

B→ η' K rediscovery Status update

TDCPV meeting

19/10/2020

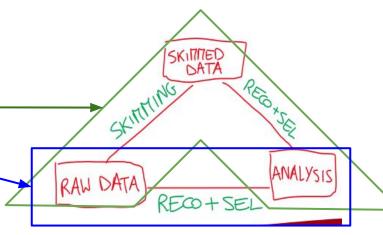
Stefano Lacaprara, Valeria Fioroni, Daniele Dal Santo

INFN Padova & University

Quick recap and what's new

- Study on Analysis skims (Daniele)
- Study of background overlap among different channels (Valeria)
- Included bucket15
 - No GRL yet, so including all runs
 - Dataset: proc11 + prompt
 - L=62.5 /fb
- Update on all four channels with
 - fBDT CS
 - 3 variables UML fit (Mbc, DeltaE, CS)
 - Comparison with Belle

Analysis Skim impact on analysis (Daniele)



We will focus on $e^+e^- \to \Upsilon(4s) \to B^0\bar{B^0}$ with $B^0 \to \eta' K_S$, $\eta' \to \eta(\to \gamma\gamma)\pi^+\pi^-$ and $K_S \to \pi^+\pi^-$.

- General idea:
 - Check signal efficiency on signal MC
 - Doing skim + selection —
 - Starting from all events \(\simega\)
- Starting from 200k events
 - ~80k reconstructed directly
 - ~50k skim+reconstruction
 - Skimming lose ~40% of signal events

$$r_1 = \frac{49402}{79267} = 62.3^{+0.2}_{-0.2} \%,$$

Ratio unchanged w/ or w/o signal selection

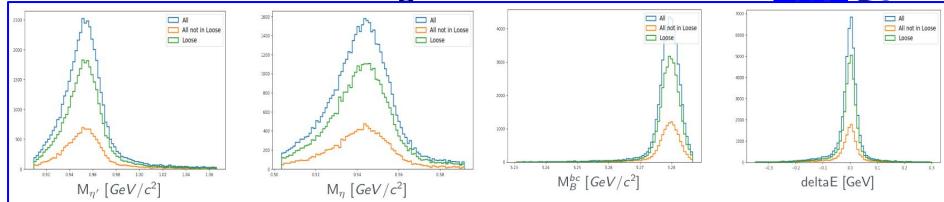
AnaSkim cuts

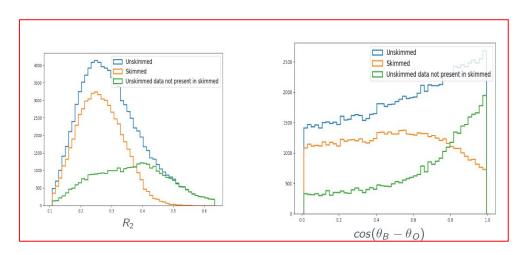
- Main difference between Skim and Reco is list of pions
 - Skim uses pi:loose
 - Reco uses pi:all

The additional cuts implemented in pi:loose are:

- dr < 0.5 cm Distance between the B decay vertex and the interaction one.
- \blacksquare nCDCHits > 20
- *pionID* > 0.1,

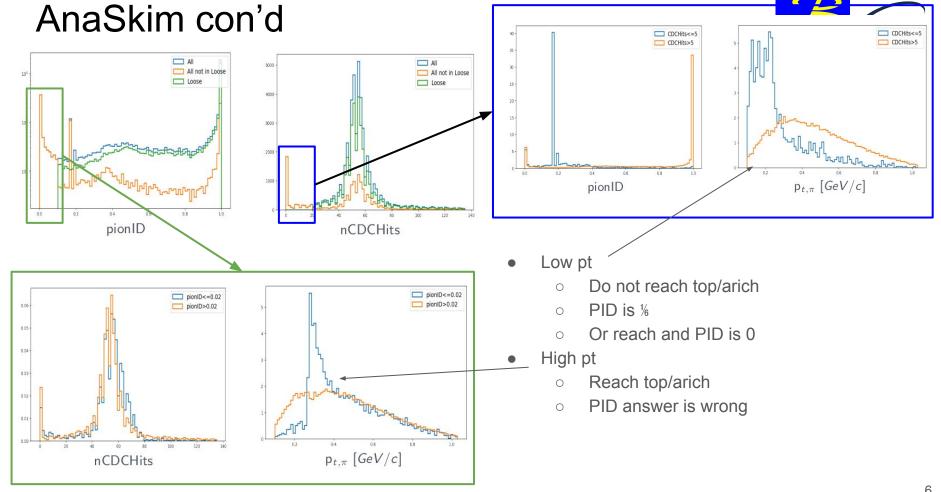
but the relevant ones are the last two.


pi:all	pi:all+ nCDCHits	pi:all+ pionID	pi:all+pionID+ nCDCHits	pi:loose
43.8%	36.8%	33.8%	28.3%	28.4%


Reconstruction efficiency changing the pion list used.

• nCDC hits and PID responsible for 40% loss

Pi:all vs Pi:loose for signal



 Candidates with pi:all but not pi:loose are signal like for M and DeltaE

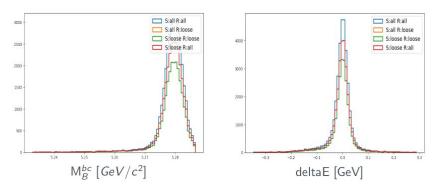
 But more continuum like looking at R2 and CosTBTO

AnaSkim with pi:all

- Relative eff increase
 - 62->74%
 - But not ~100% yet
 - Probably need to work on R2/cosTBT0 cut
- Impact on retention rate negligible
 - NB pi:all only in eta' skim!

using pi:loose for the skim

$$\epsilon_{c\bar{c}}^{bkg} = 5.7_{-0.2}^{+0.2} \%$$


$$\epsilon_{c\bar{c}}^{bkg} = 5.7_{-0.2}^{+0.2} \%$$
 $\epsilon_{u\bar{u}}^{bkg} = 5.2_{-0.2}^{+0.2} \%.$

using pi:all for the skim

$$\epsilon_{c\bar{c}}^{bkg} = 5.8_{-0.2}^{+0.2} \%$$

$$\epsilon_{c\bar{c}}^{bkg} = 5.8_{-0.2}^{+0.2}\%$$
 $\epsilon_{u\bar{u}}^{bkg} = 5.3_{-0.2}^{+0.2}\%.$

Preliminary conclusion: it is safe and good to use pi:all for skimming, but not enough.

fBDT for CS background overlap (Valeria)

- CS using fBDT presented on 9/9/2020
- Use signal and Continuum after signal selection
 - Train together all four channels (charged/neutral, eta'->rho gamma, eta'->eta pipi)
 - Investigating possible overlap of background for different channels
 - Same background event for B0->eta' Ks and B+->eta' K+
 - Unlikely for different eta' decay modes
 - Possible for neutral/charged state

AND	B0ch1	B0ch3	Bpch1	Bpch3
B0ch1	22428 (100%)	$254 \ (\sim 1\%)$	$225 \ (\sim 1\%)$	$128 \ (\sim 0.5\%)$
B0ch3	$254 \ (\sim 0.1\%)$	(207997) 100%	$150 \ (\sim 0.07\%)$	$3090~(\sim 1.5\%)$
Bpch1	$225~(\sim 0.3\%)$	$149 \ (\sim 0.2\%)$	80594(100%)	$1548 \ (\sim 2\%)$
Bpch3	$128 \ (\sim 0.015\%)$	$3100 \ (\sim 0.3\%)$	$1552~(\sim 0.2\%)$	830758 (100%)

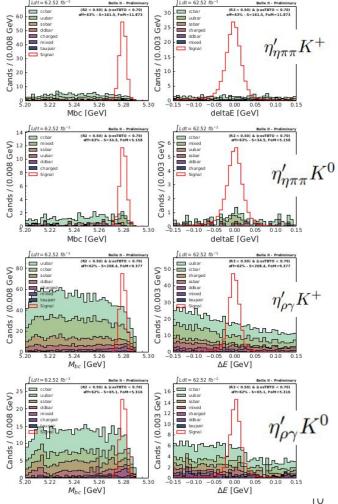
Conclusion: overlap small/negligible.

Will exclude duplicates candidates anyhow, no difference for fBDT training

Analysis update

- Moriond2021 dataset proc11+prompt
 - Included also bucket15
 - All runs (no GRL yet)
 - o Online lumi (12.9 /fb)
- Total Lumi 62.5 /fb
- CS
 - R2-cosTBTO selection
 - fBDT selection
 - No cut

dataset	experiment	$\int Ldt \ [pb^{-1}]$
proc11	7	425.5 ± 0.3
proc11	8	4597.4 ± 0.9
proc11	10	3741.3 ± 1.1
buckets	9 12	2768.7 ± 1.1
bucket1	10 12	10361.1 ± 2.1
bucket1	11 12	12687.1 ± 2.3
bucket1	13 12	5055.1 ± 1.5
bucket1	14 12	9986.9 ± 2.1
bucket1	15 12	$12.9 \pm - ^{a}$
proc11	7+8+10	8764.2 ± 2.5
prompt	12	53758.9 ± 4.2
total	7-12	62523.8 ± 4.4


OBJ

CS w/ R2+ cosTBTO selection

- Cut optimising FoM S/sqrt(S+B) on signal region
 - o R2<0.5
 - o cosTBTO<0.7
- Expected (MC) signal and background for four channels

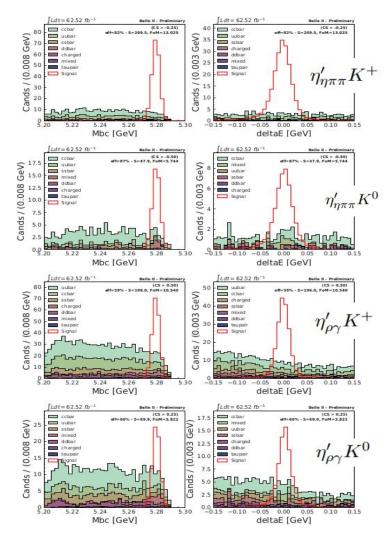
luminosity of 62 fb⁻¹

Cl 1		$B^{\pm} \rightarrow \eta' K^{\pm}$	$B^0 \rightarrow \eta' K_S^0$	$B^{\pm} \rightarrow \eta' K^{\pm}$	$B^0 o \eta' K_S^0$
Channel	Region	$\eta' o \tau$	$\eta \pi^+ \pi^-$	η' -	$\rightarrow \rho \gamma$
Continuum	$_{\mathrm{SB}}$	628.0 ± 9.0	180.0 ± 5.0	5921.0 ± 27.0	24880.0 ± 60.0
Continuum	SR	22.0 ± 1.7	6.8 ± 0.9	256.0 ± 6.0	1129.0 ± 12.0
D. 1.	$_{\mathrm{SB}}$	14.3 ± 0.9	5.6 ± 0.6	342.0 ± 5.0	194.0 ± 3.0
Peaking	SR	1.5 ± 0.31	3.4 ± 0.5	29.9 ± 1.4	22.2 ± 1.2
Signal	SB	10.67 ± 0.21	2.31 ± 0.04	12.12 ± 0.29	7.69 ± 0.13
	SR	161.5 ± 0.8	34.47 ± 0.17	208.4 ± 1.2	105.5 ± 0.5
D.4.	SB	758 ± 28.0	202 ± 14.0	6440 ± 80.0	21040 ± 150.0
Data	SR		1	olind	

CS w/ fBDT

- Cut optimising FoM S/sqrt(S+B) on signal region
 - Similar to what Belle did (likelihood vs fBDT)
 - Different for each channel
 - Quite hard for B+->eta' (rho gamma) K+

Channel		$B^{\pm} \rightarrow \eta' K^{\pm}$	$B^{\theta} \rightarrow \eta' K_S^{\theta}$	$B^{\pm} \rightarrow \eta' K^{\pm}$	$B^0 \rightarrow \eta' K_S^0$
Channel	Region	$\eta' \rightarrow \eta$	$\pi^{+}\pi^{-}$	η' -	$\rightarrow \rho \gamma$
Continuum	SB	1182.0 ± 12.0	471.0 ± 8.0	3179.0 ± 20.0	1232.0 ± 12.0
Continuum	SR	47.0 ± 2.4	16.5 ± 1.4	124.0 ± 4.0	60.3 ± 2.7
Peaking	SB	21.8 ± 1.2	8.9 ± 0.7	298.0 ± 4.0	103.9 ± 2.5
геакінд	SR	2.1 ± 0.4	5.1 ± 0.6	25.9 ± 1.3	13.8 ± 0.9
Signal	SB	13.89 ± 0.24	3.3 ± 0.05	10.67 ± 0.27	4.29 ± 0.1
	SR	209.5 ± 0.9	47.89 ± 0.2	196.0 ± 1.1	69.9 ± 0.4
Data	SB	1450 ± 40.0	535 ± 23.0	3760 ± 60.0	1220 ± 30.0
	SR		b	lind	· /

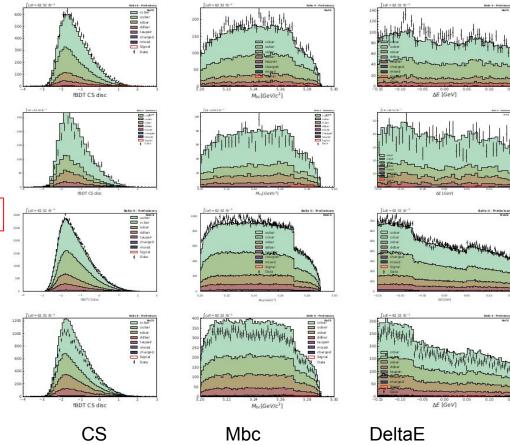

Channel	CS type	$B^{\pm} \to \eta' K^{\pm} \begin{vmatrix} B^0 \to \eta' K_S^0 \\ \eta' \to \eta \pi^+ \pi^- \end{vmatrix} B^{\pm} \to \eta' K^{\pm} \begin{vmatrix} B \\ \eta' \to \rho \end{vmatrix}$		$B \to \eta' K_S^0$ $\rho \gamma$	
		ε %	ε %	ε%	ε %
Selection		31.7 ± 0.1	31.3 ± 0.1	24.8 ± 0.1	25.2 ± 0.1
CS	POLGOTPTO	63.4 ± 0.2	63.0 ± 0.2	62.6 ± 0.2	61.7 ± 0.2
Total	RZ+COSIDIO	20.1 ± 0.2	19.7 ± 0.2	15.5 ± 0.2	15.6 ± 0.2
fBDT >		-0.25	-0.5	0.5	0.25
CS	fBDT	82.2 ± 0.2	87.5 ± 0.1	58.7 ± 0.2	81.0 ± 0.2
Total		26.1 ± 0.2	27.7 ± 0.2	14.8 ± 0.2	20.4 ± 0.2

R2/cosTBTO

fBDT

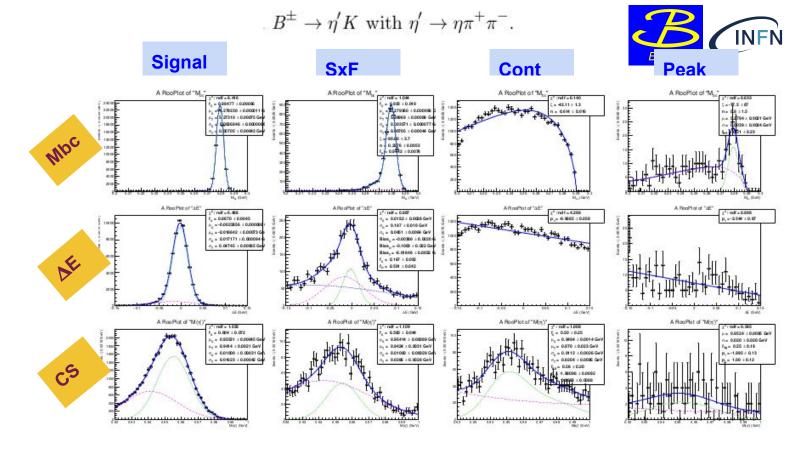
BELLE

21.7 20.8 14.2 11.5


CS w/ fBDT no cut

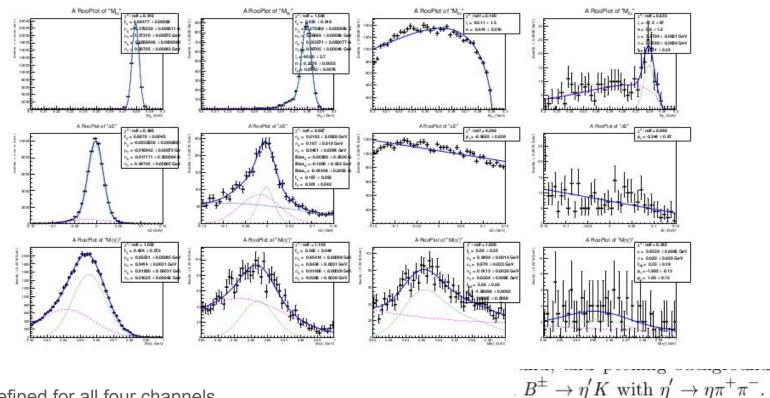
Expected yield

Montecarlo and data without CS selection, corresponding to an integrated luminosity of 62 fb⁻¹


Channel		$B^{\pm} \rightarrow \eta' K^{\pm}$	$B'' \rightarrow \eta' K_S''$	$B^{\pm} \rightarrow \eta' K^{\pm}$	$B'' \rightarrow \eta' K_S''$
Chamiei	Region	$\eta' o \eta \pi^+ \pi^-$		$\eta' o ho \gamma$	
Continuum	$_{\mathrm{SB}}$	9690.0 ± 30.0	2699.0 ± 18.0	99270.0 ± 110.0	24880.0 ± 60.0
Continuum	SR	386.0 ± 7.0	105.0 ± 4.0	4614.0 ± 24.0	1129.0 ± 12.0
Peaking	SB	36.4 ± 1.5	12.6 ± 0.9	666.0 ± 6.0	194.0 ± 3.0
геактид	SR	3.1 ± 0.4	6.1 ± 0.6	52.3 ± 1.8	22.2 ± 1.2
Signal	SB	17.79 ± 0.27	3.98 ± 0.06	22.8 ± 0.4	7.69 ± 0.13
Signai	SR	254.8 ± 1.0	54.75 ± 0.22	334.1 ± 1.5	105.5 ± 0.5
Data	$_{\mathrm{SB}}$	10520 ± 100.0	2450 ± 50.0	103500 ± 300.0	21040 ± 150.0
Data	SR	,	ŀ	blind	3//

Signal extraction via 3 variables
 UML fit

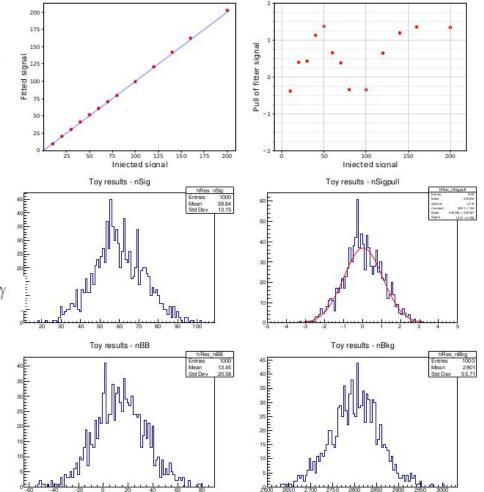
CS Mbc
Control region only
Mbc<5.27 GeV/c^2
DeltaE<-0.07 OR >0.05 GeV



Pdf defined for all four channels CS pdf ~identical, as expected

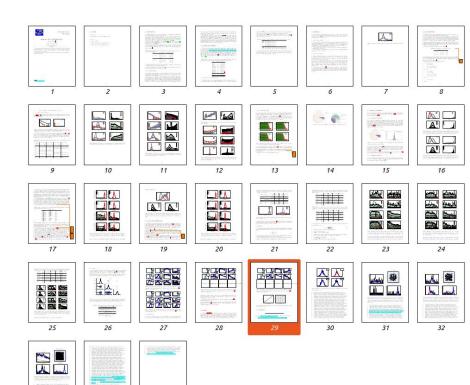
Fit with Sgn+SxF together, ratio fixed from MS

3 variable UML fit w/ CS selection



- Pdf defined for all four channels
- CS pdf ~identical, as expected

Toy MC for linearity


- Tested for $B \to \eta' K$ with $\eta' \to \eta \pi^+ \pi^-$.
 - Linearity
 - Fitted vs injected signal yield within 1 sigma
 - Good pulls
 - Also for NBB
 - was a problem last time due to >0 request, now removed
- To be done for $B^0 \to \eta' K_S^0$ with $\eta' \to \rho \gamma$
 - Can be tricky due to larger background
- Preliminary test ar fine

Conclusion and plan

- Overall analysis is in good shape
 - Still some small item to be completed
 - ETA ~days
- Documentation is being updated
 - ETA ~1 week
- In good shape for Moriond 2021
 - Will like to present at B2GM
- Can we start RC?
 - Do I need to have also a few pages conference papers ready before starting with RC?
 - Should I present the work also at Charmless WG?

Backup

Selections

DE

$$\eta' \to \eta \pi^+ \pi^-$$

- $E_{\gamma} > 150 \text{ MeV}$
- $0.5 < M_{\eta} < 0.57 \frac{GeV}{c^2}$
- $0.92 < M_{\eta'} < 1.0 \frac{GeV}{c^2}$

$$\eta' \to \rho \gamma$$

- $E_{\gamma} > 150 \text{ MeV}$
- $\cos\theta_{\gamma} > -0.64$
- $0.51 < M_{\rho} < 1.0 \frac{GeV}{c^2}$
- $0.92 < M_{\eta'} < 1.0 \frac{GeV}{c^2}$

K

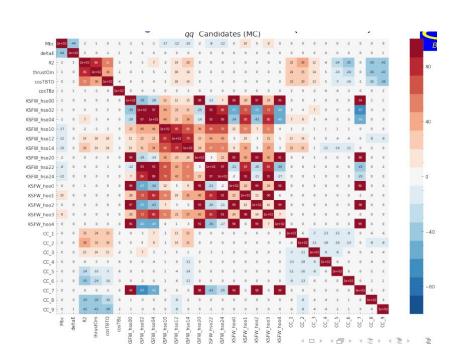
• $\cos\theta_K > -0.5$

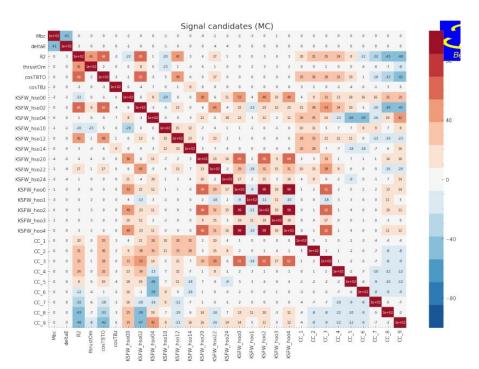
 K_s^0

- $\cos\theta_{p,v} > -0.64$
- $0.49 < M_{K_s^0} < 0.51 \frac{GeV}{c^2}$

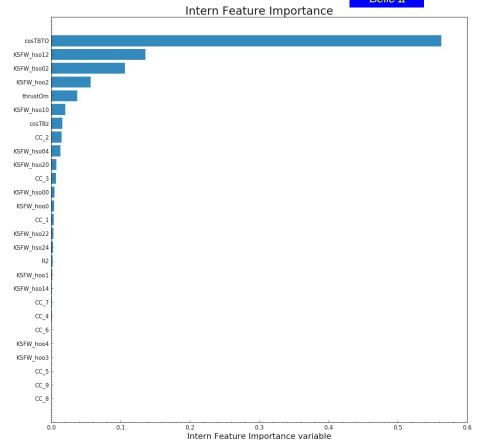
CS fBDT

- So far, used only R2 and cos(TB-TO) as Continuum Suppression variables
 - Hard cut on both
- Move to fBDT
 - Variables considered
 - No TagV variables


	Variable nan	ne
KSFW_hso00	KSFW_hoo0	CC_1
KSFW_hso02	KSFW_hoo1	$CC_{-}2$
KSFW_hso04	KSFW_hoo2	CC_3
KSFW_hso10	KSFW_hoo3	CC_4
KSFW_hso12	KSFW_hoo4	CC_5
KSFW_hso14	R2	CC_6
KSFW_hso20	thrust0m	CC_7
KSFW_hso22	cosTBT0	CC_8
KSFW_hso24	cosTBz	CC_9

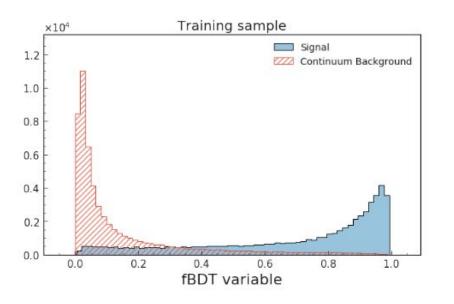

Correlations

- Large correlation w/ Mbc and DeltaE for mme and et (excluded)
- For continuum also for some KSFW moments, not for signal (kept)



Intern feature importance

Rolle II (INFN


- cos(TB-TB) by far the most discriminating variables
- Most of correlated variables not very important
- Tried with less variables, basically same performances
- Could remove many w/o any significant change

Training (and Validation)

Dataset divided in training (50%) - Validation (30%) - Test (20%)

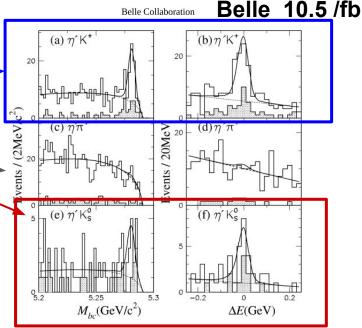
Confusion matrix:

	pred bkg	pred sgn
true bkg	0.92	0.08
true sgn	0.25	0.75

Score (fBDT<>0.5) 0.8666

Same performances for validation sample

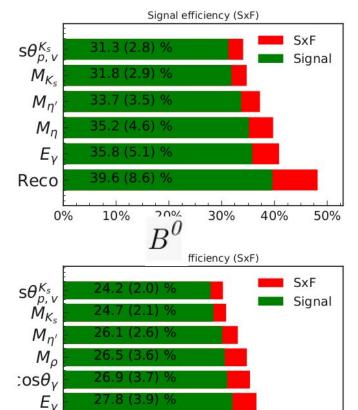
Motivation



- $BR(B^0 \to \eta' K_S^0) = (6.6 \pm 0.4) \times 10^{-5}$
 - \circ $C_{CP}(B^0 \to \eta' K^0) = -0.06 \pm 0.04$
 - \circ $-A_{CP} = S_{CP} (B^0 \to \eta' K^0_S) = 0.63 \pm 0.06$
- BR(B⁺ $\rightarrow \eta'$ K⁺) = (7.06 ± 0.25) × 10⁻⁵
- Seen by Belle with 10/fb?
 - \circ B⁺: BR=(79⁺¹²₋₁₁±8) × 10⁻⁶
 - \circ B⁰: BR=(55⁺¹⁹₋₁₆±9) × 10⁻⁶
 - Limit for $B^0 \rightarrow \eta' \pi^+$
- Final states used at Belle
 - $\circ \quad \boldsymbol{\eta'} \rightarrow \rho(\rightarrow \boldsymbol{\pi^+ \pi^-}) \ \boldsymbol{\gamma}$
 - $\circ \quad \mathbf{\eta'} \rightarrow \mathbf{\eta}(\rightarrow \gamma \gamma) \, \pi^{+} \pi^{-} \qquad (29/6 \text{ ev})$
 - \circ $\eta' \rightarrow \eta(\rightarrow \pi^+\pi^-\pi^0) \pi^+\pi^-$ not used

 $(42/10 \text{ ev B}^+/\text{B}^0)$




Measurement of the branching fraction for $B \to \eta' K$ and search for $B \to n'\pi^+$

Selection efficiency

30.5 (11.2) %

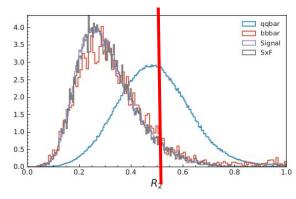
20%

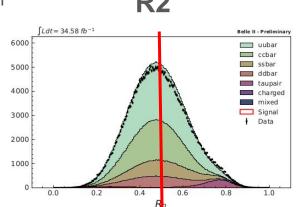
30%

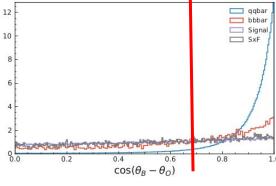
40%

10%

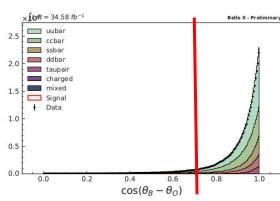
ction


0%


- High selection efficiency24-30%
- SxF 10->2%
- no CS cut (next slides)


Continuum suppression

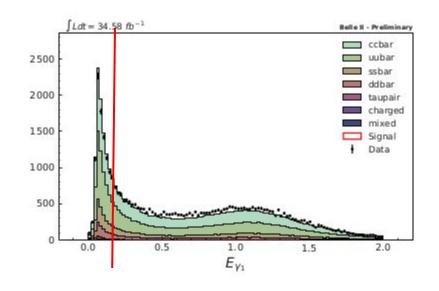
Belle II (INFN


- Using only R2 and CosTBTO
- Started MVA but still some correlation with data not understood
 - For next iteration
- Optimization of cut based on
- FoM=S/sqrt(S + B)
 - S and B in signal region from MC
 - o Mbc>5.27
 - -70<De<50 MeV
- R2<0.5
- CosTBTO<0.7
 - Probably too hard

cosTBTO

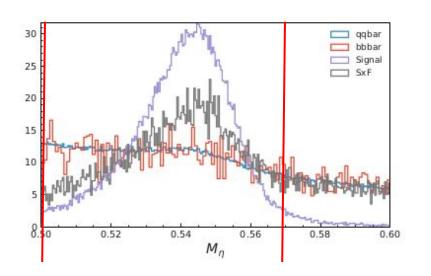
20

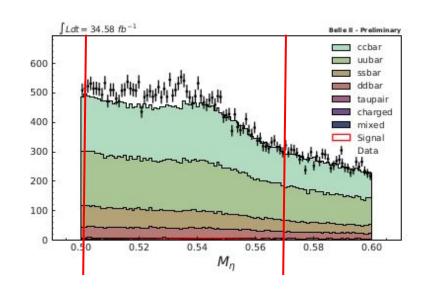
Branching fractions


Mode	Decay channel	Branching fraction
	inclusive	7.06×10^{-5}
$B^+ \to \eta' K^+$	$\eta' \to \eta(\to \gamma\gamma)\pi^+\pi^-$	1.19×10^{-5}
	$\eta' \to \rho(\to \pi^+\pi^-)\gamma$	2.04×10^{-5}
	total	3.23×10^{-5}
	includive	6.6×10^{-5}
$B^0 o \eta' K$	$\eta' \to \eta(\to \gamma\gamma)\pi^+\pi^-$	5.54×10^{-6}
	$\eta' \to \rho(\to \pi^+\pi^-)\gamma$	9.54×10^{-6}
	total	1.51×10^{-5}

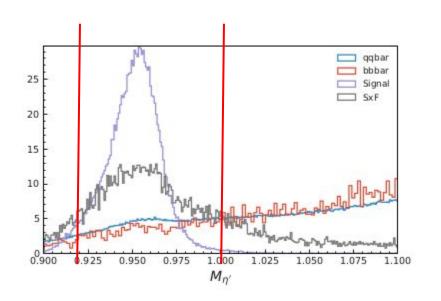
• Effective BR twice for charged state due to K+ vs Ks

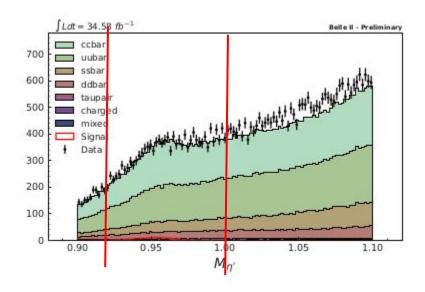
E gamma (eta->gamma gamma)





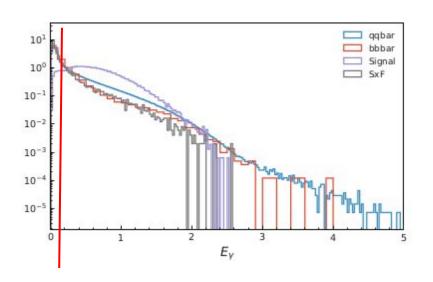
M(eta)

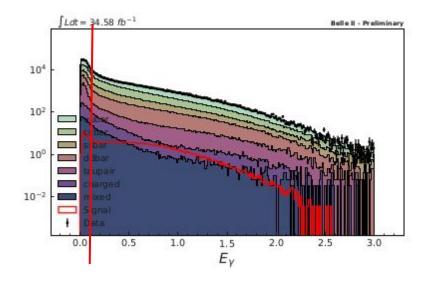




eta->gg peak not well visible due to low gamma threshold (60 MeV)

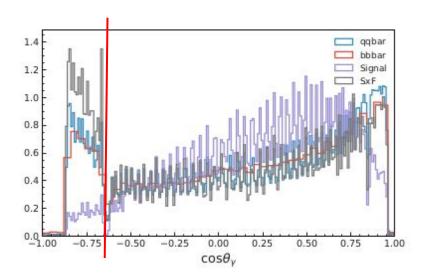
M(etaprime)

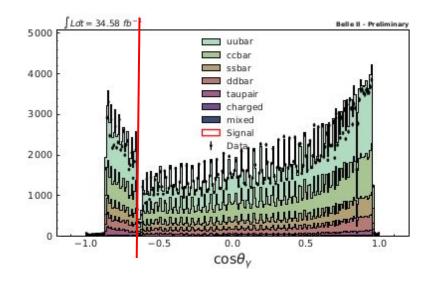




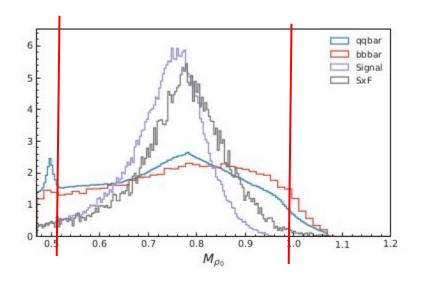
eta'->eta(gg)pipi peak not well visible due to low gamma threshold (60 MeV) and pion ones

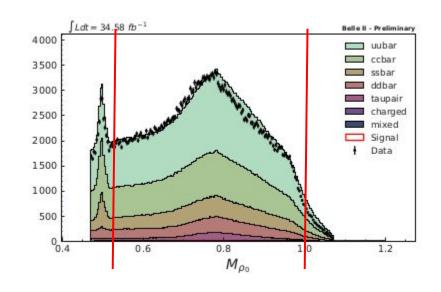
E(gamma) from eta'->rho gamma



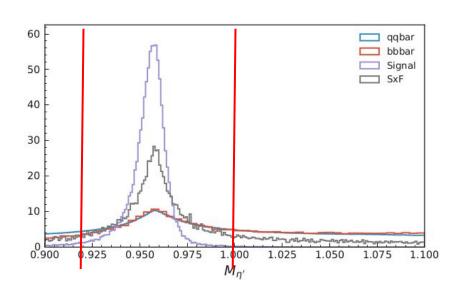


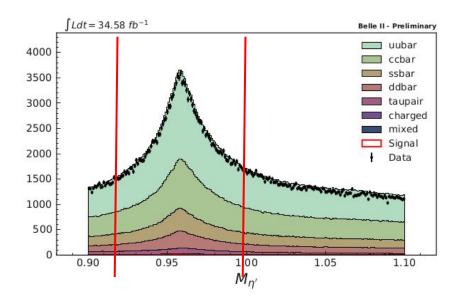
cos(theta gamma)





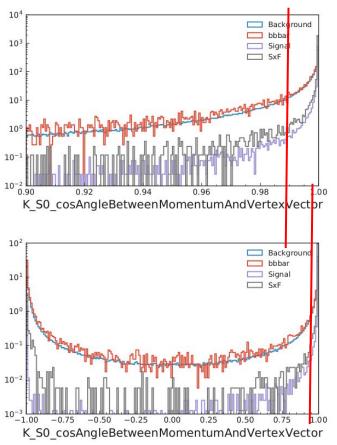
M(pi+ pi-)

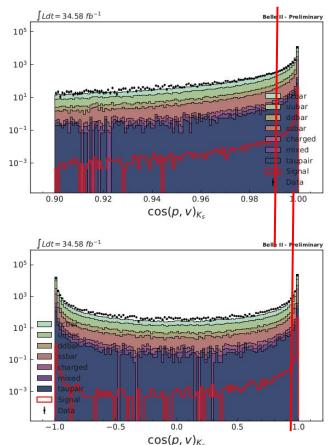




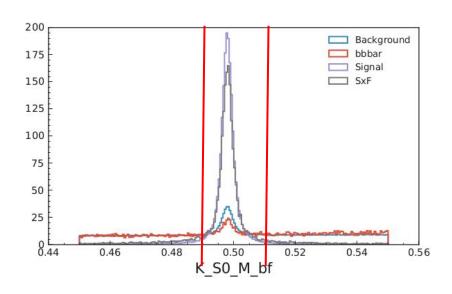
- Clear Ks peak
- Shift between rho peak for signal and SxF

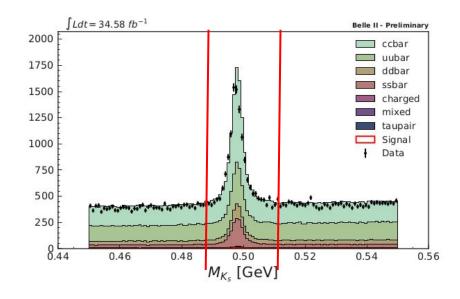
M(etaprime)





cos(alpha) (momentum vs vertex)





M(Ks)

