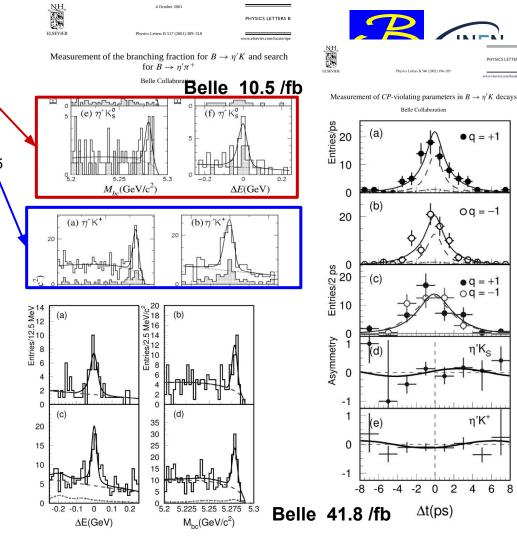


$B \rightarrow \eta' K rediscovery$ B->Charmless meeting 04/11/2020


Stefano Lacaprara, Valeria Fioroni INFN Padova & University

Motivation

- BR(B⁰ \rightarrow **η**' K⁰_S) = (6.6 ± 0.4) × 10⁻⁵ ° C_{CP} (B⁰ \rightarrow η' K⁰) = -0.06 ± 0.04 ° -A_{CP}=S_{CP} (B⁰ \rightarrow η' K⁰_S) = 0.63 ± 0.06
- BR(B⁺ $\rightarrow \eta' K^+$) = (7.06 ± 0.25) × 10⁻⁵
- Seen by Belle with 10/fb
 - TDCPV with 41.8 /fb

$$\begin{split} \mathcal{S}_{\eta'K_S^0} = & 0.28 \pm 0.55 (\text{stat})^{+0.07}_{-0.08} (\text{syst}), \\ \mathcal{A}_{\eta'K_S^0} = & 0.13 \pm 0.32 (\text{stat})^{+0.09}_{-0.06} (\text{syst}). \end{split}$$

- Hadronic penguin mediated decay
 - Precise measurement a key for NP
- First step is rediscovery

Strategy

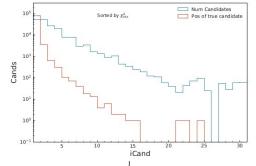
- For the time being: focus on rediscovery
 - Setup selection, Continuum suppression, signal extraction
 - Next iteration TDCPV
- Use channels: $\eta' \to \eta (\to \gamma \gamma) \pi^+ \pi^- \quad \eta' \to \rho (\to \pi^+ \pi^-) \gamma$
 - $O \qquad \mathsf{BR}(\eta \rightarrow \pi^+ \pi^- \pi^0) \sim \frac{1}{2} \text{ of } \gamma \gamma \text{ and reco efficiency lower (from } \eta \text{ rediscovery }_{\text{Belle2-NOTE-PH-2018-038}})$
 - Hanwook Bae (Ushiroda-san's student) is looking into that
 - Maybe in some future also more with more π^0 ($\eta' \rightarrow \eta(-3\pi^0)\pi^0\pi^0$ anyone interested)
- Background:
 - Continuum
 - Peaking
 - SxF
- Optimize selection to reduce background and SxF
 - B2TIP studies showed that SxF is significant
 - Continuum suppression: start simple, then complicate
- Signal extraction with UML on Mbc and ΔE plus CS variables
 - Validate UML on Toy MC
- Blind on data for signal region until blessing from RC

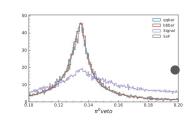
Dataset and Technicalities

- Data: proc11 + prompt (bucket9-15 included)
 - L=8.86+ 54.0= 62.8 /fb
- Montecarlo MC13a (Run independent, BGx1)
 - qqbar+ taus L=500 /fb
 - \circ bbbar (charged and mixed) L=1000 /fb
 - Using unskimmed dataset
 - Study on skimming shows ~40% eff loss (pi:loose vs pi:all)
- Signal: MC13a
 - 20K events for channel: L~9-72 /ab (depending on channel)
- Release: light-2002-janus
- Analysis stash https://stash.desy.de/users/lacaprar/repos/etaprime/browse
- B2Note BELLE2-NOTE-PH-2020-053 https://docs.belle2.org/record/1976?ln=en
- Aiming for Moriond2021

dataset	experiment	$\int Ldt \; [\mathrm{pb}^{-1}]$
proc11	7	425.5 ± 0.3
proc11	8	4597.4 ± 0.9
proc11	10	3741.3 ± 1.1
bucket9	12	2768.7 ± 1.1
bucket10	12	10361.1 ± 2.1
bucket11	12	12687.1 ± 2.3
bucket13	12	5055.1 ± 1.5
bucket14	12	9986.9 ± 2.1
bucket15	12	$13171.6 \pm 2.4^{\mathrm{a}}$
proc11	7 + 8 + 10	8764.2 ± 2.5
prompt	12	54030.5 ± 4.2
total	7-12	$62794.7 \pm 4.4^{\rm b}$

Selection η ': two channels

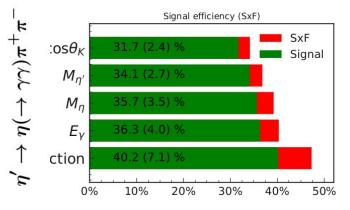

$$\eta' o \eta (o \gamma \gamma) \pi^+ \pi^-$$

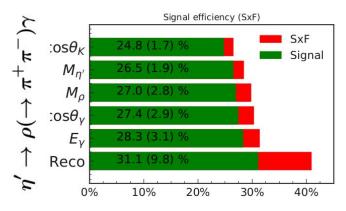

- Gamma:loose
 - E_v>150 MeV
 - \circ 0.5 < M_{yy} < 0.57 GeV/c²
- Pi:all
 - opposite charge

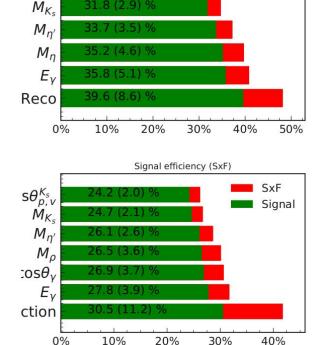
$$\eta^\prime o
ho (o \pi^+\pi^-) \gamma$$

- Gamma:loose
 - E_v>150 MeV
 - \circ cos $\theta_{\gamma} > -0.64$
 - \circ No pi0 veto: losing too much signal
- Pi:loose
 - \circ 0.47 < M _{$\pi^+\pi^-$} < 1.07 GeV/c²
- $0.92 < M_{\eta} < 1.0 \text{ GeV/c}^2$

- K:loose
 - Global PID(K) >0.1
 - \circ cos $\theta_{\rm K}$ > -0.5
- K_S0:merged (V0+hh)
 - \circ 0.49 < M_{π+π-}< 0.51 GeV/c²
 - Vertex fit not failing
 - \circ cos $\theta_{p,v} > 0.99$
 - (angle between momentum and vertex vector)
 - **B**₀ and **B**⁺ decay chain fitted with treeFit algo
 - $\circ \qquad \text{Mass constraint on } \eta, \, \eta',$
 - NO IP vertex constraint
 - Keep only one candidate per event¹ sortex by vtx pValue

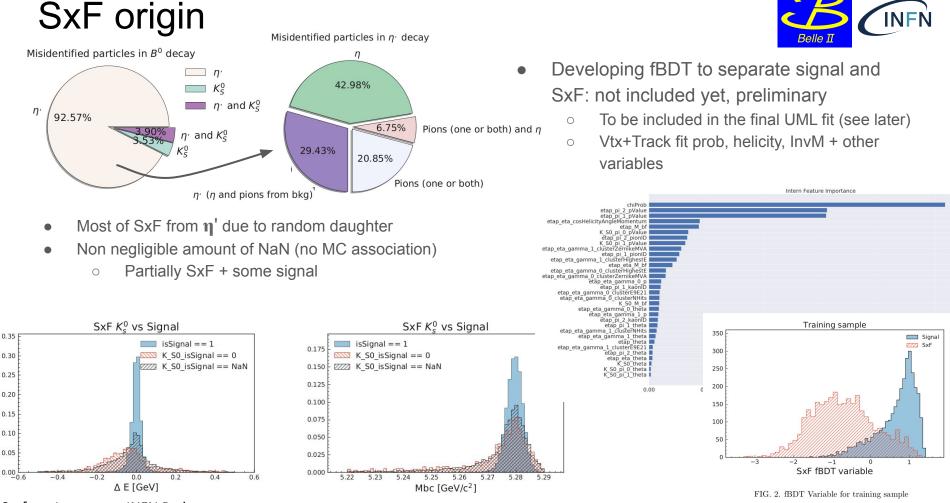





Signal Efficiency (w/o CS selection) B^{\pm}

 $s\theta_{p,v}^{K_s}$

Signal efficiency (SxF)


31.3 (2.8) %

31.8 (2.9) %

SxF

Signal

- Efficiency:
- ~30% for η'->ηππ
- ~25% for **n**'->**py**
 - SxF from 10% (just reconstruction) to $\sim 2\%$ (after selection)

Continuum suppression

- Two strategies:
 - \circ $\,$ cut on cosTBT0 and R2 $\,$
 - fastBDT on many (27) variables

4.5

4.0

3.5

3.0

2.5 2.0

1.5 1.0 0.5

0.0

2500

2000

1500

1000

500

- In both case selection defined by maximizing FoM = S/√ (S+B) in signal region
- **SR**:
 - \circ M_{bc}>5.27 GeV/c²
 - -0.07 < ΔE <0.05 GeV
- Eff ~63%Signal

Dbbar D bbbar 12 Signal Signal SxF SxF 10 0.2 0.4 0.6 0.8 0.2 0.4 0.8 0.6 1.0 **cosTBTO** $\int Ldt = 62.52 \ fb^{-1}$ $\times \int t dt = 62.52 \ fb^{-1}$ Belle II - Preliminar Belle II - Preliminary ccbar ccbar 1.0 uubar uubar ddbar ddbar ssbar ssbar charged charged mixed mixed taupai taupair C Signal Signal + Data + Data 0. 0.2

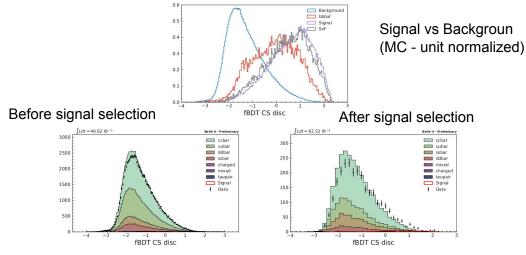
Background

0.6

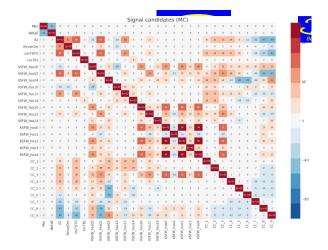
 R_2

Background

0.8


 $\cos(\theta_B - \theta_O)$ [GeV]

1.0


Continuum suppression fBDT

• FastBDT

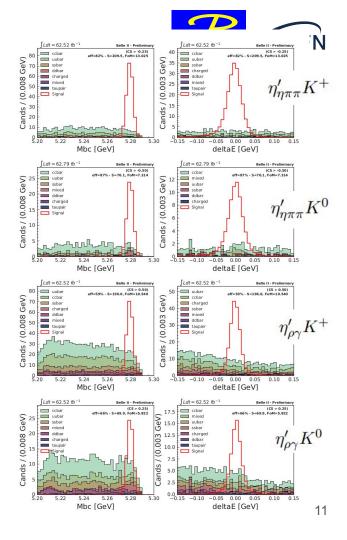
- \circ ~ Excluding all variables correlated with $\rm M_{hc}$ or ΔE
- Most discriminating cosTBT0 and KSFW-hso12/02/hoo2
- Not so discriminating against Peaking and SxF (expected)
- Selection max FoM: eff ~80%
 - (~60% for B⁺->η'(->ργ)K⁺: larger background)

• Or no selection and use it directly on UML fit

		Int	em Featur	e Importan	ce		
CosTBTO SFW_hso12 SFW_hso22 (SFW_hso24 SFW_hso24 SFW_hso24 SFW_hso24 SFW_hso10 CC_3 SFW_hso10 CC_3 SFW_hso20 SFW_hso24 R2 SFW_hso24 R2 SFW_hso14 CC_7 (SFW_hso24 R2 SFW_hso14 CC_7 (SFW_hso14 CC_7 (SFW_hso14 CC_7 (SFW_hso34 (SFW_hso34 CC_7 (SFW_hso34 (SF	-					-	
0.0	0.1	0.2 Intern I	0.3 Feature Im	0.4 portance v	0.5 ariable	0.6	0.7 9

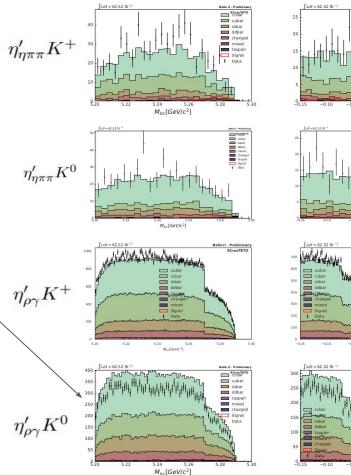
Signal efficiency (including CS)

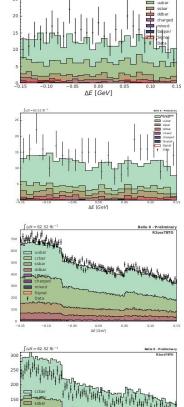
- CS selection based on FoM on signal region
 - Two CS plus none (no cut but use CS directly in UML)
 - For fBDT best FoM different for each channel
 - Hard cut for B⁺->η'(->ργ)K⁺ due to large background
 - Not so for cosTBTO/R2 CS
- Belle used a Likelihood based CS with selection based on FoM
 - Bellell efficiency better for $\eta' \to \eta (\to \gamma \gamma) \pi^+ \pi^-$ similar or much better for $\eta' \to \rho (\to \pi^+ \pi^-) \gamma$
 - Much better if no CS selection is applied


Channel	CS type	$\begin{array}{c} B^{\pm} \to \eta' K^{\pm} \\ \eta' \to \eta \end{array}$	$\begin{vmatrix} B^0 \to \eta' K_S^0 \\ p \pi^+ \pi^- \end{vmatrix}$	$\begin{vmatrix} B^{\pm} \to \eta' K^{\pm} \\ \eta' - \end{vmatrix}$	$\begin{vmatrix} B^0 \to \eta' K_S^0 \\ \to \rho \gamma \end{vmatrix}$	
		arepsilon %	$\varepsilon~\%$	$\varepsilon~\%$	$\varepsilon\%$	
Selection		31.7 ± 0.1	31.3 ± 0.1	24.8 ± 0.1	25.2 ± 0.1	
\mathbf{CS}	R2+cosTBT0	63.4 ± 0.2	63.0 ± 0.2	62.6 ± 0.2	61.7 ± 0.2	
Total	R2+COSIBIO	20.1 ± 0.2	19.7 ± 0.2	15.5 ± 0.2	15.6 ± 0.2	
CS_{fBDT} :	>	-0.25	-0.5	0.5	0.25 👞	
\mathbf{CS}	fBDT	82.2 ± 0.2	87.5 ± 0.1	58.7 ± 0.2	81.0 ± 0.2	
Total		26.1 ± 0.2	27.7 ± 0.2	14.8 ± 0.2	20.4 ± 0.2	•
BELLE		21.7	20.8	14.2	11.5	

CS w/ R2+ cosTBTO selection

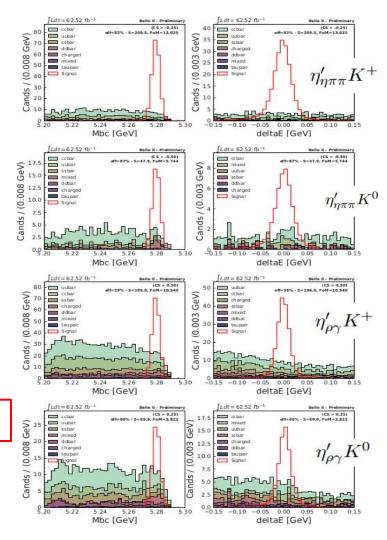
- Cut optimising FoM S/sqrt(S+B) on signal region
 - R2<0.5
 - cosTBTO<0.7
- Expected (MC) signal and background for four channels
 - Normalized to data L


an integrated luminosity of $62 \, \text{fb}^{-1}$


Channel				$B^{\pm} \to \eta' K^{\pm}$	$B^0 \to \eta' K_S^0$	
Channel	Region			$\eta' o ho \gamma$		
Continuum	\mathbf{SB}	628.0 ± 9.0	180.0 ± 5.0	5921.0 ± 27.0	24880.0 ± 60.0	
Continuum	\mathbf{SR}	22.0 ± 1.7	6.8 ± 0.9	256.0 ± 6.0	1129.0 ± 12.0	
Peaking	SB	14.3 ± 0.9	5.6 ± 0.6	342.0 ± 5.0	194.0 ± 3.0	
 Teaking	\mathbf{SR}	1.5 ± 0.31	3.4 ± 0.5	29.9 ± 1.4	22.2 ± 1.2	
Signal	SB	10.67 ± 0.21	3.38 ± 0.07	12.12 ± 0.29	7.69 ± 0.13	
Signai	\mathbf{SR}	161.5 ± 0.8	50.45 ± 0.25	208.4 ± 1.2	105.5 ± 0.5	
Data	SB	758 ± 28.0	202 ± 14.0	6440 ± 80.0	21040 ± 150.0	
Data	\mathbf{SR}	blind				

Side band distribution

- Data MC comparison in side bands
 - \circ M_{bc}<5.27 GeV/c²
 - \circ $\ \Delta E{>}-0.07~GeV$ or $\Delta E{>}0.05~GeV$
- MC normalized to data integrated luminosity
 - Signal present (in red)
- Agreement is generally good
 - \circ Some issue in absolute normalization for $\eta'_{
 ho\gamma}K^0$
 - Background will be extracted from data, so ok
- $\eta'(->p\gamma)$ has significantly more background than $\eta' \to \eta(\to \gamma\gamma)\pi^+\pi^-$

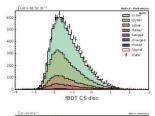

∆E [GeV

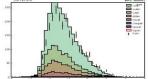
CS w/ fBDT

- Cut optimised with FoM=S/sqrt(S+B) on signal region
 - Higher efficiency wrt cosTBTO/R2 but also higher background
 - Especially for η'(->ργ)
- Expected signal and background
 - Normalized to data L

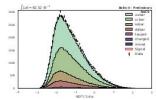
responding	to	an	integrated	luminosity	of $62\mathrm{fb}^{-1}$

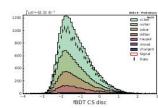
Channel		$B^{\pm} \to \eta' K^{\pm}$	$B^0 \to \eta' K_S^0$	$B^{\pm} \to \eta' K^{\pm}$	$B^0 \to \eta' K_S^0$
Channel	Region			$\eta' o$	$ ho\gamma$
Continuum	\mathbf{SB}	1182.0 ± 12.0	471.0 ± 8.0	3179.0 ± 20.0	1232.0 ± 12.0
Continuum	\mathbf{SR}	47.0 ± 2.4	16.5 ± 1.4	124.0 ± 4.0	60.3 ± 2.7
Peaking	SB	21.8 ± 1.2	8.9 ± 0.7	298.0 ± 4.0	103.9 ± 2.5
Feaking	\mathbf{SR}	2.1 ± 0.4	5.1 ± 0.6	25.9 ± 1.3	13.8 ± 0.9
Signal	SB	13.89 ± 0.24	4.83 ± 0.08	10.67 ± 0.27	4.29 ± 0.1
	\mathbf{SR}	209.5 ± 0.9	70.08 ± 0.3	196.0 ± 1.1	69.9 ± 0.4
Data	SB	1450 ± 40.0	535 ± 23.0	3760 ± 60.0	1220 ± 30.0
Dava	\mathbf{SR}		bl	lind	

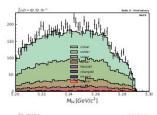

CS w/ fBDT no cut

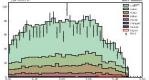

• Expected yield

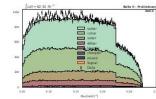
Montecarlo and data without	CS selection,	corresponding	to an integrated	luminosity of 62fb^{-1}
	$B^{\pm} \rightarrow n' K^{\pm}$	$ B^0 \rightarrow \eta' K_s^0 $	$B^{\pm} \rightarrow n' K^{\pm}$	$B^0 \rightarrow n' K_s^0$

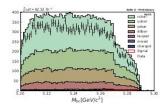

Channel		$B^+ \rightarrow \eta K^-$	$B^{\circ} \rightarrow \eta K_S^{\circ}$	$B^+ \rightarrow \eta K^-$	$B^{\circ} \rightarrow \eta K_S^{\circ}$	
Channel	Region	$\eta' \to \eta$	$\pi^+\pi^-$	$\eta' \rightarrow$	$\rho\gamma$	
Continuum	SB	9690.0 ± 30.0	2699.0 ± 18.0	99270.0 ± 110.0	24880.0 ± 60.0	
Continuum	\mathbf{SR}	386.0 ± 7.0	105.0 ± 4.0	4614.0 ± 24.0	1129.0 ± 12.0	
Peaking	SB	36.4 ± 1.5	12.6 ± 0.9	666.0 ± 6.0	194.0 ± 3.0	
reaking	SR	3.1 ± 0.4	6.1 ± 0.6	52.3 ± 1.8	22.2 ± 1.2	
Ciana al	SB	17.79 ± 0.27	3.98 ± 0.06	22.8 ± 0.4	7.69 ± 0.13	
Signal	\mathbf{SR}	254.8 ± 1.0	54.75 ± 0.22	334.1 ± 1.5	105.5 ± 0.5	
Data	SB	10520 ± 100.0	2450 ± 50.0	103500 ± 300.0	21040 ± 150.0	
Data	\mathbf{SR}	blind				

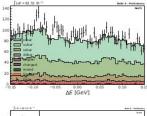

Signal extraction via 3 variables

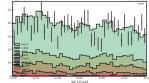


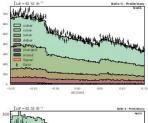


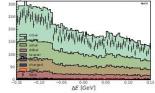


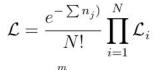







M_{pd} GeV/c²

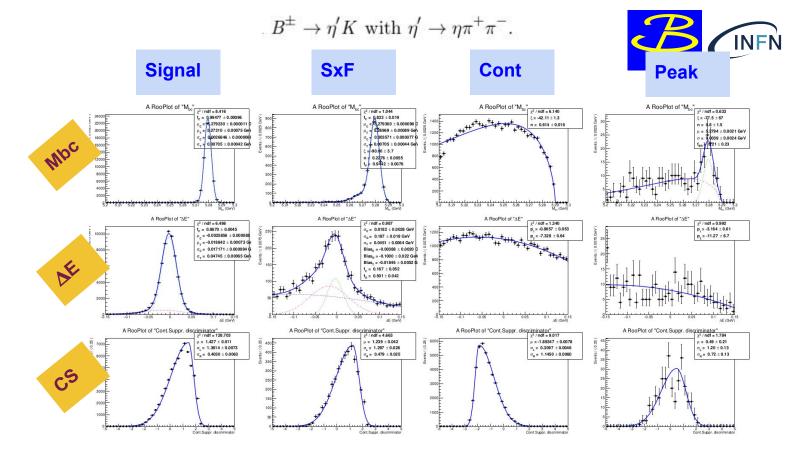



CS Mbc Control region only Mbc<5.27 GeV/c² Δ E<-0.07 OR >0.05 GeV

Stefano Lacaprara, INFN Padova

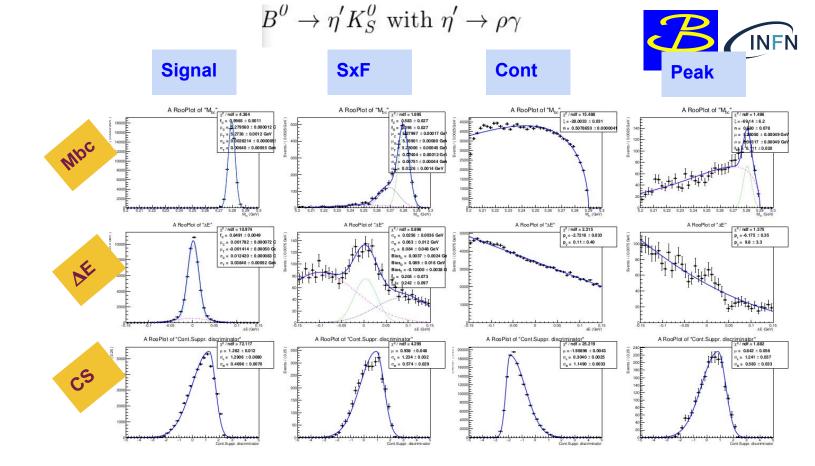

UML fit

UML fit


- $x_i = M_{bc}, \Delta E, \text{ and } CS_{fBDT}$ • No correlation included
- Three components (m=3):
 - Signal+SxF
 - Ratio fixed from MC
 - Will add also SxF in future, now #SxF is anyhow low
 - Peaking
 - Continuum
- Get **pdf** for three components on MC
- Extract yield from Data UML
 - Still using RooRarFit interface (from BaBar, thanks to Ale) to RooFit
 - Very powerful, not so friendly at times, no real control on the code.
 - Would like to move to a Bellell tool at some point
- Validate tool on Toys to check linearity

$$\mathcal{L}_i = \sum_{j=1}^m n_j \mathcal{P}_j(\vec{x}_i)$$

	Signal	SxF	$q \ ar{q}$	$B \ \overline{B}$
	Е	$B \to \eta' K, \eta' K$	$\eta' \to \eta \tau$	$\pi^+\pi^-$
$M_{\rm bc}$	Gauss(2)	Gauss(3)	Argus	Argus+Gauss(1)
ΔE	Gauss(2)	Gauss(2)	$\operatorname{Pol}(2)$	Pol(2)/Gauss(2)
CS		Bifurc	ated G	auss
		$B \to \eta' K$, $\eta' \rightarrow$	$\rho\gamma$
$M_{\rm bc}$	Gauss(2)	Gauss(3)	Argus	Argus+Gauss(1)
ΔE	Gauss(2)	Gauss(2)	$\operatorname{Pol}(2)$	$\operatorname{Pol}(2)$
CS		Bifurc	ated G	auss



Pdf defined for all four channels CS pdf ~identical, as expected

Fit with Sgn+SxF together, ratio fixed from MS

Stefano Lacaprara, INFN Padova

PDF

Pdf defined for all four channels CS pdf ~identical, as expected

Fit with Sgn+SxF together, ratio fixed from MS

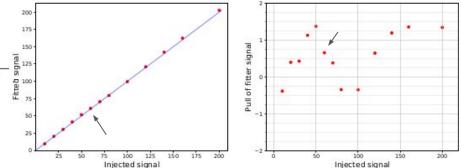
Stefano Lacaprara, INFN Padova

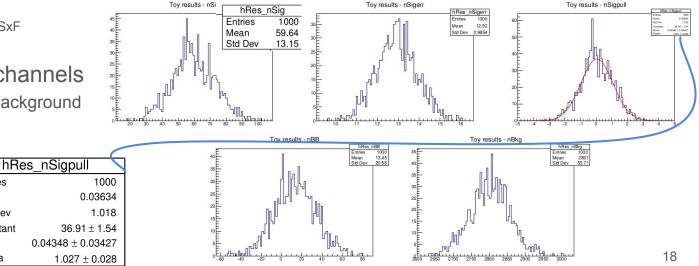
PDF

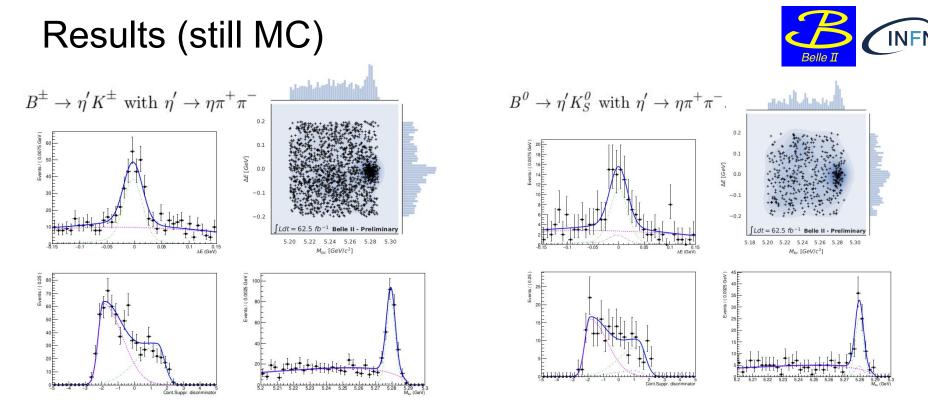
Toy MC for linearity

- Tested for $B^0 \to \eta' K_S^0$ with $\eta' \to \eta \pi^+ \pi^{-\frac{1}{2}} \pi^{\frac{1}{2}}$
 - 0 Linearity
 - Fitted vs injected signal yield within 0 ~1 sigma
- 1000 Toys for expected signal and background

 - N_{sig}=58.7 0
 - Includes also SxF
 - Good pulls 0
- Ok also for other channels
 - In spite of large background Ο

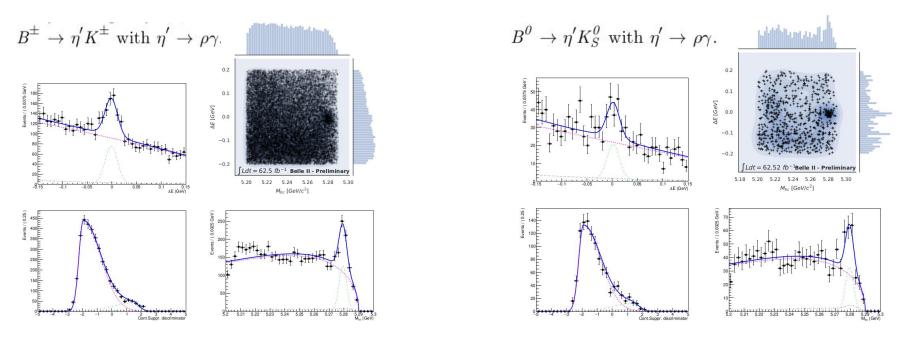

Entries Mean


Std Dev


Constant

Mean

Sigma



• M_{bc} , ΔE , and CS_{fBDT} for signal enriched region ($\mathscr{L}_{R} > 0.7$) $\circ M_{bc}$ vs ΔE appling CS_{fBDT} selection which optimize FoM

Results (still MC)

- M_{bc} , ΔE , and CS_{fBDT} for signal enriched region ($\mathscr{L}_{R} > 0.7$)
 - $\circ~~$ M $_{\rm bc}$ vs ΔE appling CS $_{\rm fBDT}$ selection which optimize FoM
 - Charged state with large background, but still well visible.

Conclusion and outlook

- $B \rightarrow \eta$ ' K rediscovery analysis in good shape
 - Efficiency similar or better than Belle
 - UML tested and working
 - waiting for WG conveener green light for RC
- Documentation ready and available
- Feedback is welcome!

TABLE 12. Summary of results for the four channels, with an integrate luminosity of $\mathcal{L} = 65.8 \,\mathrm{fb}^{-1}$. Measured signal yield (n_{sig}) , statistical significance (sig), efficency (ε) , total efficiency including the secondary BR (εB) , and the measured B. Uncertainty are statistical only. Warning: the current results are from MC, as the data is blind in the signal region.

Mode	n_{sig}	sig	arepsilon(%)	arepsilon B(%)	$B \ (10^{-6})$
$B^{\pm} \to \eta' (\to \eta (\to \gamma \gamma) \pi^+ \pi^-) K^{\pm}$	254 ± 19	23.0	31.3 ± 0.1	5.45	70.7 ± 5.1
$B^{\pm} ightarrow \eta'(ho(ightarrow \pi^+\pi^-)\gamma)K^{\pm}$	369 ± 26	23.7	24.8 ± 0.1	7.19	77.8 ± 5.5
$B^0 \to \eta' (\to \eta (\to \gamma \gamma) \pi^+ \pi^-) K^0_S$	7341 ± 13.5	6.1	31.3 ± 0.1	1.81	61.9 ± 11.4
$B^0 o \eta'(ho(o \pi^+\pi^-)\gamma)K^0_S$	100.3 ± 14.5	11.0	24.8 ± 0.1	2.47	62.2 ± 8.5

Outlook

- Add more channel $\eta' \rightarrow \eta (\rightarrow \pi^+ \pi^- \pi^0) \pi^+ \pi^-$
- SxF from UML using fBDT (in progress)
 - Neither needed for Moriond
- Add also K₁ modes!
- Start with TDCPV analysis
 - \circ Re-use from Δt resolution from J/ ψ K_s analysis
 - Re-use also CP fitting tools
 - Flavour tagger already included and validated
- Belle/BaBar results done with 772E6 / 476E6 BB so the measurment will not be competitive
 - However, will demonstrate the capability of BelleII to perform TDCPV on a b->qqs transition

Backup

Selections

- $\eta' \to \eta \pi^+ \pi^-$
 - $E_{\gamma} > 150 \text{ MeV}$
 - $0.5 < M_{\eta} < 0.57 \ \frac{GeV}{c^2}$
 - $0.92 < M_{\eta'} < 1.0 \ \frac{GeV}{c^2}$

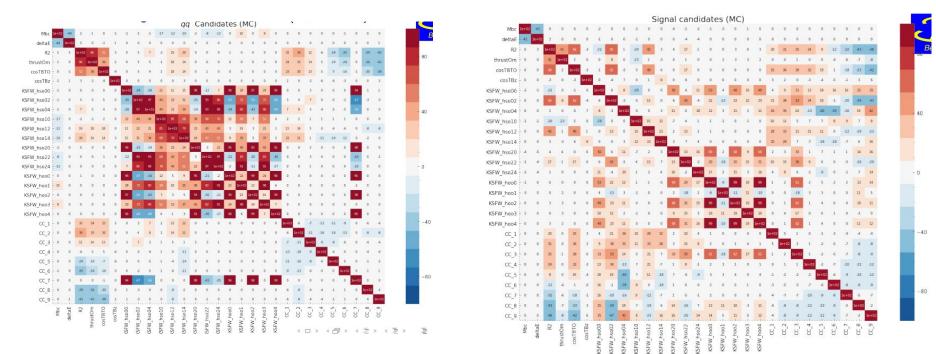
- $\eta' \to \rho \gamma$
 - $E_{\gamma} > 150 \text{ MeV}$
 - $\cos\theta_{\gamma} > -0.64$
 - $0.51 < M_{\rho} < 1.0 \ \frac{GeV}{c^2}$
 - $0.92 < M_{\eta'} < 1.0 \ \frac{GeV}{c^2}$

$$K$$
• $\cos \theta_K > -0.5$

 $\begin{array}{l} K_s^0 \\ \bullet \ \cos\!\theta_{p,v} > -0.64 \\ \bullet \ 0.49 < M_{K_s^0} < 0.51 \ \frac{GeV}{c^2} \end{array}$

CS fBDT

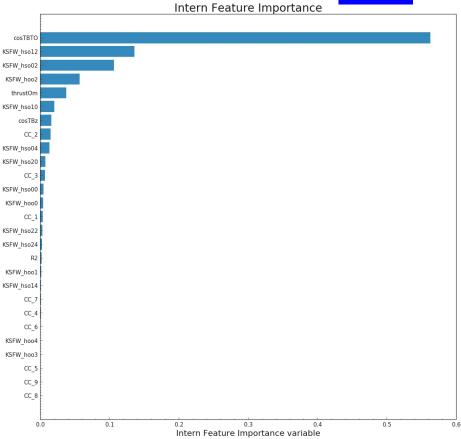
- So far, used only R2 and cos(TB-TO) as Continuum Suppression variables
 - Hard cut on both
- Move to fBDT
 - Variables considered
 - No TagV variables


	Variable nan	ne
KSFW_hso00	KSFW_hoo0	CC_1
KSFW_hso02	$KSFW_hoo1$	CC_2
KSFW_hso04	KSFW_hoo2	CC_3
KSFW_hso10	KSFW_hoo3	CC_4
KSFW_hso12	KSFW_hoo4	CC_5
KSFW_hso14	R2	CC_6
KSFW_hso20	thrustOm	CC_7
KSFW_hso22	cosTBTO	CC_8
KSFW_hso24	cosTBz	CC_9

. . .

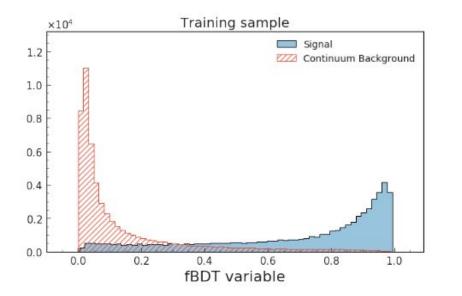
Correlations

- Large correlation w/ Mbc and DeltaE for mme and et (excluded)
- For continuum also for some KSFW moments, not for signal (kept)



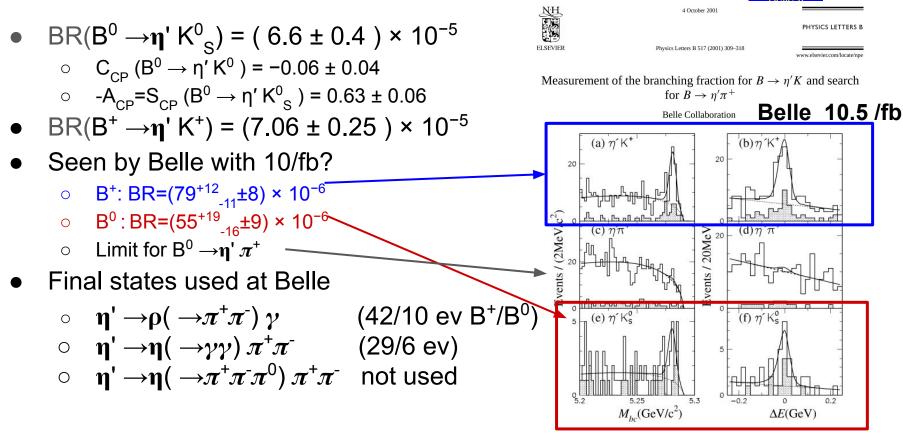
Continuum

Intern feature importance


- cos(TB-TB) by far the most discriminating variables
- Most of correlated variables not very important
- Tried with less variables, basically same performances
- Could remove many w/o any significant change

Training (and Validation)

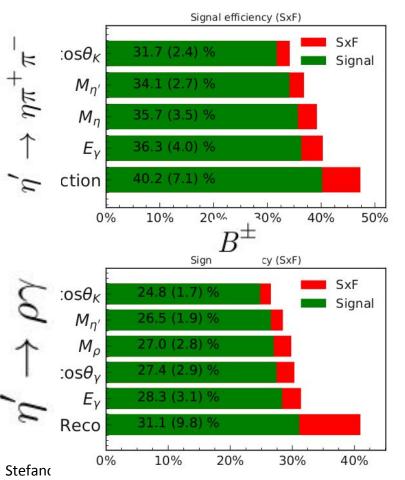
• Dataset divided in training (50%) - Validation (30%) - Test (20%)

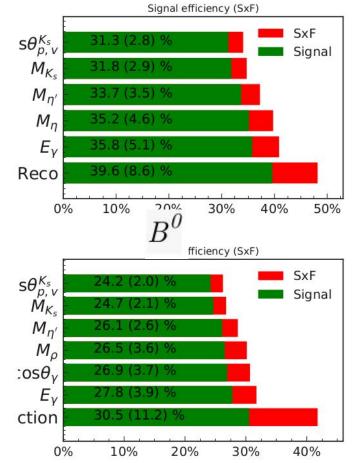

Confusion matrix:

	pred bkg	pred sgn
true bkg	0.92	0.08
true sgn	0.25	0.75

Score (fBDT<>0.5) 0.8666

Same performances for validation sample


Motivation



Shaded $\eta' \rightarrow \eta \pi \pi$, white all (including $\eta' \rightarrow \rho \gamma$)

Selection efficiency

• High selection efficiency 24-30% • SxF 10->2% no CS cut (next slides)

Stefano Lacaprara, INFN Padova

Continuum suppression

4.0

3.5

3.0 2.5

2.0

1.0

0.5

0.0 L 0.0

6000

5000

4000

3000

2000

1000

0.0

0.2

0.2

Ldt = 34.58 fb⁻¹

0.4

R2

- Using only **R2** and **CosTBTO**
- Started MVA but still some correlation with data not understood
 - For next iteration
- Optimization of cut based on
- FoM=S/sqrt(S + B)
 - S and B in signal region from MC
 - Mbc>5.27
 - -70<De<50 MeV
- R2<0.5
- CosTBTO<0.7
 - Probably too hard

gqbar

bbbar

Signal

SxF

alahan .

0.8

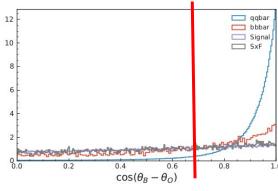
ddbar

taupair

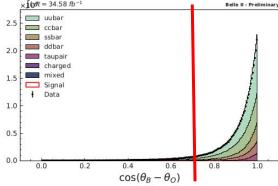
charged

+ Data

mixed Signal


1.0

0.6


0.6

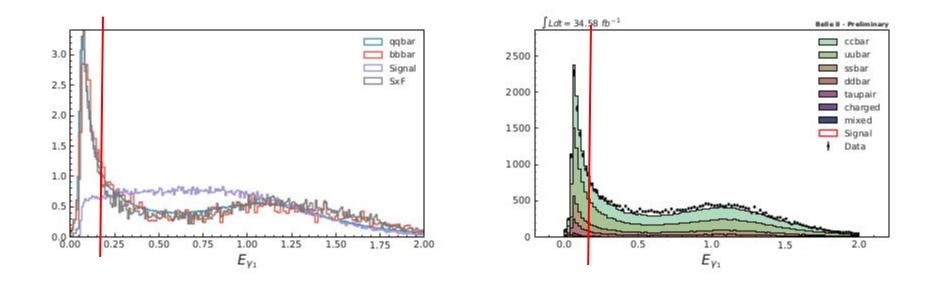
0.4

0.8

cosTBTO

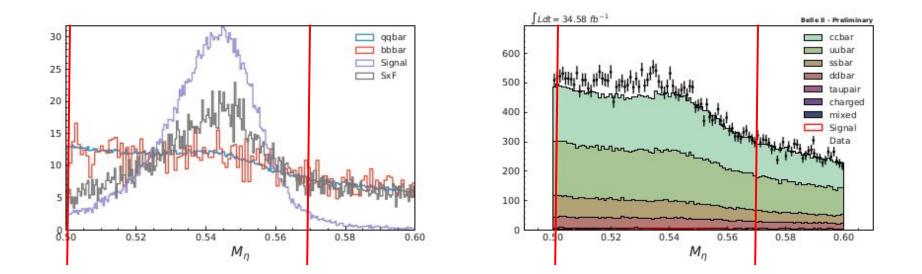
 \cup

Branching fractions

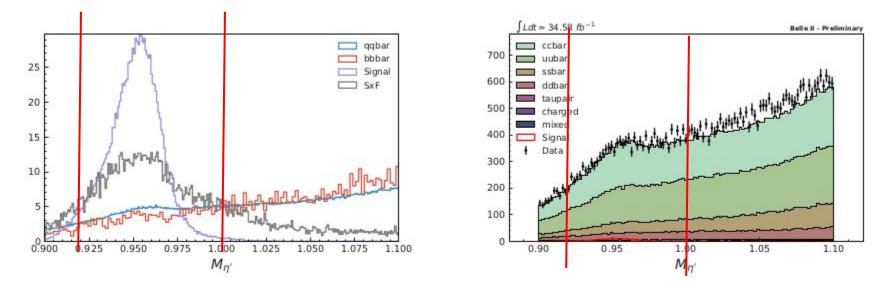


Mode	Decay channel	Branching fraction
	inclusive	$7.06 imes 10^{-5}$
$B^+ \to \eta' K^+$	$\eta' o \eta (o \gamma \gamma) \pi^+ \pi^-$	$1.19 imes 10^{-5}$
	$\eta' o ho (o \pi^+ \pi^-) \gamma$	2.04×10^{-5}
	total	3.23×10^{-5}
	includive	6.6×10^{-5}
$B^0 \to \eta' K$	$\eta' o \eta (o \gamma \gamma) \pi^+ \pi^-$	5.54×10^{-6}
	$\eta' o ho (o \pi^+ \pi^-) \gamma$	9.54×10^{-6}
	total	1.51×10^{-5}

• Effective BR twice for charged state due to K+ vs Ks

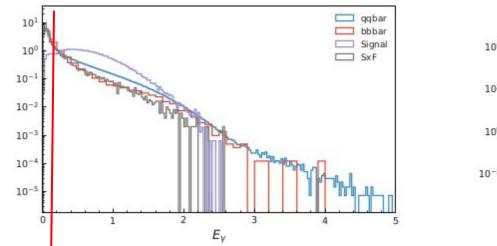

E gamma (eta->gamma gamma)

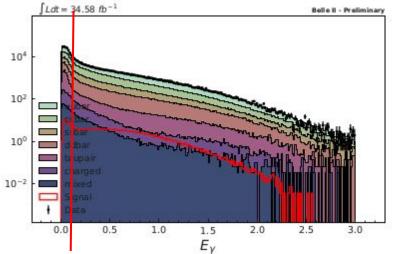
M(eta)



eta->gg peak not well visible due to low gamma threshold (60 MeV)

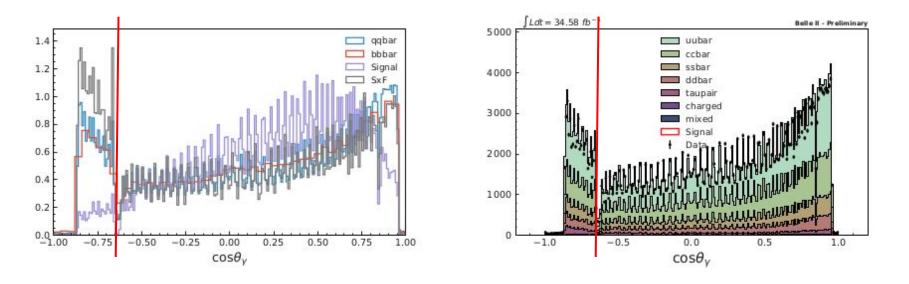
M(etaprime)

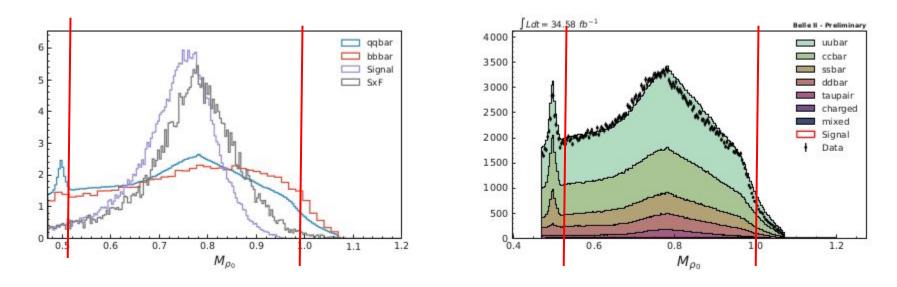




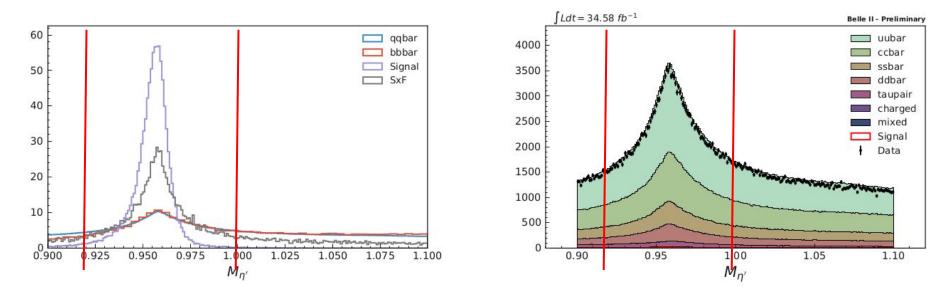
eta'->eta(gg)pipi peak not well visible due to low gamma threshold (60 MeV) and pion ones

E(gamma) from eta'->rho gamma




cos(theta gamma)

M(pi+ pi-)



- Clear Ks peak
- Shift between rho peak for signal and SxF

M(etaprime)

cos(alpha) (momentum vs vertex)

Belle II - Preliminary

rged ed

pair

.00

Belle II - Preliminary

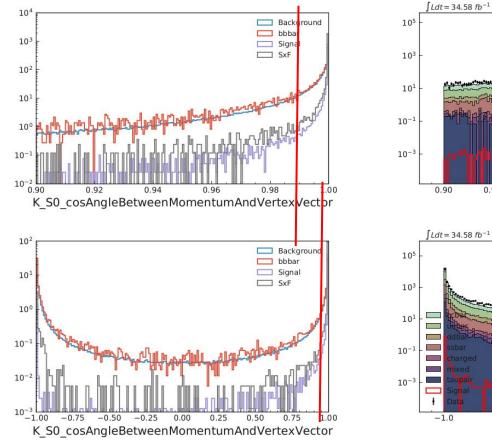
1.0

0.94

 $\cos(p, v)_{K_s}$

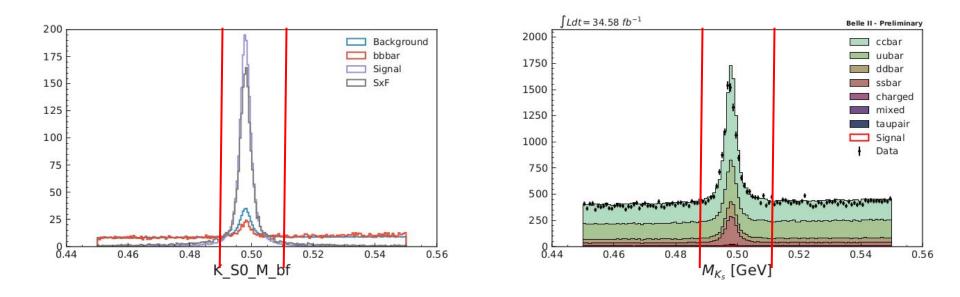
0.0

 $\cos(p, v)_{K_c}$

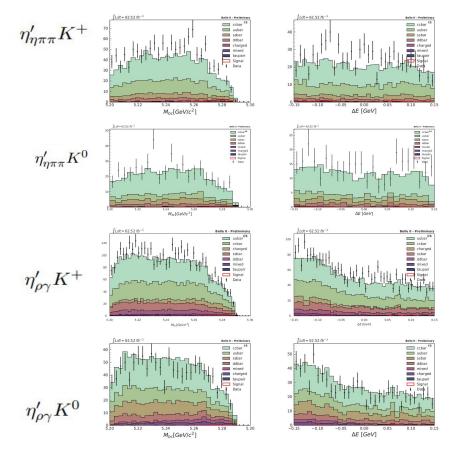

0.92

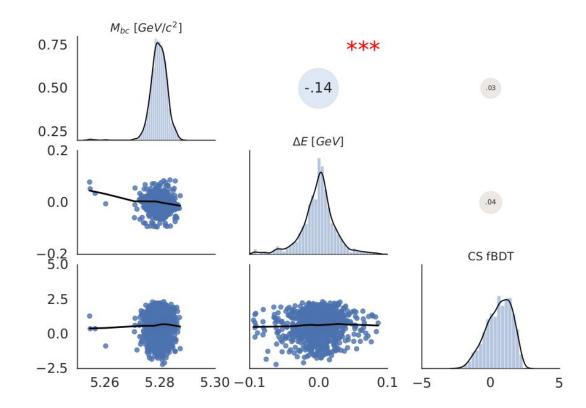
-0.5

0.96


0.98

0.5


M(Ks)


Control region with CS fBDT cut

UML variable correlation

AnaSkim cuts

- Main difference between Skim and Reco is list of pions
 - Skim uses pi:loose
 - Reco uses pi:all

The additional cuts implemented in pi:loose are:

- $dr < 0.5 \ cm$) Distance between the B decay vertex
- |*dz*| < 2 cm
- and the interaction one.
- nCDCHits > 20
- *pionID* > 0.1,

but the relevant ones are the last two.

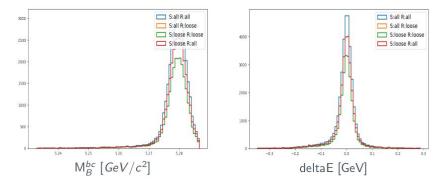
pi:all	pi:all+ nCDCHits	pi:all+ pionID	pi:all+pionID+ nCDCHits	pi:loose
43.8%	36.8%	33.8%	28.3%	28.4%

Reconstruction efficiency changing the pion list used.

nCDC hits and PID responsible for 40% loss

AnaSkim with pi:all

- Relative eff increase
 - o 62->74%
 - But not ~100% yet
 - Probably need to work on R2/cosTBT0 cut
- Impact on retention rate negligible
 - NB pi:all only in eta' skim!


using pi:loose for the skim

$$\epsilon_{c\bar{c}}^{bkg} = 5.7^{+0.2}_{-0.2}\% \qquad \epsilon_{u\bar{u}}^{bkg} = 5.2^{+0.2}_{-0.2}\%.$$

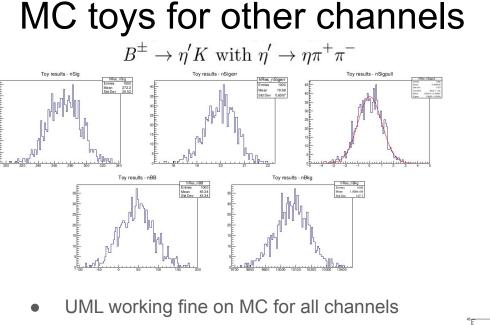
using pi:all for the skim

$$\epsilon_{c\bar{c}}^{bkg} = 5.8^{+0.2}_{-0.2}\% \qquad \epsilon_{u\bar{u}}^{bkg} = 5.3^{+0.2}_{-0.2}\%.$$

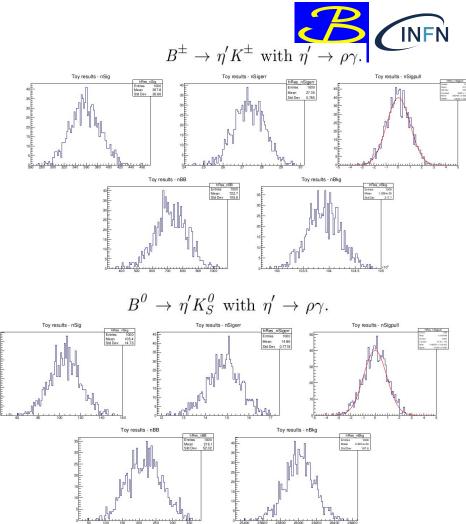
$$\begin{split} & \epsilon_{Skim_pi:all,Reco_pi:all} = 29.4 \pm 0.1 \% \\ & \to r_{Skim_pi:all,Reco_pi:all} = 74.4^{+0.2}_{-0.2} \% \\ & \epsilon_{Skim_pi:loose,Reco_pi:all} = 24.7 \pm 0.1 \% \\ & \to r_{Skim_pi:loose,Reco_pi:all} = 62.5^{+0.2}_{-0.2} \% \end{split}$$

Preliminary conclusion: it is safe and good to use pi:all for skimming, but not enough.

fBDT for CS background overlap (Valeria)



- CS using fBDT presented on 9/9/2020
- Use signal and Continuum after signal selection
 - Train together all four channels (charged/neutral, eta'->rho gamma, eta'->eta pipi)
 - Investigating possible overlap of background for different channels
 - Same background event for B0->eta' Ks and B+->eta' K+
 - Unlikely for different eta' decay modes
 - Possible for neutral/charged state


AND	B0ch1	B0ch3	Bpch1	Bpch3
B0ch1	22428 (100%)	$254 \ (\sim 1\%)$	$225 \ (\sim 1\%)$	$128 \ (\sim 0.5\%)$
B0ch3	$254 \ (\sim 0.1\%)$	$(207997) \ 100\%$	$150 \ (\sim 0.07\%)$	$3090~(\sim 1.5\%)$
Bpch1	$225 \ (\sim 0.3\%)$	$149 \ (\sim 0.2\%)$	80594(100%)	$1548 \ (\sim 2\%)$
Bpch3	128 (~ 0.015%)	$3100~(\sim 0.3\%)$	$1552 \ (\sim 0.2\%)$	830758 (100%)

Conclusion: overlap small/negligible.

Will exclude duplicates candidates anyhow, no difference for fBDT training

- Including η'(->pγ)
 - In spite of very large background 0

