

Plans for data processing in 2020c/2021

36th B2GM, DP session 23/06/2020

Stefano Lacaprara, Marco Milesi

INFN Padova, Uni Melbourne

Summary

- Status since February 2020 B2GM/BPAC
- Plan for 2020c, early 2021 prompt processings
- Plan for full reprocessing of ~70 /fb ("proc11++", 2019+2020a)

Reminder of current data processing flow

- Unofficial
 - Run as soon as RAW lands on dataprod/, using conditions of online GT
 - I/O:
 - (For Mirabelle) I: hlt_hadron, O: cdst + offskim
- Prompt (bucketXX)
 - $\circ~$ First processing after automated (Airflow) calibration \rightarrow mdst
 - In steady state, $\sim 10 \text{ fb}^{-1}$ / bucket
 - now ~3/4 weeks, will be ~1 week of data taking
- Official (procXX)
 - \circ Complete (re)processing of data \rightarrow mdst
 - @KEKCC for HLT skims
 - On the grid (BNL, KEK) for all events

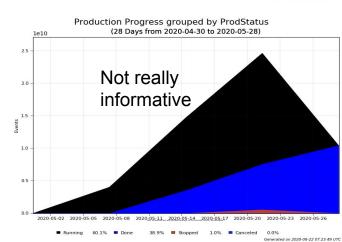
Post-mortem of 2019 (proc11), 2020a (prompt)

h2 producado

- KEKCC resources (b2_prod) bumped up to 2500 cores
- Data taking campaigns (mostly) run in HLT "monitoring" mode \rightarrow any event is processed on the grid

				b2_prod usage
	∫L dt [/fb]	∆T [d] - local (HLT skims)	∆T [d] - grid (all)	20000 - Running jobs — Total jobs — Max jobs
proc11	8.7	4	15	15000 -
bucket9	2.7	8 (*)	3 (+7*)	10000 -
bucket10	10.4	4	17	5000 -
bucket11	12.7	4	14	
bucket12	2.4	1	15	102 102 102 102 102 102 102 102 102 102
(*) missing runs had to be to automitted				

(*) missing runs had to be re-submitted


Grid post-mortem - 2019+2020a processing

CINFN WILL FOR THE UNIVERSITY OF

- Staging data well in advance: key for success
 - Now manual as the unstage: aim for smart automation
- Good job of DP shifters for RawProcessing
 - Early discovery of off-res GT payload missing in proc11
- "Babysitting" by experts is time consuming
 - Need more DP-tailored CLI and DIRAC tools to improve productivity (also for non-experts).
 - Eg, status by campaign vs time, for RawProc and RawMerge, separately
 - Quickly identify "true" crashes (e.g., basf2, CDB):
 - We have <u>b2dp-monitor-grid</u> which parses gb2_prod_summary: can do that "natively"?
 - In these cases, we cancel the input file from production: need to keep track/recover. How?

Room for improvement - grid production

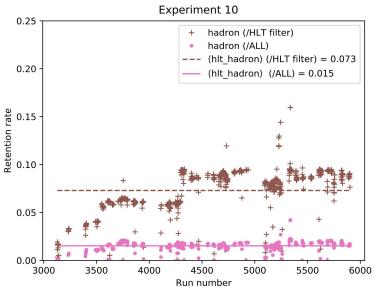
• Merge step is often the real bottleneck

- Can be longer than actual processing!
- Long tail in total processing time b/c last few % of merge fabrications.
 - Can we envisage to perform the merge step at the same site as the processing step?
- Optimisation of ProdID size
 - Now we have 100 runs/ProdID, but run size (in fb⁻¹) is variable, no guarantee to have good splitting
 - The larger the ProdID, the longer to complete
 - Analysers need to access files scattered over many ProdIDs: not ideal.

Plans for 2020c (and beyond)

- Drop unofficial processing:
 - Mirabelle offskim production to be moved in express reco/online
- Drop local processing at KEKCC:
 - Not clear how many dedicated resources we will effectively have after summer...
- Prompt + official grid processing:
 - \circ $\,$ What to process and in which priority
 - Integration of udst production (analysis+systematic skims) in processing

RAW data inputs and "physics streams"


- So far, B-physics done on hlt_hadron skim
 - Originally introduced for calibration (alongside other HLT skims)
 - Event flag defined *online* at HLT level:

[[nTracksLE>=3] (*) and [Bhabha2Trk==0]]

- Retention rate in data: ~2% (/all events), 10% (/hlt-filtered events)
- Fast sampling of RAW hlt_hadron-only data (CC): smaller inputs to processing.
 - RAW skimmed data replicated on grid SEs
- Tacit assumption: 100% efficient on data and MC for typical offline analyses selections.
 - (Analysts *should* study hlt_hadron efficiency with high priority → use 2020a grid mdsts, no HLT filter!)

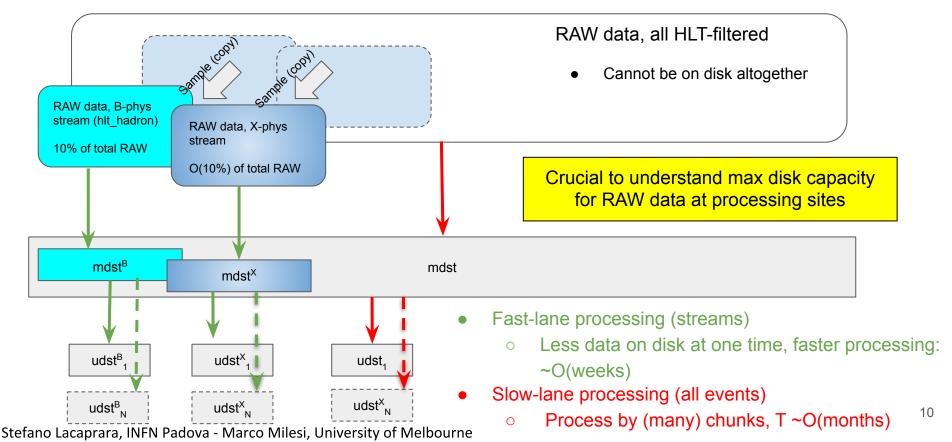
(*) pT > 0.2 & abs(d0) < 2 & abs(z0) < 4

RAW data inputs and "physics streams"

- Different HLT-skimmed RAW data can be thought as "streams"
 - $\circ \quad hlt_hadron \; skim \rightarrow B-physics \; stream$
 - $\circ \quad hlt_* skim \rightarrow *-physics stream$
 - $\circ \quad \text{hlt_bhabhaecl (prescaled?)} \rightarrow \text{offline luminosity stream}$

Why should we sample RAW dataset "streams" out of all data?

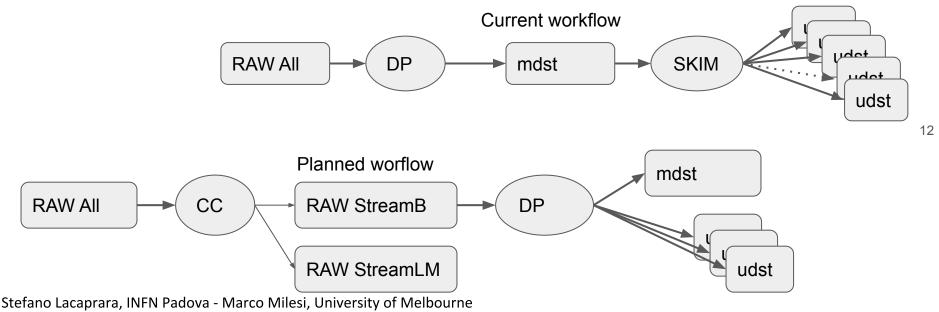
- Pro: fastest lane for processing
 - \circ $\$ (up to) x% only of events to reconstruct
 - \circ (up to) x% only of RAW data to stage on disk per processing
 - Much less stress on disk/tape resources
- Con: RAW data duplication
 - RAW "all" data must still be processed for non-B-physics:
 - DM, taus, long lived particles, magnetic monopoles...
 - Performance studies (e.g., lepton ID)



Scheme proposal for stream-based processing

For a given processing campaign (prompt, official):

Caveats and thoughts



- HLT skims originally designed for *calibration*:
 - Not necessarily an exact subset of HLT trigger menu (aka, hlt_filter line). Different prescales, looser selection...
 - RAW HLT skims for calibration likely heavily pre-scaled at CC level in the near future...
 - If (some) HLT skims to become physics streams, *should* be upgraded to HLT trigger menu
- Several streams to cover for more physics/performance use-cases?
 - Some key points:
 - Non-proliferation policy → avoid too much RAW data duplication
 - Must be ~orthogonal w/ each other
 - "Stream selection efficiency" must be studied by analysers
- Corner-cases will surely remain non-coverable by streams \rightarrow need processing of "all" events

uDST (aka analysis skim)

- Currently run after mdst production is complete
 - Ready way after mdst are done: hard to be used in timely fashion by analysis
- Ongoing plan:
 - Produce udst(s) alongside mdst for hlt_hadron stream in same production
 - To test locally/grid in bucket13

Caveats and thoughts

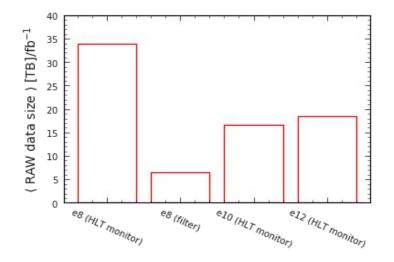
- Are udst actually ok for analysis?
 - WG liaisons should communicate specific requirements
- Which (and how many) udst to be produced?
 - \circ Proposed workflow adds another step of processing \rightarrow might not scale well on larger datasets
 - Merge step

. . .

- Often the bottleneck of production on grid
- If multiple output file, multiple merge. Further problems?
- First feedback from DC: up to 10 udst might be ok, more can be problematic
- Mdst and udst have different size: merging to target size to be tested
- Will start with just one udst (systematics skim) and learn from experience

Resource estimate: prompt processing

Summary of resource estimate (assuming steady state, no backlog) for prompt \rightarrow 1 bucket/week, ~10/fb / week


• HLT_monitor mode

- Disk needs:
 - Estimated 20 TB RAW data / fb-1, 200 TB per week
 - If keeping 3-4 buckets alive at one time : about
 6-800 TB of "live" data on disk in FIFO mode
- CPU needs (based on 2020a prompt processing):
 - ~4k jobs max \rightarrow 15 days / 10fb⁻¹
 - WARNING: 2 weeks to process 1 week of data

• HLT_filter mode

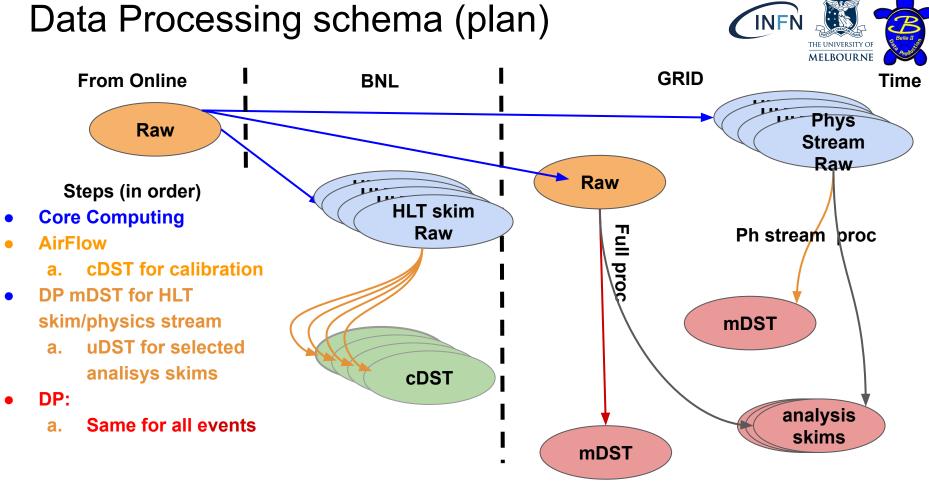
- Disk : ~20% : 150 TB alive on disk at one time
- CPU: ~50% : <2k CPU> + merging

Resource estimate for proc11++, O(100) /fb

- Based on proc11, estimate disk input and output, CPU and time with current BNL resources
- proc11 done on grid in 15 days: L=~10 /fb
 - All events, no HLT filtering
- proc11++ 2019+2020a (?): L ~70 /fb (release-05?)
 - Mostly (as of today) with HLT in monitoring
 - Extrapolating:
 - all events: 7*15=100 days: 3.5 months
 - hlt_hadron: ~1 week

Resource estimate for proc11++, O(100) /fb

- Based on proc11, estimate disk input and output, CPU and time with current BNL resources
- proc11 done on grid in 15 days: L=~10 /fb
 - All events, no HLT filtering
- proc11++ 2019+2020a (?): L ~70 /fb (release-05?)
 - Mostly (as of today) with HLT in monitoring
 - Extrapolating:
 - all events: 7*15=100 days: 3.5 months
 - hlt_hadron: ~1 week


Miscellanea

- Offline luminosity
 - Will be no longer doable at KEKCC locally
 - Will need to test analysis on a dedicated stream on the grid
- Offline lumi now in txt files on confluence (then ported to sqlite DB by DP)
 - Need to upload to RunDB
 - tools/procedure to be developed <u>Some preliminary instruction if you are interested in helping</u>

BACKUP

Stefano Lacaprara, INFN Padova