

$B \rightarrow \eta' K rediscovery$ Status update TDCPV meeting 08/09/2020

Stefano Lacaprara, Valeria Fioroni INFN Padova & University

Quick recap and what's new

- Include bucket13 and 14 for exp12
 - Dataset: proc11 + prompt
 - o L=49.6 /fb
- Development of CS fBDT
- Include CS variable in UML fit
- Fix SxF fraction wrt signal in UML
- Toys with new UML fit

Selections

- $\eta' \to \eta \pi^+ \pi^-$
 - $E_{\gamma} > 150 \text{ MeV}$
 - $0.5 < M_{\eta} < 0.57 \ \frac{GeV}{c^2}$
 - $0.92 < M_{\eta'} < 1.0 \ \frac{GeV}{c^2}$

- $\eta' \to \rho \gamma$
 - $E_{\gamma} > 150 \text{ MeV}$
 - $\cos\theta_{\gamma} > -0.64$
 - $0.51 < M_{\rho} < 1.0 \ \frac{GeV}{c^2}$
 - $0.92 < M_{\eta'} < 1.0 \ \frac{GeV}{c^2}$

$$K$$
• $\cos\theta_K > -0.5$

 $egin{aligned} K_s^0 \ & \bullet \ \cos heta_{p,v} > -0.64 \ & \bullet \ 0.49 < M_{K_s^0} < 0.51 \ rac{GeV}{c^2} \end{aligned}$

CS fBDT

- So far, used only R2 and cos(TB-TO) as Continuum Suppression variables
 - Hard cut on both
- Move to fBDT
 - Variables considered
 - 31 variables have been selected looking at those used in BELLE2-NOTE-PH-2020-007 v2.0:
 - R2
 - cosTBT0
 - cosTBz
 - thrustOm
 - KSFWVariables (mm2): missing mass squared
 - KSFWVariables (et): transverse energy
 - Kakuno-Super-Fox-Wolfram moments
 - CLEO cones (CC_i, for i = 1, ..., 9)
 - DeltaZ and DeltaZErr
 - No TagV variables

Training

- Use signal and Continuum after signal selection
- Train together all four channels (charged/neutral, eta'->rho gamma, eta'->eta pipi)
 - Investigating possible overlap of background for different channels
 - Same background event for B0->eta' Ks and B+->eta' K+
 - Unlikely for different eta' decay modes
 - Possible for neutral/charged state
 - Test earlier with separate training, similar results

Correlations

- Large correlation w/ Mbc and DeltaE for mme and et (excluded)
- For continuum also for some KSFW moments, not for signal (kept)

Continuum

Intern feature importance

- cos(TB-TB) by far the most discriminating variables
- Most of correlated variables not very important
- Tried with less variables, basically same performances
- Could remove many w/o any significant change

Training (and Validation)

• Dataset divided in training (50%) - Validation (30%) - Test (20%)

Confusion matrix:

	pred bkg	pred sgn
true bkg	0.92	0.08
true sgn	0.25	0.75

Score (fBDT<>0.5) 0.8666

Same performances for validation sample

CS selection impact

- Mbc and De with cut on CS fBDT maximizing FoM=S/ $\sqrt{(S+B)}$ in signal region
- Eff=90% (was 62% with R2/cosTBTO cut)

CS usage in UML

- Use it in the UML to extract signal
 - Use non transformed fBDT for easier parametrization (bifurcate gauss)
- Previous rectangular cut on R2 CosTB-TO has 62% signal efficiency
 - Recover 40% of signal
- Good Data MC agreement after signal selections

UML improvement

- Fit variables:
 - ο Μ_{bc}, ΔΕ, CS
 - \circ Remove M(η') not very discriminating
- Signal MC shows that SxF is about 10% of sign after selections
 - Given the integrated luminosity, SxF is expected to be c the order few events
 - Not enough to separate that component from signal
- Fix ratio of SxF to Signal from MC, and fit with 3 components:
 - Continuum
 - Peaking
 - Signal+SxF
- Medium term plan: develop BDT Signal/SxF to be added to UML as 4th variables (as in B2TIP)

Correlation among fit variables

- Very limited correlation between CS and M_{bc} , ΔE
- Some between M_{bc} , ΔE

5

Toys

- UML tested with toys
 - Embedded for Signal and SxF
 - Pdf for Continuum and Peaking
- Good results for signal (including pools)
 - Ok for continuum, many 0s for peaking (avg ok)

Toy linearity

- Tested varying signal but keeping cont+peaking fixed
- A bit of underestimation of nSignal (well within uncert)

nSig vs. Signal injected

Delta nSig vs signal injected

UML fit results (on MC)

0.05

Stefano Lacaprara, INFN Padova

0.2

0.1

0.0

-0.1

-0.2

∆E [GeV]

ΔE (GeV)

Summary and plan

- Some progress in CS handling and UML fit
- Still need to better optimize signal selection
 - Done some work (not shown today)
- Develop fBDT signal vs SxF to be included in UML fit
 - Probably not needed for current luminosity
- Work on TDCPV udst skim
 - Trace the origin of 40% efficiency drop
- Extend CS UML and toys to other channels as well
- Update documentation

Motivation

Shaded $\eta' \rightarrow \eta \pi \pi$, white all (including $\eta' \rightarrow \rho \gamma$)

Selection efficiency

• High selection efficiency 24-30% • SxF 10->2% no CS cut (next slides)

Stefano Lacaprara, INFN Padova

Continuum suppression

4.0

3.5

3.0 2.5

2.0

1.0

0.5

0.0 L 0.0

6000

5000

4000

3000

2000

1000

0.0

0.2

0.2

Ldt = 34.58 fb⁻¹

0.4

R2

- Using only R2 and CosTBTO
- Started MVA but still some correlation with data not understood
 - For next iteration
- Optimization of cut based on
- FoM=S/sqrt(S + B)
 - S and B in signal region from MC
 - Mbc>5.27
 - -70<De<50 MeV
- R2<0.5
- CosTBTO<0.7
 - Probably too hard

gqbar

bbbar

Signal

taupair

charged

Signal

+ Data

mixed

1.0

SxF

alahan .

0.8

0.6

0.6

0.4

0.8

cosTBTO

Full signal efficiency (including CS)

Channel	$ \begin{array}{c} B^{\pm} \to \eta' K^{\pm} \left B^{0} \to \eta' K^{0}_{S} \right \\ \eta' \to \eta \pi^{+} \pi^{-} \end{array} \right $		$\begin{vmatrix} B^{\pm} \to \eta' K^{\pm} & B^{0} \to \eta' K^{0}_{S} \\ \eta' \to \rho \gamma \end{vmatrix}$	
	ε %	ε %	$\varepsilon~\%$	$\varepsilon\%$
Selection	31.7 ± 0.1	31.3 ± 0.1	24.8 ± 0.1	25.2 ± 0.1
Continuum suppression	63.4 ± 0.2	63.0 ± 0.2	62.6 ± 0.2	61.7 ± 0.2
Total	20.1 ± 0.2	19.7 ± 0.2	15.5 ± 0.2	15.6 ± 0.2
Belle (10.5 /fb)	21.7	20.8	14.2	11.5

- Margin for improvement with MVA selection (future)
 - Both for CS and for signal selection
- Also can avoid cut on CS and include in UML fit

~

Signal region for B⁰ (blind for data)

- For each plot select CR on the other variable
 - Background and signal normalized to L_{DATA}
- Signal removed from bbbar montecarlo

$$B^0 \to \eta' K^0_{\eta'} \to \rho \gamma$$

Documentation

- Note v1 almost ready
- Will upload first version by tomorrow

BELLE2-NOTE-XX-YYYY-ZZZ **DRAFT** Version 1.0 June 24, 2020

5	Rediscovery of $B \to \eta' K$ in Belle II data
7	Stefano Lacaprara [*]
3	INFN sezione of Padova
)	(The Belle II Collaboration)
)	Abstract
	This note describe the rediscovery of $B \to \eta' K$ decay in Belle II data, both in the charged
ar	id neutral final state $B^0 \to \eta' K_S^0$ and $B^{\pm} \to \eta' K^{\pm}$. The η' is searched for in two decay modes:
η'	$\rightarrow \eta \pi^+ \pi^-$, with $\eta \rightarrow \gamma \gamma$ and $\eta' \rightarrow \rho \gamma$. The analysis uses data collected in 2019 (and 2020) and
	and a state of the second

The signal was seen in all decay channels and the yield is consistent with expectation within the 15 16 statistical uncertainties.

Summary and plan

- Analysis is in a good shape, but I'd like to do some more work
 - Fit procedure can be improved, in particular SxF and peaking yield
 - Use off-res for continuum
 - Further optimization of selection and CS
- Documentation is in good shape, but can be improved as well
 - Need to be review by WG before calling for a RC
- I'm a bit late for ICHEP
 - Plus, I'll be on vacation from july 20th and very busy until then.
- If there is no strong push for ICHEP, I would like to have a bit more time
 - Can also include measurement of **A_{CP}** in charged mode
 - Maybe include also pi+ final state ?
- Will anyhow push first version of belle2note to invenio for first round of comment

Backup

Branching fractions

Mode	Decay channel	Branching fraction
	inclusive	7.06×10^{-5}
$B^+ \to \eta' K^+$	$\eta' \to \eta (\to \gamma \gamma) \pi^+ \pi^-$	$1.19 imes 10^{-5}$
	$\eta' o ho (o \pi^+ \pi^-) \gamma$	2.04×10^{-5}
	total	$3.23 imes 10^{-5}$
	includive	6.6×10^{-5}
$B^0 \to \eta' K$	$\eta' \to \eta (\to \gamma \gamma) \pi^+ \pi^-$	5.54×10^{-6}
	$\eta' o ho (o \pi^+ \pi^-) \gamma$	9.54×10^{-6}
	total	1.51×10^{-5}

• Effective BR twice for charged state due to K+ vs Ks

Recap SxF candidates are misreconstructed Signal candidates

The incorrect reconstruction of the η' particle is mainly due to the η reconstruction ($\sim 50\%$), but also pions are frequently mistaken.

Stefano Lacaprara, INFN Padova

The incorrect reconstruction of B^0 (isSignal = 0) is mainly due to η' reconstruction.

30

Momentum of misreconstructed pions in $\eta' \to \eta(\gamma\gamma)\pi^+\pi^-$

K_S^0 when isSignal=NaN

 $\Delta E [GeV]$

1

DQA

< D >

32

E gamma (eta->gamma gamma)

M(eta)

eta->gg peak not well visible due to low gamma threshold (60 MeV)

M(etaprime)

eta'->eta(gg)pipi peak not well visible due to low gamma threshold (60 MeV) and pion ones

E(gamma) from eta'->rho gamma

cos(theta gamma)

M(pi+ pi-)

- Clear Ks peak
- Shift between rho peak for signal and SxF

M(etaprime)

cos(alpha) (momentum vs vertex)

Belle II - Preliminary

rged ed

pair

.00

Belle II - Preliminary

1.0

0.94

 $\cos(p, v)_{K_s}$

0.0

 $\cos(p, v)_{K_c}$

0.92

-0.5

0.96

0.98

0.5

M(Ks)

Stefano Lacaprara, INI IN FAULVA

Mbc 39 46 53 54 63 deltaE R2 - 0 thrustOm = 0 cosTBTO cosTBz = 0 KSFW et KSFW mm2 KSFW hso00 - 25 2 KSFW hso02 = 6 12 KSFW hso04 KSFW hso10 - 8 KSFW hso12 -2 KSFW hso14 KSFW hso20 KSFW hso22 KSFW hso24 KSFW hoo0 KSFW hool KSFW hoo2 KSFW hoo3 KSFW hoo4 -1 CC 1 - 0 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 0 0 .19 36 * CC 8 .7 0 CC 9 DeltaZ DeltaZErr chiProb = 2 -1 deltaE cosTBTO cosTBz KSFW_et Mbc 2 thrustOm KSFW_hso20 KSFW_hso00 KSFW_hso02 KSFW hso04 KSFW_hso10 KSFW_hso14 KSFW_hso22 KSFW_mm2 KSFW_hsol2

Signal Region B⁺

 $\rightarrow \eta'$

- For each plot select CR on the other variable
- Background and signal normalized to L_{DATA}
- Signal removed from bbbar montecarlo

$$\begin{array}{c} B^{\pm} \to \eta' K^{\pm} \\ \eta' \to \rho \end{array}$$

Try to fit signal: only MC + signal injection

- Cut Mbc>5.27 GeV/c² and -7<De<+5 MeV in the other plot.
 1D plot shown (2D implemented)
- Injected 31 events, seen 35.7+/-9 (Mbc) and 28+/-7 (De)

Try to fit signal: Data

Proc10 + bucket8

N = 29.1 ± 13.9 cands

 μ = -13.0 ± 9.8 MeV/c²

 $\sigma = 24.1 \pm 12.9 \text{ MeV/c}^2$

0.1

- Clear signal visible
 - Projection w/ selection on other variable
- seen 45.7+/-10 (Mbc) and 29.1.4+/-14 (De)
 - Expected: 31
- Still 1D fit: later for 2D

$B^+ \rightarrow \eta' (\rightarrow \eta (\gamma \gamma) \pi^+ \pi^-) K^+$

- Simple signal selection
 - Signal eff 32% (40% reconstruction only)
 - SxF 2.4 (vs 7.1 %)
 - w/ CS eff: 32 * 0.75 = 24%
 - Belle was 22%

B⁺ -> η' (->η (ɣɣ) π⁺π⁻) K⁺

Data vs MC with expected signal

B⁺ -> η' (->η (ɣɣ) π⁺π⁻) K⁺ 2D FIT

- 2D fit for Mbc and DeltaE
 - Fit result: 29.0 +/- 10 evevents
 - Expected 31 events
- Fit on MC and Toy studies (injected 10-100) looks good

Expected signal (MC + injection)

- Small signal yield with current lumi
 - but very low background
- Closure test ok: injected 6, fit 9.5 +/- 3.3