_{K} + \mathbf{F}_{L}\cos^{2}\theta_{K} + \left(\frac{1}{4}\mathbf{F}_{L}\sin^{2}\theta_{K} - \mathbf{F}_{L}\cos^{2}\theta_{K}\right)\cos2\theta_{I} + \frac{1}{2}\mathbf{P}_{1}\mathbf{F}_{L}\sin^{2}\theta_{K}\sin^{2}\theta_{I}\cos2\phi + \left(\frac{1}{4}\mathbf{F}_{L}\sin^{2}\theta_{K} - \mathbf{F}_{L}\cos^{2}\theta_{K}\right)\cos2\theta_{I} + \frac{1}{2}\mathbf{P}_{1}\mathbf{F}_{L}\sin^{2}\theta_{K}\sin^{2}\theta_{I}\cos2\phi + \left(\frac{1}{2}\mathbf{F}_{L}\sin^{2}\theta_{K}\sin^{2}\theta_{L}\sin^$

Two channels can contribute to the final state K⁺ $\pi^- \mu^+ \mu^-$:

P-wave channel, K⁺ π⁻ from the meson vector resonance K^{*0} decay

S-wave channel, K⁺ π⁻ not coming from any resonance

We have to parametrise both decay rates !

$$\frac{d\Gamma^{4}_{\text{Total}}}{dq^{2} d\Omega} = (1 - F_{\text{s}}) \frac{d\Gamma^{4}_{\text{P-wave}}}{dq^{2} d\Omega} + \frac{d\Gamma^{4}_{\text{S/SP-wave}}}{dq^{2} d\Omega} \qquad Both S-wave and S&P wave interference}$$

$$\frac{d\Gamma^{4}_{\text{S/SP-wave}}}{dq^{2} d\Omega} = \frac{3}{16\pi} \left[F_{S} \sin^{2} \theta_{\ell} + A_{S} \sin^{2} \theta_{\ell} \cos \theta_{K} + A_{S}^{4} \sin \theta_{K} \sin 2\theta_{\ell} \cos \phi + A_{S}^{5} \sin \theta_{K} \sin \theta_{\ell} \sin \phi + A_{S}^{8} \sin \theta_{K} \sin 2\theta_{\ell} \sin \phi\right] \qquad 6 \text{ independent parameters}$$

Background considered included:

- Partially reconstructed B⁰ decay might pollute left $M_{\rm B^0}$ side bands
 - restrict left s.b. (5.1 < M < 5.6 GeV, default 5 < M < 5.6 GeV)• redo fit: change in P_1 and P'_5 within the systematic uncertainties.
- $B^{\pm} \to K^{\pm} \mu \mu$ plus and additional random π^{\mp} :
 - distribution ends at $M > 5.4 \,\text{GeV}$, further reduced by $\cos \alpha$ cut, and BR similar to $B^0 \to {K^*}^0 \mu \mu$

•
$$\Lambda_{\rm b} \rightarrow {\rm pKJ}/\psi(\mu^+\mu^-)$$

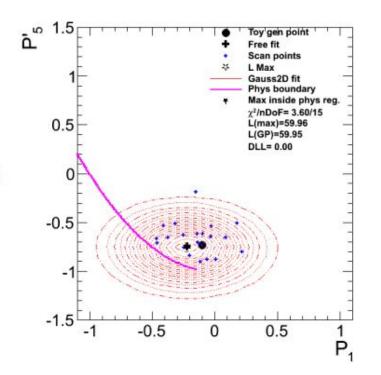
• look at event in the $M_{K\pi\mu\mu} \approx M_{B^0}$ peak, reconstruct them using p, K mass hypothesis: no peak seen.

•
$$B^0 \rightarrow DX$$
, with $D \rightarrow hh$ and h mis-id as μ

- requires two mis-id: $P_{misld} \sim 1 \cdot 10^{-3}$: given $BR \sim 1 \cdot 10^{-3}$ negligible.
- $B^0 \rightarrow J/\psi(\mu\mu) K^{*0}(K\pi)$, with one h and one μ switched
 - $P_{misld \ \mu} \cdot (1 \varepsilon_{\mu}) \sim 1 \cdot 10^{-4}$, $Y_{B^0 \rightarrow J/\psi \ \mu \ \mu} \sim 1.6 \cdot 10^5$: few events in bin close to J/ψ
 - J/ψ feed contamination in close bin included in the fit model

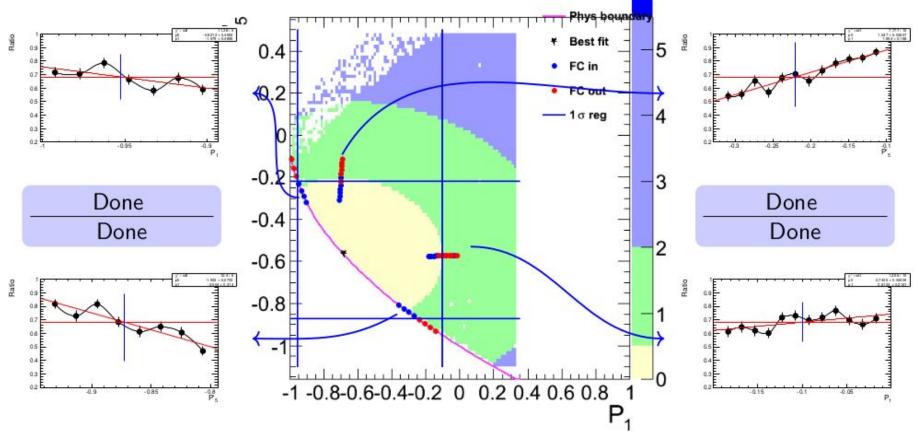


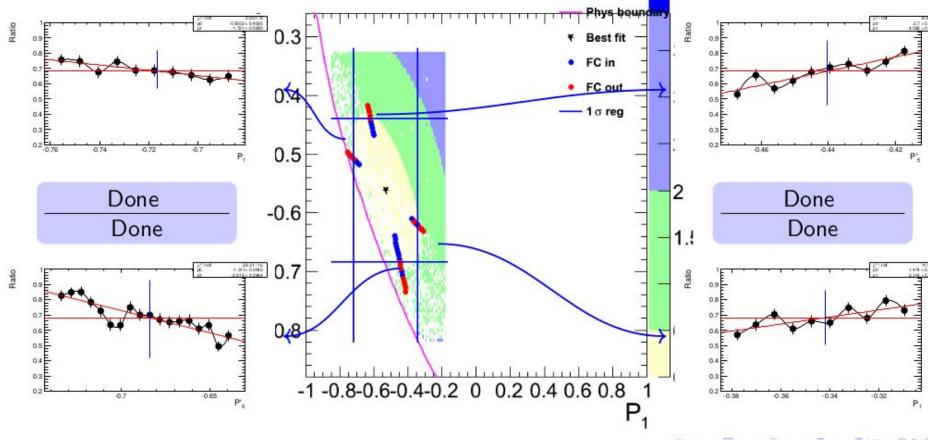
FC statistical uncert determination


- Not fully 2D, only 1D profiling 2D-gaussian description of likelihood inside the physical allowed region
- Generate 100 toys for each point of the path
- Fit the toy and rank according to likelihood-ratio
- Confidence interval is found when data likelihood-ratio exceed the 68.3% of the the toys
 - Statistical fluctuation expected due to limited number of toys
 - Data ranking is plotted along the path explored
 - Intersection with 68.3% found with linear fit

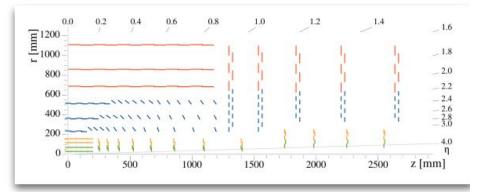
Data DLL does not exceed 68.3% of toys DLL. Point generated is inside 1σ

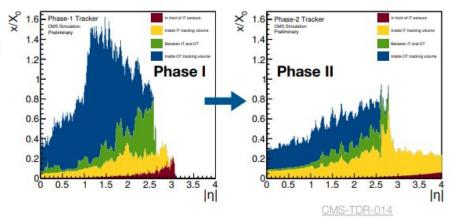
Single Toy fit


- Each toy is fitted with the full pdf as done for data
- we repeat the fit with 20 different set of 20 initial values of P_1 and P_5'
 - to find the absolute max, we fit the 20 values with a 2D gauss function
 - the max must be inside the physical region
- Eventually, we have 100 toys, and 100 values for the likelihood.


Example for bin 1

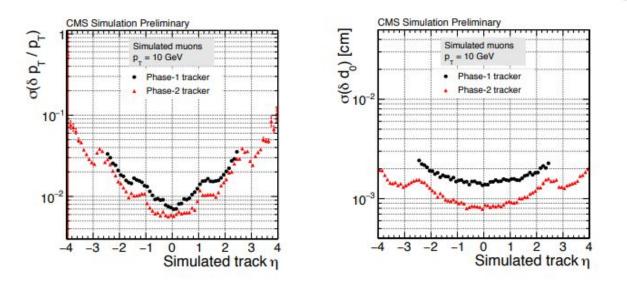
Example for bin 8




Sterano Lacapiara, nui in Lacova

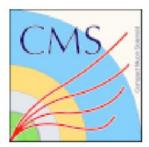
Tracker upgrade

- Needed to deal with radiation damage and cope with higher pileup
- Inner tracker:
 - pixel sensors
 - narrower pitch than present pixel detector
 - increased granularity to limit the occupancy
 - coverage up to $|\eta| \sim 4$
- Outer tracker:
 - design driven by addition of hardware track trigger capabilities
 - pixel-strip & 2-strip sensors
 - progressively tilted modules
- Substantial reduction of the material budget with respect to present detector

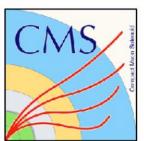


Tracker performance: resolution

CMS-TDR-01


- Significant improvements in transverse momentum and transverse impact parameter resolution with respect to current detector
 - thanks to better hit resolution and lower material budget

CMS Trigger strategy



- **L1 Trigger:** ~40 MHz \rightarrow 100 kHz
- Hardware-based
- Only muon stations and calorimeters
 - \rightarrow No electrons from B's
- Decision time: ~4 μs

HLT: 100 kHz → 1 kHz(*)

- Software
- Full detector information, but simplified reconstruction
- Decision time: ~300 ms

Offline:

- Software
- Reconstruction time O(s)
- Event size ~1MB for standard events

L1 is (and will be) a limiting factor

L1 Rate [Hz] 50k 25k Only 10% of the L1 rate is kept to achieve good HLT Rate [Hz] 5000 purity. 4000 The number further decreases at very low L1 3000 muon p_T threshold 2000

1000

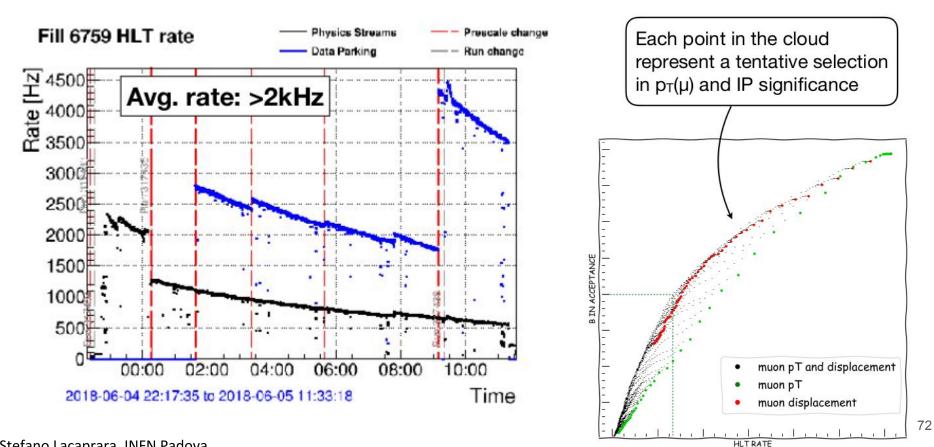
0

22:00

00:00

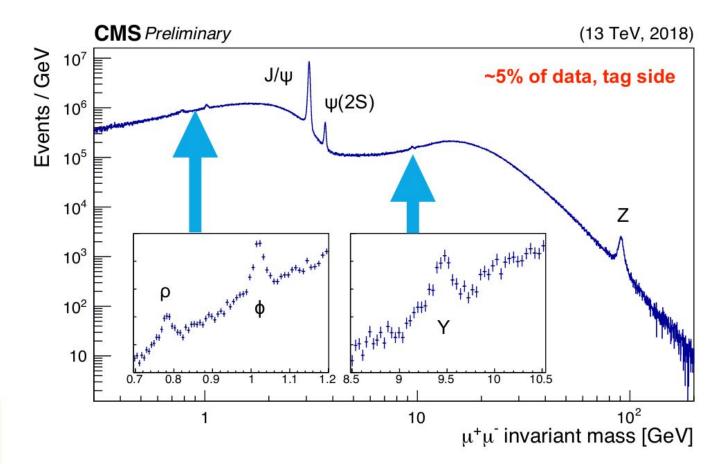
02:00

04:00

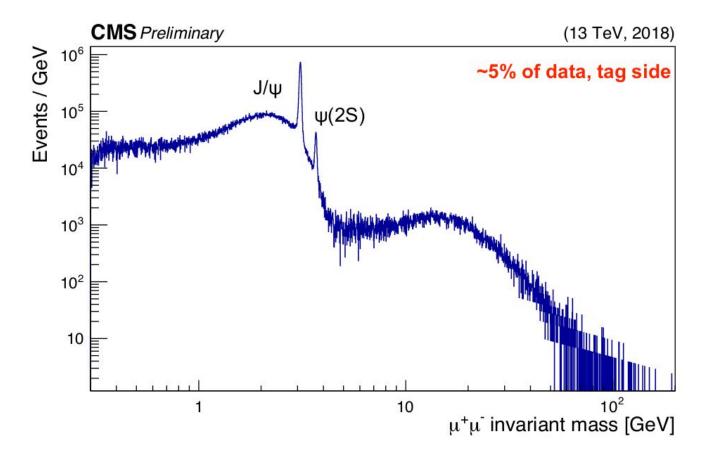

06:00

08:00

75k

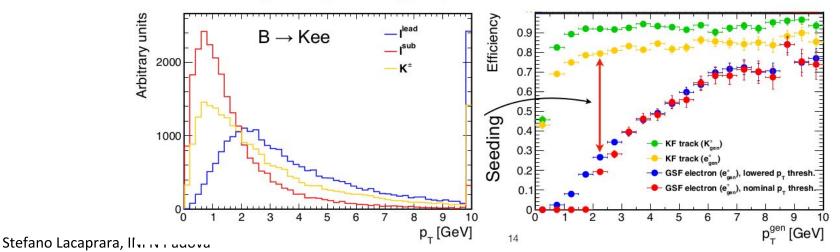

Trigger tuning and HLT

Trigger level di-muon spectrum



Stefano Lacaprara

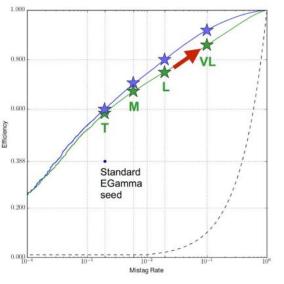
Displaced muons



Stefano Lacapra

Challenges for R(K^(*))

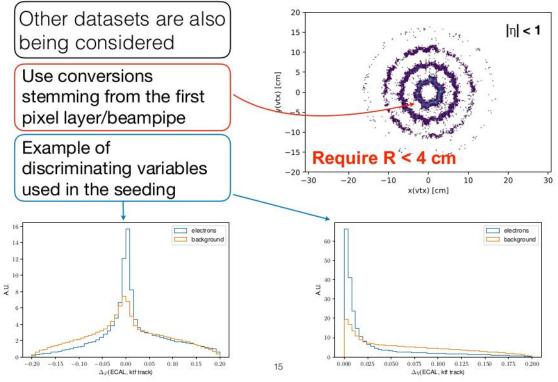
- Main challenge: Br ~ 10⁻⁷
- This is why need ~10¹⁰ B's!
- Low-energy electron reconstruction
 - Default reconstruction has an (arbitrary) cutoff at 2 GeV
 - Need significant investment to improve it down to ~1 GeV
 - Finalizing the significantly improved electron ID now



New electron seeding

- Created an alternative reconstruction path for low-pT electrons
 - Remove limitations of the current seeding without touching the default (particle-flow) electron reconstruction
 - Focus on improving the efficiency for low-p_T electrons by using a combination of ECAL supercluster -based seeding and track-based seeding
 - A factor of three improvement compared to the PF electron case is achieved for the B → J/ψ(ee)K decay
 - Potentially up to x4 improvement is expected
 - Finalizing the ID to keep fake rate under control

Algo	α	3	α*ε	
PF	0.56	0.14	0.08	
Low p _T	0.56	0.41	0.23	

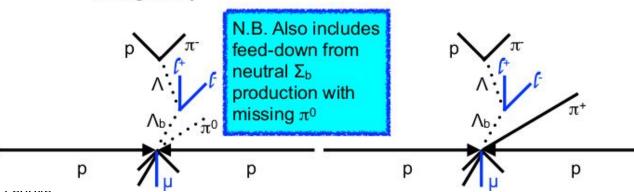


Stefano Lacaprara,

Asymmetric Conversions

◆ Use asymmetric conversions to study low-p⊤ electrons

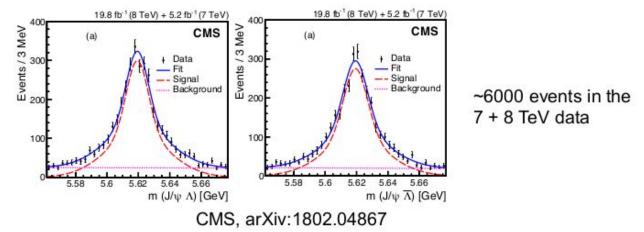
Purity


Thoughts on $R(\Lambda_b)$

- Among the baryonic channels, R(∧_b) perhaps is most interesting
 - The branching fraction is similar to that for R(K/K*)
 - The production cross section is about a factor of 4 lower, but can be doubled by considering an additional channel (both have very distinct experimental signature)

$$\Sigma_b^+ \to \Lambda_b^0 \pi^+ \to \Lambda^0 \ell^+ \ell^- \pi^+ \to p \pi^- \pi^+ \ell^+ \ell^-$$

 Problem: no trigger available for such dimuon decays in 2017/18 something to bear in mind for Run 3 - not a big issue for R(Ab), but is a big issue for angular analysis strong decay



Stefano Lacaprara, IIVI IV I augua

$\Lambda_{_{b}}$ in CMS

- We actually published Run 1 paper on Λ_b polarization and angular distributions
 - Signal is extremely clean, so could afford less stringent cuts (such as $p_T(J/\psi)$, $p_T(\Lambda_b)$)
 - Expect about 20K events in the parked data with the same cuts, but could be much more with looser cuts
 - O(100) non-resonant dilepton events is not impossible!

Stefano Lacaprara, INFIN Faulura