

Data processing remarks for 2020c

Data Production Workshop 08/09/2020

Stefano Lacaprara, Marco Milesi

INFN Padova, Uni Melbourne

Belle II Bro Podución

Estimate for 2020c data taking

Expect ~ 40 fb⁻¹ during 2020c. Total ~110 fb⁻¹ for all 2019 + 2020

Phase III - Input RAW data size / fb⁻¹

Campaign	Int. lumi [fb-1]	RAW data size [TB / fb-1]							
		ALL events - no filter	ALL events - w/ filter [*]	bhabha	bhabhae cl	gamma_gamma	hadron	mumu_2trk	cosmic
proc11 (e8, filter on)	1.72		4.7	1.7		0.2	0.3	0.1	
bucket10	10.4	12.8	3.8	3.3	1.4	0.6	0.3	0.1	0.2
bucket11	12.7	12.3	3.7	3.3	1.5	0.6	0.4	0.1	0.2
Bucket12 (off-res)	2.4	13.1	3.9	3.9	1.7	0.6	0.3	0.1	0.1
bucket13	5.0	11.2	3.4	3.8	1.5	0.6	0.4	0.1	0.1
bucket14	9.7	13.0	3.9	3.5	1.5	0.6	0.4	0.1	0.1
bucket15	19	13.2	4.0	3.5	1.5	0.6	0.3	0.1	0.1

[*] Late 2020b has 25-30% retention. Was 40% in proc11

RAW HLT hadron takes ~ 0.3 TB/fb⁻¹. NB: none of HLT skims is prescaled.

W/ HLT filter on, expect + 8-10% disk usage per fb-1 (evt. duplication) to store RAW HLT hadron skims on disk.

Phase III - T_{CPU} (HLT skims)

NB: stats from local KEKCC processing \rightarrow expecting no much change on grid

Campaign	Int. lumi [fb-1]	Average T _{CPU} / evt [ms]					
		bhabha	bhabhaecl	gamma_gamma	hadron	mumu_2trk	
bucket10	10.4	1.4	1.4	1.3	1.9	1.7	
bucket11	12.7	1.6	1.6	1.4	2.2	2.0	
bucket14	9.7	1.6	1.6	1.4	2.3	2.0	
Campaign	Int. lumi [fb-1]	Average T _{CPU} / job [h]					
		bhabha	bhabhaecl	gamma_gamma	hadron	mumu_2trk	
bucket10	10.4	2.1	2.1	1	7.1	4.4	
bucket11	12.7	2.1	2.1	1	7.0	4.4	

2.1

1

7.0

4.3

9.7

2.1

bucket14

Phase III - T_{CPU} (all events, grid)

Campaign	Int. lumi [fb-1]	Average T _{CPU} / evt [ms] (RawProcessing)	Average T _{CPU} / job [h] (RawProcessing)
bucket10	10.4		2.7
bucket11	12.7		2.8
bucket13	9.7		3.6

Phase III - Effective turnaround time

Campaign	Int. lumi [fb-1]	HLT skim (loca	II) - N _{cores} = 2500	All Events (Grid) - $\langle N_{cores} \rangle$ = 2000 (peak ~5000) MELBOURNE					
		All HLT skims	HLT hadron	HLT hadron RawProcess		RawProcessing + Merge			
		T _{turnaround}	[days/fb ⁻¹]	T _{turnaround} [days]	T _{turnaround} [days/fb ⁻¹]	T _{turnaround} [days]	T _{turnaround} [days/fb ⁻¹]		
bucket10	10.4	0.4	0.1	9	0.9	17	1.6		
bucket11	12.7	0.3	0.1	10	0.8	14	1.1		
bucket13	5.0	0.5	0.1	8 (had+udst 0.7)	1.6 (had+udst: 0.14)	15 (had+udst 13)	3.0 (had+udst 2.6)		
bucket14	9.7	0.3	0.1	28 [d] going [*][**]		28 [d] going [*][**]			

NB: bucket13 and 14 first attempt at processing simultaneously:

- RAW ALL events \rightarrow mDST(all)
- RAW HLT hadron \rightarrow mDST(hadron) + D* uDST ("systematic" skim)

Main reason for delays on grid production is Merge step

Stefano Lacaprara, INFN Padova - Marco Milesi, University of Melbourne

[*] NB: KEKCC replacement, BelleDIRAC migration, post ICHEP holidays...

[**] RawProcessing stuck on DDM (due to KEKCC replacement?)

Data processing schema for 2020c

Two-fold goal:

- 1. Prioritise fast processing of RAW HLT <u>unprescaled</u> hadron inputs (~8% retention)
 - a. Most of *physics* (B-phys) starts from it.
 - b. Some disk overhead (~10% duplication), but less stress for staging.
 - c. NB: at current stage, unfeasible to duplicate data for other HLT skims.
- 2. Drive users towards uDST (i.e., analysis/systematic skims), or at least HLT-skimmed mDST \rightarrow (much) smaller and faster to analyse.

NB: this does not cover calibration plans!

Data processing schema for 2020c

Extending "bucket14" schema, we propose a staged processing of:

- 1. I: RAW HLT hadron O: *simultaneous* production of mDST(hadron) + *few* compatible uDST (syst.)
- 2. I: RAW ALL events (filter on) O:
 - a. Baseline: production of mDST(all) only
 - Advanced: *simultaneous* production of mDST(all) + *few* mDSTs(<u>low retention*</u> HLT skims), eg 4lep, or similar needed by <u>phys perf</u>.
 - i. deReduce CPU usage and disk staging time. 👎 Increase merging complexity.
 - ii. Production of mDST selected w/ different HLT skim flags not an issue for input staging: same input.
 - iii. Output (mDST) event duplication and CPU overhead shouldn't be a problem (for now).
 - iv. HLT tau skims have too large retention rate (~40%) to fit in current scheme.
- 3. Production of uDSTs (not already in step 1) to follow completion of 1. (and 2.)
 - a. Can either use mDST(hadron/...) or mDST(all) as input if appropriate to speed up.

No more Unofficial for 2020c (sorry, but not sorry). Any objections?

Stefano Lacaprara, INFN Padova - Marco Milesi, University of Melbourne

* < 20%

Question time

• Is this feasible from computing's point of view?

Campaign processing plan for 2020:

- Baseline DS for Moriond 2021:
 - o proc11 (2019, e7-8-10) + prompt (2020a-b, e12, buckets 9-15) → release-04, ~75 fb⁻¹
 - Currently, only bucket15 missing...
 - MC13a, MC13b
- Re-processing of bucket15 (or part of), e12 w/ updated calibration \rightarrow release-05
 - Validate against same bucket in release-04
- 2020c prompt processings \rightarrow release-05.
 - Available for Moriond for Phys Perf
- Full 2019+2020 reprocessing (proc12) at EOY \rightarrow release-05:
 - Depending upon calibration plans.
 - Depending upon MC14 readiness:
 - MC14a (run-independent) can start early October w/ next minor release.
 - MC14b (run-dependent) requires BG staging on grid.
 - Unlikely to be ready for Moriond...

Lessons from 2020a-b

- Production of mDST + (single) uDST from RAW HLT hadron is working:
 - Some bits to be refined (final path on the grid, metadata, registration on DS, ...)
 - Merge step is (as usual) the most critical part. Hoping for Rucio to help...
- Leave more complex production workflows for next year:
 - Eg: produce simultaneously *all* possible uDSTs from HLT hadron...
 - Likely introduction of significant extra burden for DC.
- Staging of large datasets works, but need to be coordinated well w/ DC.
 - Well defined schedule will help.
 - Automation would be very welcome! (for staging and un-staging)
- Often grid issues require direct manual intervention from DC experts:
 - They must be praised for being always fast-acting and helpful, but they're human beings after all :), and extremely manpower-limited.
 - DP managers have limited control and little-to-no expertise about subtleties of DC infrastructure (DIRAC).
 - Ideally it would be very useful to have a DP-DC liaison to help tools development and maintenance.

CPU usage at BNL

Up to mid July

