

$B \longrightarrow \eta' K rediscovery$ 36th B2GM KEK My living room 25/06/2020

Stefano Lacaprara, Valeria Fioroni INFN Padova & University

Motivation

Shaded $\eta' \rightarrow \eta \pi \pi$, white all (including $\eta' \rightarrow \rho \gamma$)

Dataset and Technicalities

- Data: proc11 + prompt (**bucket9-10-11**) new
 - L=8.86+ 25.8= 34.6 /fb
- Montecarlo MC13a (Run independent, BGx1) new
 - qqbar+ taus L=500 /fb
 - \circ bbbar (charged and mixed) L=1000 /fb
 - Using unskimmed dataset
 - Skimmed one produced and will be used for analysis skim validation
- Initially MC13b was used (see past WG presentation)
 - Not enough statistics (L=10/fb)
- Signal: MC13a
 - 20K events for channel: L~9-72 /ab (depending on channel)
- Release: light-2002-janus
- Analysis stash <u>https://stash.desy.de/users/lacaprar/repos/etaprime/browse</u>

Selection η '

$$\eta' o \eta (o \gamma \gamma) \pi^+ \pi^-$$

- Gamma:loose
- 60 MeV < E_v < 6 GeV
- $0.4 < M_{\gamma\gamma} < 0.7 \text{ GeV/c}^2$
- Pi:loose
 - opposite charge
- Global PID(*π*)>0.1
- $0.9 < M_{\eta^{-1}} < 1.1 \text{ GeV/c}^{-2}$

 $\eta'
ightarrow
ho(
ightarrow \pi^+\pi^-)\gamma$

- Pi:loose
- $0.47 < M_{\pi^+\pi^-} < 1.07 \text{ GeV/c}^2$
- No pi0 veto: losing too much signal

Selection **B**

- Adding K or Ks to $\boldsymbol{\eta}^{\text{`}}$
- K:loose
 - Global PID(K) >0.1
- K_S0:merged (V0+hh)
 - \circ 450 < M π + π < 550 MeV/c²
 - Vertex fit not failing

- B₀ and B⁺ decay chain fitted with treeFit algo
 - Mass constraint on **η**, **η**[•],
 - pValue>0
 - NO IP vertex constraint
- Mbc>5.2 GeV |De|<0.2 GeV
- Keep only one candidate per event sortex by vtx pValue

Average multiplicity on data

Chan	nel	N_{cands}
$P^{0} \rightarrow \pi' K^{0}$	$\eta' ightarrow \eta \ \pi^+ \ \pi^-$	2.23
$D \rightarrow \eta \kappa_S$	$\eta' ightarrow ho \ \gamma$	6.19
$P^{\pm} \rightarrow n' K^{\pm}$	$\eta' ightarrow \eta \ \pi^+ \ \pi^-$	1.77
$D \rightarrow \eta \Lambda$	$\eta' ightarrow ho \ \gamma$	5.65

Stefano Lacapra

Selection efficiency

• High selection efficiency 24-30% • SxF 10->2% no CS cut (next slides)

Stefano Lacaprara, INFN Padova

Continuum suppression

- Using only R2 and CosTBTO
- Started MVA but still some correlation with data not understood
 - For next iteration
- Optimization of cut based on
- FoM=S/sqrt(S + B)
 - S and B in signal region from MC
 - Mbc>5.27
 - -70<De<50 MeV
- R2<0.5
- CosTBTO<0.7
 - Probably too hard

1.0

0.5

0.0

0.0

0.2

0.4

 $\cos(\theta_B - \theta_O)$

0.6

0.8

ssbar

ddbar

Signal

+ Data

taupair

charged

mixed

1.0

12

R2

0.6

0.4

0.8

Ldt = 34.58 fb⁻¹

6000

5000

4000

3000

2000

1000

0.0

0.2

1.0

gqbar

bbbar

Full signal efficiency (including CS)

Channel	$ \begin{array}{c} B^{\pm} \to \eta' K^{\pm} \left B^{0} \to \eta' K^{0}_{S} \right \\ \eta' \to \eta \pi^{+} \pi^{-} \end{array} $		$\begin{vmatrix} B^{\pm} \to \eta' K^{\pm} & B^{0} \to \eta' K^{0}_{S} \\ \eta' \to \rho \gamma \end{vmatrix}$	
	ε %	ε %	$\varepsilon~\%$	$\varepsilon\%$
Selection	31.7 ± 0.1	31.3 ± 0.1	24.8 ± 0.1	25.2 ± 0.1
Continuum suppression	63.4 ± 0.2	63.0 ± 0.2	62.6 ± 0.2	61.7 ± 0.2
Total	20.1 ± 0.2	19.7 ± 0.2	15.5 ± 0.2	15.6 ± 0.2
Belle (10.5 /fb)	21.7	20.8	14.2	11.5

- Margin for improvement with MVA selection (future)
 - \circ \quad Both for CS and for signal selection
- Also can avoid cut on CS and include in UML fit

- **Signal region:** Mbc>5.27 GeV & -70<DeltaE<50 MeV
- Control region: Mbc>5.2 GeV & |DeltaE|<150 MeV & NOT SR
- Signal region is kept blind for Data

Expected and seen candidates

Channel		$B^{\pm} \to \eta' K^{\pm}$	$B^0 \to \eta' K_S^0$	$B^{\pm} \to \eta' K^{\pm}$	$B^0 \to \eta' K_S^0$
Channel	Region	$\eta' o \eta \pi^+ \pi^-$		$\eta' o ho \gamma$	
Continuum	SB	348.0 ± 5.0	99.5 ± 2.6	3530.0 ± 15.0	826.0 ± 8.0
	\mathbf{SR}	12.2 ± 0.9	3.7 ± 0.5	141.7 ± 3.1	41.6 ± 1.7
Dealring	SB	7.9 ± 0.5	3.1 ± 0.3	188.9 ± 2.6	55.2 ± 1.4
Teaking	\mathbf{SR}	0.83 ± 0.17	1.9 ± 0.26	16.6 ± 0.8	6.9 ± 0.5
Signal	SB	5.9 ± 0.11	1.28 ± 0.03	6.7 ± 0.16	2.29 ± 0.05
Signai	\mathbf{SR}	89.3 ± 0.4	19.07 ± 0.1	115.3 ± 0.7	36.01 ± 0.21
Data	SB	405 ± 20.0	114 ± 11.0	3530 ± 60.0	779 ± 28.0
Data	\mathbf{SR}		b	lind	8

Control region Mbc and DeltaE

Control regions

MC normalized to $\rm L_{\rm DATA}$

Belle II - Preliminary

Ldt = 34.58 fb-1

Signal region for B⁰ (blind for data)

- For each plot select CR on the other variable
 - Background and signal normalized to L_{DATA}
- Signal removed from bbbar montecarlo

$$B^0 \to \eta' K^0_{\eta'} \to \rho$$

Likelihood fit

- Use M_{bc} , ΔE , and $M(\eta')$
 - Last gives some lever against SxF, not much
- Separate component for Signal, SxF, Continuum, Peaking
- Define pdf for each component and for each decay channel
 - Trying to have just one set for all channels
- Pdf parameters fitted on MC and fixed
- Extended UML to get yield for each component
 - Probably would be better to fix SxF and BB yield (possibly relative to signal and qqbar, respectively) given the small statistics

Signal	SxF	$q~ar{q}$	$B \overline{B}$		
$B \to \eta' K, \eta' \to \eta \pi^+ \pi^-$					
M_{bc} Gauss(2)	Gauss(3)	Argus	Argus+Gauss(1)		
$\Delta E \text{ Gauss}(2)$	Gauss(2)	$\operatorname{Pol}(1)$	$\operatorname{Pol}(1)$		
$M_{\eta'}$ Gauss(2)	Gauss(2)	Pol(1)+Gauss(2)	Pol(1) + Gauss(1)		

Example pdf

 $B^{\pm} \to \eta' K$ with $\eta' \to \eta \pi^+ \pi^-$

Stefano Laca

	injected	fit resuts	\mathbf{rms}		
Toys test	Bpc	Bpch1		N	
	70	70.37 ± 1.07	10.61		
 Fix background to MC expectation 	95	93.73 ± 1.09	10.75		
	110	108.79 ± 1.37	13.68		
 Vary signal around the expected yield 	150	148.67 ± 1.37	13.61		
 Embedded Toys for signal (and SxF) 	B0c	B0ch1		_	
 Pure (pdf) for continuum and peaking 	10	10.24 ± 0.39	3.86		
Not enough statistics for embedded	21	20.26 ± 0.53	5.33		
 No significant bios found on signal viold 	30	27.94 ± 0.68	6.80		
 No significant bias found on signal yield 	50	48.73 ± 0.86	8.56		
 nSig Pulls ok. 	Bpc	ch3	54		
Tou resulte - nSignull	30	30.38 ± 0.69	6.91		
50 - Entries 997 - Entries 997	100	99.79 ± 1.17	11.58		
Mean 148.3 Mean -0.114 Std Dev 14.95 50 Constant 38.69 ± 1.62	120	120.16 ± 1.25	12.39		
	130	129.59 ± 1.34	13.24		
	200	197.15 ± 1.72	17.09		
		h3			
	20	20.83 ± 0.67	6.64		
	30	30.17 ± 0.74	7.30		
	50	49.37 ± 0.86	8.53		
	70	71.19 ± 0.92	9.08	47	
Stefano Lacaprara, INFN Padova 17					

Documentation

- Note v1 almost ready
- Will upload first version by tomorrow

BELLE2-NOTE-XX-YYYY-ZZZ **DRAFT** Version 1.0 June 24, 2020

6	Rediscovery of $B ightarrow \eta' K$ in Belle II data
7	Stefano Lacaprara [*]
8	INFN sezione of Padova
9	(The Belle II Collaboration)
10	Abstract
11	This note describe the rediscovery of $B \to \eta' K$ decay in Belle II data, both in the charged
12 ai	ad neutral final state $B^0 \to \eta' K_S^0$ and $B^{\pm} \to \eta' K^{\pm}$. The η' is searched for in two decay modes:
13 η'	$\rightarrow \eta \pi^+ \pi^-$, with $\eta \rightarrow \gamma \gamma$ and $\eta' \rightarrow \rho \gamma$. The analysis uses data collected in 2019 (and 2020) and
14 pi	cocessed with proc11 and prompt.

The signal was seen in all decay channels and the yield is consistent with expectation within the 15 16 statistical uncertainties.

Summary and plan

- Analysis is in a good shape, but I'd like to do some more work
 - Fit procedure can be improved, in particular SxF and peaking yield
 - Use off-res for continuum
 - Further optimization of selection and CS
- Documentation is in good shape, but can be improved as well
 - Need to be review by WG before calling for a RC
- I'm a bit late for ICHEP
 - Plus, I'll be on vacation from july 20th and very busy until then.

• If there is no strong push for ICHEP, I would like to have a bit more time

- Can also include measurement of **A_{CP}** in charged mode
- Maybe include also pi+ final state ?
- Will anyhow push first version of belle2note to invenio for first round of comment

Backup

Branching fractions

Mode	Decay channel	Branching fraction
	inclusive	7.06×10^{-5}
$B^+ \to \eta' K^+$	$\eta' \to \eta (\to \gamma \gamma) \pi^+ \pi^-$	$1.19 imes 10^{-5}$
	$\eta' o ho (o \pi^+ \pi^-) \gamma$	2.04×10^{-5}
	total	$3.23 imes 10^{-5}$
	includive	6.6×10^{-5}
$B^0 \to \eta' K$	$\eta' \to \eta (\to \gamma \gamma) \pi^+ \pi^-$	5.54×10^{-6}
	$\eta' o ho (o \pi^+ \pi^-) \gamma$	9.54×10^{-6}
	total	1.51×10^{-5}

• Effective BR twice for charged state due to K+ vs Ks

Recap SxF candidates are misreconstructed Signal candidates

The incorrect reconstruction of the η' particle is mainly due to the η reconstruction ($\sim 50\%$), but also pions are frequently mistaken.

Stefano Lacaprara, INFN Padova

The incorrect reconstruction of B^0 (isSignal = 0) is mainly due to η' reconstruction.

24

Momentum of misreconstructed pions in $\eta' \to \eta(\gamma\gamma)\pi^+\pi^-$

K_S^0 when isSignal=NaN

 $\Delta E [GeV]$

1

DQA

< D >

Stefano Lacapiana, IIVIIV I auova

E gamma (eta->gamma gamma)

M(eta)

eta->gg peak not well visible due to low gamma threshold (60 MeV)

M(etaprime)

eta'->eta(gg)pipi peak not well visible due to low gamma threshold (60 MeV) and pion ones

E(gamma) from eta'->rho gamma

cos(theta gamma)

M(pi+ pi-)

- Clear Ks peak
- Shift between rho peak for signal and SxF

M(etaprime)

cos(alpha) (momentum vs vertex)

Belle II - Preliminary

rged ed

pair

.00

Belle II - Preliminary

1.0

0.94

 $\cos(p, v)_{K_s}$

0.0

 $\cos(p, v)_{K_c}$

0.92

-0.5

0.96

0.98

0.5

M(Ks)

Stefano Lacaprara, INI IN FAULVA

Mbc 8 1 39 46 53 54 63 deltaE R2 - 0 thrustOm = 0 cosTBTO cosTBz = 0 KSFW et KSFW mm2 KSFW hso00 - 25 2 KSFW hso02 = 6 12 KSFW hso04 KSFW hso10 - 8 KSFW hso12 -2 KSFW hso14 KSFW hso20 KSFW hso22 KSFW hso24 KSFW hoo0 KSFW hool KSFW hoo2 KSFW hoo3 KSFW hoo4 -1 CC 1 - 0 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 0 0 .19 .16 * CC 8 .7 0 CC 9 DeltaZ DeltaZErr = 0 chiProb = 2 -1 deltaE cosTBTO cosTBz KSFW_et Mbc 2 thrustOm KSFW_hso20 KSFW_hso00 KSFW_hso02 KSFW hso04 KSFW_hso10 KSFW_hso14 KSFW_hso22 KSFW_mm2 KSFW_hsol2

Signal Region B⁺

- For each plot select CR on the other variable
- Background and signal normalized to L_{DATA}
- Signal removed from bbbar montecarlo

$$\begin{array}{c} B^{\pm} \to \eta' K^{\pm} \\ \eta' \to \rho \end{array}$$

Try to fit signal: only MC + signal injection

- Cut Mbc>5.27 GeV/c² and -7<De<+5 MeV in the other plot.
 1D plot shown (2D implemented)
- Injected 31 events, seen 35.7+/-9 (Mbc) and 28+/-7 (De)

Try to fit signal: Data

 $\Delta \{E\} [GeV]$

0.1

12

10

0

-0.1

- Clear signal visible
 - Projection w/ selection on other variable Ο
- seen 45.7+/-10 (Mbc) and 29.1.4+/-14 (De)
 - Expected: 31 Ο
- Still 1D fit: later for 2D

$B^+ \rightarrow \eta' (\rightarrow \eta (\gamma \gamma) \pi^+ \pi^-) K^+$

- Simple signal selection
 - Signal eff 32% (40% reconstruction only)
 - SxF 2.4 (vs 7.1 %)
 - w/ CS eff: 32 * 0.75 = 24%
 - Belle was 22%

B⁺ -> η' (->η (ɣɣ) π⁺π⁻) K⁺

Data vs MC with expected signal

B⁺ -> η' (->η (ɣɣ) π⁺π⁻) K⁺ 2D FIT

- 2D fit for Mbc and DeltaE
 - Fit result: 29.0 +/- 10 evevents
 - Expected 31 events
- Fit on MC and Toy studies (injected 10-100) looks good

Expected signal (MC + injection)

- Small signal yield with current lumi
 - but very low background
- Closure test ok: injected 6, fit 9.5 +/- 3.3