# First look at time-dependent CP violation using early Belle II data

### Stefano Lacaprara on behalf of Belle II collaboration

stefano.lacaprara@pd.infn.it

**INFN** Padova

FPCP 2019: Conference on Flavor Physics and CP Violation, University of Victoria, 7 May 2019



S.Lacaprara (INFN Padova)

Belle T

TDCPV at Belle II



### Introduction

- CPV and CKM triangle
- SuperKEKB and Belle II
- 2 Time Dependent *CP* Violation Measurements
- $\bigcirc \hspace{1.5 cm} \phi_1/eta$  measurement
  - $b \rightarrow c \bar{c} s$  transition
  - $b 
    ightarrow q ar{q} s$  transition
- $\textcircled{4} \phi_2/lpha$  measurement
  - $B \rightarrow \pi \pi$
- 5 New Physics with TDCPV •  $B^0 \rightarrow K_s^0 \pi^0 \gamma$ 
  - Conclusion and outlook







### Introduction

- CPV and CKM triangle
- SuperKEKB and Belle II
- 2) Time Dependent *SP* Violation Measurements
- $\bigcirc \phi_1/eta$  measuremen
  - $b \rightarrow c \bar{c} s$  transition
  - b 
    ightarrow q ar q s transition
- **5** New Physics with TDCPV •  $B^0 \rightarrow K^0_S \pi^0 \gamma$







# CPV and the CKM Unitarity Triangle

- CPV in SM is due to weak interaction, described in the quark sector by the  $V_{CKM}$  matrix
- B<sup>0</sup>-system exhibits the largest CPV in the SM
- Unitarity requires:  $\sum_{k} V_{ki}^* V_{ki} = \delta_{ii}$  so  $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$ 
  - CKM Unitarity Triangle:











### Major upgrade of Belle apparatus for all detectors



### Key elements for TDCPV

- New, extended Vertex detector (PVD+SVD)
- CDC: smaller cell size and longer lever arm
- TOP-ARICH New Particle ID detector for  ${\rm K}/\pi$  separation
- new electronics for KLM, ECL, ....

 $\beta \gamma = 0.28$  (0.45 at KEKB/Belle)



#### Introduction

- CPV and CKM triangle
- SuperKEKB and Belle II

### 2) Time Dependent *CP* Violation Measurements

#### $3 \hspace{0.1 cm} \phi_{1}/eta$ measuremen

- $b \rightarrow c \bar{c} s$  transition
- b 
  ightarrow q ar q s transition

### $\textcircled{4} \phi_2/lpha$ measurement

- $\mathsf{B} \to \pi \pi$
- 5 New Physics with TDCPV
  - $B^0 \to K^0_S \pi^0 \gamma$

#### 6 Conclusion and outlook





## Time Dependent $\mathcal{LP}$ Violation Measurements



### Key analysis technique at B-factories: coherent state of B pairs from the $\Upsilon(4S)$ decay





Better resolution in spite of reduced boost ( $\beta\gamma$  =

0.28(0.45))









#### Introduction

- CPV and CKM triangle
- SuperKEKB and Belle II
- 2 Time Dependent *LP* Violation Measurements
- $\bigcirc \phi_1/eta$  measurement
  - $b \rightarrow c \bar{c} s$  transition
  - $b 
    ightarrow q ar{q} s$  transition
- $( \Phi ) \phi_2 / lpha$  measurement
  - $\mathsf{B} \to \pi \pi$
- 5 New Physics with TDCPV •  $B^0 \rightarrow K_S^0 \pi^0 \gamma$
- 6 Conclusion and outlool





# $\phi_1$ in tree dominated $b \to c\bar{c}s$ transitions: $B^0 \to J/\psi K_S^0$



**Decay dominated by a single weak phase** small penguin pollution,  $S \simeq \sin(2\phi_1)$ 



| Cı                                      | Current status from Belle [PRL 108 171802]                                      |        |      | Belle II expected uncertainties $@50$ ab <sup>-1</sup> |                                |     |         |           |
|-----------------------------------------|---------------------------------------------------------------------------------|--------|------|--------------------------------------------------------|--------------------------------|-----|---------|-----------|
| uncertainties (10 <sup>-3</sup> ) Value |                                                                                 | stat   | syst | stat                                                   | at syst: reducible irreducible |     | lucible |           |
| 1/0/10                                  | S                                                                               | +0.670 | 29   | 13                                                     | 3.5                            | 1.2 | 8.2     | 4.4       |
| $J/\psi \kappa_S$                       | $\mathcal{A}\equiv -\mathcal{C}$                                                | -0.015 | 21   | +45,-23                                                | 2.5                            | 0.7 | +43,-22 | +42, - 11 |
| b v cz                                  | S                                                                               | +0.667 | 23   | 12                                                     | 2.7                            | 2.6 | 7.0     | 3.6       |
| $D \rightarrow cc$                      | $\mathcal{A} \equiv -C$                                                         | +0.006 | 16   | 12                                                     | 1.9                            | 1.4 | 10.6    | 8.7       |
|                                         | Precision better than 0.2 $^\circ$ is expected on $\phi_1$ from $b 	o c ar c s$ |        |      |                                                        |                                |     |         |           |

S.Lacaprara (INFN Padova)

Victoria 7/5/2019 7 / 13

# igsimes b o qar qs transitions: ${\sf B}^0 o \phi {\sf K}^0$ and ${\sf B}^0 o \eta' {\sf K}^0$





#### Phase II: $\phi \rightarrow KK w/o and w/ PID$



- $\phi K^0$  ("an old superstar" A.J.Buras):
  - Particle ID crucial

• 
$$(\phi \rightarrow \mathsf{K}^+\mathsf{K}^-/\pi^+\pi^-\pi^0) + (\mathsf{K}^0_\mathsf{S}/\mathsf{K}^0_\mathsf{L})$$

• WA 
$$\sigma_S = 0.12, \ \sigma_C = 0.14$$

• **5** 
$$ab^{-1}$$
  $\sigma_s = 0.048$ ,  $\sigma_c = 0.035$ 

▶ **50** 
$$ab^{-1}$$
  $\sigma_S = 0.020$ ,  $\sigma_C = 0.011$  stat dominated

η'K<sup>0</sup>:

- different final states  $\eta' \rightarrow (\eta_{\gamma\gamma}\pi^{\pm}, \eta_{3\pi}\pi^{\pm}, \rho\gamma)$ , many neutrals, large cross-feed background
- WA  $\sigma_S = 0.06$ ,  $\sigma_C = 0.04$  (stat dominated)
- **5**  $\mathrm{ab}^{-1}$   $\sigma_S = 0.027$ ,  $\sigma_C = 0.020$
- **50**  $ab^{-1} \sigma_S = 0.015, \sigma_C = 0.008$
- $(\sigma_{\textit{stat}} \sim \sigma_{\textit{syst}})$  around  $\sim 10-20\,{
  m ab}^{-1}$
- competition with LHCb for  $\phi K_{S}^{0}$ , not for  $\eta' K^{0}$





#### Introduction

- CPV and CKM triangle
- SuperKEKB and Belle II
- 2) Time Dependent *£*P Violation Measurements
- $\bigcirc \bigcirc \phi_1/\beta$  measuremen
  - $b \rightarrow c \bar{c} s$  transition
  - b 
    ightarrow q ar q s transition
- 4  $\phi_2/\alpha$  measurement • B  $\rightarrow \pi\pi$
- 5 New Physics with TDCPV •  $B^0 \rightarrow K^0_S \pi^0 \gamma$

#### 6 Conclusion and outlook







Two amplitudes of comparable size with different weak phase:



need to measure TDCPV all modes:  $\pi^{+-}, \pi^{00}$ 





- magnitude and phase of  $\stackrel{(\rightarrow)^{+-}}{A}$  from  $B^0 \rightarrow \pi^+\pi^-$ ;
- magnitude of  $\stackrel{_{(\to)}00}{A}$  from  ${\cal B}$  and  ${\cal C}_{00}$  of  ${\sf B}^0\to\pi^0\pi^0$ 
  - no phase  $(S_{00})$ : triangles can flip
  - 8-fold ambiguity in  $\phi_2(\alpha)$



Two amplitudes of comparable size with different weak phase:



need to measure TDCPV all modes:  $\pi^{+-},\pi^{00}$ 





- magnitude and phase of  $\stackrel{(\rightarrow)^{+-}}{A}$  from  $B^0 \rightarrow \pi^+\pi^-$ ;
- magnitude of  $\stackrel{_{(\rightarrow)}00}{A}$  from  ${\cal B}$  and  ${\cal C}_{00}$  of  ${\sf B}^0 o \pi^0 \pi^0$ 
  - no phase  $(S_{00})$ : triangles can flip
  - 8-fold ambiguity in  $\phi_2(\alpha)$
- need  $S_{00}$  (TDCPV) for  $B^0 \to \pi^0 \pi^0$  to solve ambiguity.

# $\phi_2$ measurement: $B \to \pi^0 \pi^0$ sensitivity





# $\mathcal{B}_{\text{Refer}} \phi_2$ measurement: $B \to \pi^0 \pi^0$ sensitivity





S.Lacaprara (INFN Padova)



#### Introduction

- CPV and CKM triangle
- SuperKEKB and Belle II
- 2) Time Dependent *£*P Violation Measurements
- $\bigcirc \hspace{1.5 cm} \phi_1/eta$  measuremen
  - $b \rightarrow c \bar{c} s$  transition
  - b 
    ightarrow q ar q s transition
- 5 New Physics with TDCPV •  $B^0 \rightarrow K^0_S \pi^0 \gamma$

#### Conclusion and outlook





# Probing New Physics with $b \to s\gamma$ : $B^0 \to K^0_S \pi^0 \gamma$



#### Motivation:

- $b 
  ightarrow s \gamma_R$  is helicity suppressed  $(rac{m_s}{m_b})$  wrt  $b 
  ightarrow s \gamma_L$
- $B^0 \rightarrow f_{CP}\gamma_R$  interferes with  $B^0 \rightarrow \overline{B}^0 \rightarrow f_{CP}\gamma_R$  only for helicity suppressed  $b \rightarrow s\gamma_R$  decay
- TDCPV analysis is sensitive to the decay rate of b into "wrongly" polarized  $\gamma$ .

• SM: 
$$S^{SM}_{\kappa^0_5\pi^0\gamma}\sim -2rac{m_s}{m_b}\sin 2\phi_1=-(2.3\pm1.6)\%$$
 [PRD75,054004(2007)

• current results: 
$$S^{exp}_{\kappa^0_S\pi^0\gamma}=-0.16\pm0.22$$
 [HFLAV 2018]

• New physics can enhance the  $b 
ightarrow s \gamma_R$  decay rate



# Probing New Physics with $b \to s\gamma$ : $B^0 \to K^0_S \pi^0 \gamma$



#### Motivation:

- $b 
  ightarrow s \gamma_R$  is helicity suppressed  $(rac{m_s}{m_b})$  wrt  $b 
  ightarrow s \gamma_L$
- $B^0 \rightarrow f_{CP}\gamma_R$  interferes with  $B^0 \rightarrow \overline{B}^0 \rightarrow f_{CP}\gamma_R$  only for helicity suppressed  $b \rightarrow s\gamma_R$  decay
- TDCPV analysis is sensitive to the decay rate of b into "wrongly" polarized  $\gamma.$
- SM:  $S^{SM}_{\kappa^0_S\pi^0\gamma}\sim -2rac{m_s}{m_b}\sin 2\phi_1=-(2.3\pm1.6)\%^{\ \ [\mathrm{PRD75,054004(2007)]}}$
- current results:  $S^{exp}_{\kappa^0_S\pi^0\gamma}=-0.16\pm0.22~^{[
  m HFLAV~2018]}$
- New physics can enhance the  $b 
  ightarrow s \gamma_R$  decay rate
- Interesting at Belle II already with few ab<sup>-1</sup>
  - Very hard (if possible at all) at LHCb
    - also  $B^0 
      ightarrow K^0_S \pi^+ \pi^- \gamma$  channel





#### Introduction

- CPV and CKM triangle
- SuperKEKB and Belle II
- 2) Time Dependent *£*P Violation Measurements
- $\bigcirc \hspace{1.5 cm} \phi_1/eta$  measuremen
  - $b \rightarrow c \bar{c} s$  transition
  - b 
    ightarrow q ar q s transition
- **5** New Physics with TDCPV •  $B^0 \rightarrow K^0_S \pi^0 \gamma$

### 6 Conclusion and outlook









### Belle II TDCPV program at SuperKEKB

- large dataset with an improved detector and algorithms.
- unique possibilities for modes with final states with neutrals, complementary to LHCb
- $\bullet$  CKM angles  $\phi_{1,2}$  will be measured with TDCPV at 1% level;
  - $\phi_1$  will remain the most precisely measured angle,
  - $\phi_2$  will benefit from new input  $(S_{\pi^0\pi^0})$  and reduced uncertainties;
- possible timeline, looking at Belle/BaBar publications
  - ✓ TDCPV B<sup>0</sup> → J/ $\psi$ K<sup>0</sup><sub>S</sub> with ~ 10/20 fb<sup>-1</sup> this summer? ✓ B( $\eta'$ K<sup>0</sup><sub>S</sub>) with 10 fb<sup>-1</sup>, TDCPV with 40 fb<sup>-1</sup> ✓ TDCPV  $\phi$ K<sup>0</sup><sub>S</sub> with 140/50 fb<sup>-1</sup>end of the year? ✓ TDCPV B<sup>0</sup> →  $\pi^+\pi^-$  with 40 fb<sup>-1</sup> ×  $\mathcal{B}(B^0 \to \pi^0\pi^0)$  with ~ 200 fb<sup>-1</sup>, TDCPV with ~ 50 ab<sup>-1</sup> × NP Probe for NP in TDCPV B<sup>0</sup> → K<sup>0</sup><sub>S</sub>\pi^0\gamma (few ab<sup>-1</sup>)

• More information in B2TIP report<sup>[hep-ph/1808.10567]</sup>

### **CPV only input** Current world average

















- 7/5 Measurement of the CKM angle  $\gamma$  with Belle II, Niharika Rout
- 7/5 Early physics prospects for radiative and electroweak penguin decays at Belle II, Justin Tan
- 7/5 Prospects for  $\tau$  lepton physics at Belle II, David Perez
- 8/5 Semileptonic and leptonic B decay results from early Belle II data, Markus Prim
- 8/5 B lifetime and  $\overline{B}^0$  B<sup>0</sup> mixing results from early Belle II data, Jakub Kandra
- 9/5 Dark Sector Physics with Belle II, Chris Hearty
- 9/5 Exotic Quarkonium Physics Prospects at Belle II, Jake Bennett
- 9/5 Sensitivity to the X(3872) total width at the Belle II experiment, Hikari Hirata
- 10/5 Belle II and SuperKEKB status and progress, Hulya Atmacan









### CPV

- Why CP-Violation?
  - Matter-Antimatter asymmetry in the universe.
  - Sakharov's 2<sup>nd</sup> condition requires and CPV
  - current known CPV in SM way smaller than needed.
- $\bullet~\mathsf{B}^0\text{-system}$  exhibits the largest CPV in the SM
- CPV in SM is due to weak interaction and it is described by  $V_{CKM}$  matrix ( $\lambda = \cos \theta_C = 0.22$ )

$$\begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} = \begin{bmatrix} 1 - \frac{1}{2}\lambda & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda & A\lambda^2 \\ -A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix} + \mathcal{O}(\lambda^4)$$

- Unitarity requires:  $\Sigma_k V_{ki}^* V_{kj}$  so  $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$ •  $\mathcal{O}(\lambda^3) + \mathcal{O}(\lambda^3) + \mathcal{O}(\lambda^3)$
- main goal of Belle II is to precisely measure the CKM unitary triangle, and look for Beyond-SM physics using precision measurements at the intensity frontier.





- Three angles (  $\sim$  phases  $\sim$  CPV) and three sides (  $\sim$  Amplitudes  $\sim$  BR):
  - $\phi_1 = \beta$ : accessible via B<sup>0</sup> oscillation analysis b  $\rightarrow c\bar{c}s$  and b  $\rightarrow q\bar{q}s$
  - $\phi_2 = \alpha$ : accessible via B<sup>0</sup> oscillation analysis b  $\rightarrow u \overline{u} d$
  - $\phi_3 = \gamma$ : relative phase of tree level bc and bu coupling;
- $\phi_{1,2}$  can be accessed via Time-Dependent  $\mathcal{L}$  Violation analysis of asymmetry in B<sup>0</sup> meson decay rate into CP eigenstate (TDCPV)









#### • SuperKEKB is successor of former KEKB but refurbished with the new design



**SuperKEKB** 



**SuperKEKB** 

80 (x40)

50

7/4

2.6/3.6 (x2)

0.28

 $\sim 130$ 

40 1

[ab



2027







### Major upgrade of Belle apparatus for all detectors

### • Challenges:

- higher background
- reduced boost
- Improvement [Belle II TDR, arXiv:1011.0352]
  - New, extended vertex detector
    - \*  $1(+1^{2020})$  pixel layers: DEPFET technology
    - \* 4 layers of double sided Si microstrip sensors
    - \* Not present in phase II data taking (2018)
    - \* fully installed for 2019 run phase III
  - CDC: smaller cell size and longer lever arm
    - $\star$  Better  $K_S^0$  reconstruction
  - ECL: improved electronics and light yield
  - ► **TOP-ARICH** New Particle ID detector for K/*π* separation
  - Improved **KLM** ( $K_L^0$ ,  $\mu$ ) electronics





### B-factories (BaBar @ SLAC and Belle @ KEKB): a 10 year long success:

- Asymmetric  $e^-e^+ \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$
- collected together 1.5 ab  $^{-1}$  of data in 1999 2010 (1 ab  $^{-1}\equiv10\times10^9{\sf B}\overline{\sf B})$



- Discovery of CPV in B-system, indirect and direct;
- confirmation of CKM description of flavour phys;
- precision measurement of CKM elements;
- obs of several new hadronic states
- strong evidence of D meson mixing

# Belle II: an improved detector













S.Lacaprara (INFN Padova)

Victoria 7/5/2019 8 / 24











- Inst. Lumi.:  $\mathcal{L}_{\text{Belle II}} \sim 40 \cdot \mathcal{L}_{\text{Belle}}$
- $\Rightarrow \ \mathsf{Background} \ \uparrow \uparrow \uparrow$ 
  - Closest to IP
- $\Rightarrow$  Occupancy ( $\sim r^{-2}$ )  $\uparrow\uparrow\uparrow$
- $\Rightarrow$  smaller  $\Delta z$
- $\Rightarrow$  Pixel Detector needed !
- ⇒ DEPFET Technology most suited DEPleted Field Effect Transistor

S.Lacaprara (INFN Padova)





Time Dep. CP: a powerful tool to both perform

- precise measurement of the UT angles
- look for new physics BSM if decay via loop (eg charmless)
- possible with tree/penguindominated transitions:
  - $\begin{array}{l} \bullet \quad b \rightarrow c \bar{c}s \\ (\mathsf{B}^{0} \rightarrow \mathsf{J}/\psi \mathsf{K}^{0}) \\ \bullet \quad b \rightarrow q \bar{q}s \ (\mathsf{B}^{0} \rightarrow \\ \eta' \mathsf{K}^{0}, \ \phi \mathsf{K}^{0}, \ldots) \end{array}$









probabilty parametrization vs  $\Delta t$  :  $\mathcal{P}(\Delta t, q) = \frac{e^{-\Delta t/\tau_{B^0}}}{4\tau_{R^0}} \left[1 + q \left(\mathcal{A}_{CP} \cos \Delta m_d \Delta t + \mathcal{S}_{CP} \sin \Delta m_d \Delta t\right)\right]$ 













![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_1.jpeg)

|                 |                   | $J/\psi K_S^0$       | $\psi(2S)K_S^0$      | $\chi_{c1}K_S^0$     | $J/\psi K_L^0$       | All         |
|-----------------|-------------------|----------------------|----------------------|----------------------|----------------------|-------------|
| Vertexing       | $\mathcal{S}_{f}$ | $\pm 0.008$          | $\pm 0.031$          | $\pm 0.025$          | $\pm 0.011$          | $\pm 0.007$ |
|                 | $\mathcal{A}_{f}$ | $\pm 0.022$          | $\pm 0.026$          | $\pm 0.021$          | $\pm 0.015$          | $\pm 0.007$ |
| $\Delta t$      | $\mathcal{S}_{f}$ | $\pm 0.007$          | $\pm 0.007$          | $\pm 0.005$          | $\pm 0.007$          | $\pm 0.007$ |
| resolution      | $\mathcal{A}_{f}$ | $\pm 0.004$          | $\pm 0.003$          | $\pm 0.004$          | $\pm 0.003$          | $\pm 0.001$ |
| Tag-side        | $\mathcal{S}_{f}$ | $\pm 0.002$          | $\pm 0.002$          | $\pm 0.002$          | $\pm 0.001$          | $\pm 0.001$ |
| interference    | $\mathcal{A}_{f}$ | $^{+0.038}_{-0.000}$ | $^{+0.038}_{-0.000}$ | $^{+0.038}_{-0.000}$ | $^{+0.000}_{-0.037}$ | $\pm 0.008$ |
| Flavor          | $\mathcal{S}_{f}$ | $\pm 0.003$          | $\pm 0.003$          | $\pm 0.004$          | $\pm 0.003$          | $\pm 0.004$ |
| tagging         | $\mathcal{A}_{f}$ | $\pm 0.003$          | $\pm 0.003$          | $\pm 0.003$          | $\pm 0.003$          | $\pm 0.003$ |
| Possible        | $\mathcal{S}_{f}$ | $\pm 0.004$          | $\pm 0.004$          | $\pm 0.004$          | $\pm 0.004$          | $\pm 0.004$ |
| fit bias        | $\mathcal{A}_{f}$ | $\pm 0.005$          | $\pm 0.005$          | $\pm 0.005$          | $\pm 0.005$          | $\pm 0.005$ |
| Signal          | $\mathcal{S}_{f}$ | $\pm 0.004$          | $\pm 0.016$          | < 0.001              | $\pm 0.016$          | $\pm 0.004$ |
| fraction        | $\mathcal{A}_{f}$ | $\pm 0.002$          | $\pm 0.006$          | < 0.001              | $\pm 0.006$          | $\pm 0.002$ |
| Background      | $\mathcal{S}_{f}$ | < 0.001              | $\pm 0.002$          | $\pm 0.030$          | $\pm 0.002$          | $\pm 0.001$ |
| $\Delta t$ PDFs | $\mathcal{A}_{f}$ | < 0.001              | < 0.001              | $\pm 0.014$          | < 0.001              | < 0.001     |
| Physics         | $\mathcal{S}_{f}$ | $\pm 0.001$          | $\pm 0.001$          | $\pm 0.001$          | $\pm 0.001$          | $\pm 0.001$ |
| parameters      | $\mathcal{A}_{f}$ | < 0.001              | < 0.001              | $\pm 0.001$          | < 0.001              | < 0.001     |
| Total           | $\mathcal{S}_{f}$ | $\pm 0.013$          | $\pm 0.036$          | $\pm 0.040$          | $\pm 0.021$          | $\pm 0.012$ |
|                 | $\mathcal{A}_{f}$ | $^{+0.045}_{-0.023}$ | $^{+0.047}_{-0.027}$ | $^{+0.046}_{-0.026}$ | $^{+0.017}_{-0.041}$ | $\pm 0.012$ |

Systematic errors in  $S_f$  and  $A_f \equiv C_f$  in each  $f_{CP}$  mode and for the sum of all modes [PRL 108 171802]

# $\mathcal{B} b \to q\bar{q}s \text{ modes efficiencies}$

| - | -  |    | 1 |
|---|----|----|---|
|   | IN | FI | N |
|   | ~  |    |   |

|                                                    | $B^{\circ} \rightarrow \eta' K^{\circ}$ |        |                  |
|----------------------------------------------------|-----------------------------------------|--------|------------------|
| Channel                                            | Strategy                                | ε      | ε <sub>SxF</sub> |
| $\eta'(\eta_{\gamma\gamma}\pi^{\pm})K_{S}^{(\pm)}$ | C*                                      | 23.0 % | 3.8 %            |
|                                                    | A                                       | 6.7 %  | 2.6%             |
| $\eta'(\eta_{3\pi}\pi^{\pm})K_{c}^{(\pm)}$         | B*                                      | 8.0 %  | 6.0%             |
|                                                    | С                                       | 9.5 %  | 28.6%            |

Efficiency and fraction of cross feed candidates for  $\eta'(\eta_{\gamma\gamma}\pi^{\pm})K_{S}^{(\pm)}$  and  $\eta'(\eta_{3\pi}\pi^{\pm})K_{S}^{(\pm)}$  channels when selecting only one (A), two (B), or all (C) the candidates in the event. The selected strategy is labeled with  $\star$ .

| $B^0  ightarrow \omega K^0$                     |                                                   |       |       |  |  |  |
|-------------------------------------------------|---------------------------------------------------|-------|-------|--|--|--|
| $\omega(\pi^+\pi^-\pi^0) {\cal K}^0_S(\pi^\pm)$ |                                                   |       |       |  |  |  |
| $L$ (ab $^{-1}$ )                               | L (ab <sup>-1</sup> ) yield $\sigma(S) \sigma(A)$ |       |       |  |  |  |
| 1                                               | 334                                               | 0.17  | 0.14  |  |  |  |
| 5                                               | 1670                                              | 0.08  | 0.06  |  |  |  |
| 50                                              | 16700                                             | 0.024 | 0.020 |  |  |  |

Extrapolated sensitivity for the  $\omega K_S^0$  mode. The  $\Delta t$ resolution is taken from the  $\eta' K_S^0$  study, while we assume a reconstruction efficiency of 21%

|                                                          | $B^0 \rightarrow \phi$   | $K^0$ |                        |                        |
|----------------------------------------------------------|--------------------------|-------|------------------------|------------------------|
| Channel                                                  | $\varepsilon_{\it reco}$ | Yield | $\sigma(S_{\phi K^0})$ | $\sigma(A_{\phi K^0})$ |
| 1 ab <sup>-1</sup> lumi.:                                |                          |       |                        |                        |
| $\phi({\sf K}^+{\sf K}^-){\sf K}^0_{\cal S}(\pi^+\pi^-)$ | 35%                      | 456   | 0.174                  | 0.123                  |
| $\phi({\sf K}^+{\sf K}^-){\sf K}^0_{\cal S}(\pi^0\pi^0)$ | 25%                      | 153   | 0.295                  | 0.215                  |
| $\phi(\pi^+\pi^-\pi^0)K^0_S(\pi^+\pi^-)$                 | 28%                      | 109   | 0.338                  | 0.252                  |
| $K_S^0$ modes combination                                |                          |       | 0.135                  | 0.098                  |
| $K_S^0 + K_L^0$ modes combination                        | ation                    |       | 0.108                  | 0.079                  |
| 5 ab <sup>-1</sup> lumi.:                                |                          |       |                        |                        |
| $\phi({\sf K}^+{\sf K}^-){\sf K}^0_{\cal S}(\pi^+\pi^-)$ | 35%                      | 2280  | 0.078                  | 0.055                  |
| $\phi(K^+K^-)K^0_S(\pi^0\pi^0)$                          | 25%                      | 765   | 0.132                  | 0.096                  |
| $\phi(\pi^+\pi^-\pi^0)K_S^0(\pi^+\pi^-)$                 | 28%                      | 545   | 0.151                  | 0.113                  |
| $K_S^0$ modes combination                                |                          |       | 0.060                  | 0.044                  |
| $K_S^0 + K_L^0$ modes combination                        | ation                    |       | 0.048                  | 0.035                  |

Sensitivity estimates for  $S_{\phi K^0}$  and  $A_{\phi K^0}$  parameters. The efficiency  $\varepsilon_{reco}$  used in this estimate has not been taken from the simulation, but is rather an estimate taking into account the expected improvements. Systematic uncertainties, negligible for these integrated luminosities, are not included

![](_page_41_Picture_0.jpeg)

![](_page_41_Picture_1.jpeg)

| Channel              | $\int \mathcal{L}$   | Event yield       | $\sigma(S)$ | $\sigma(S)_{2017}$ | $\sigma(A)$ | $\sigma(A)_{2017}$ |
|----------------------|----------------------|-------------------|-------------|--------------------|-------------|--------------------|
| $J/\psi K^0$         | $50 \text{ ab}^{-1}$ | $1.4\cdot 10^{6}$ | 0.0052      | 0.022              | 0.0050      | 0.021              |
| $\phi K^{0}$         | $5 \text{ ab}^{-1}$  | 5590              | 0.048       | 0.12               | 0.035       | 0.14               |
| $\eta' K^{0}$        | $5 \text{ ab}^{-1}$  | 27200             | 0.027       | 0.06               | 0.020       | 0.04               |
| $\omega K_S^0$       | $5 \text{ ab}^{-1}$  | 1670              | 0.08        | 0.21               | 0.06        | 0.14               |
| $K^0_S \pi^0 \gamma$ | $5 \text{ ab}^{-1}$  | 1400              | 0.10        | 0.20               | 0.07        | 0.12               |
| $K_S^0\pi^0$         | $5 \text{ ab}^{-1}$  | 5699              | 0.09        | 0.17               | 0.06        | 0.10               |

Expected yields and uncertainties on the S and A parameters for the channels sensitive to  $\sin(2\phi_1)$  discussed in this chapter for an integrated luminosity of 50 (5) ab<sup>-1</sup> for  $J/\psi K^0$  (penguin dominated modes). In the 5th and the last column are shown the present WA errors on each of the observables (HFAG summer 2016).

# $\oint_{\text{Refer}} \phi_1$ in penguin dominated b $ightarrow qar{q}$ s transitions

![](_page_42_Picture_1.jpeg)

### Gluonic penguin dominates

almost same weak phase as  $b\to c\overline{c}s$  not only penguin diagram present

![](_page_42_Picture_4.jpeg)

#### Motivations:

- probes  $\phi_1$  through different vertices;
- many different final states;
- more sensitive to new physics in the loop;
- tree/box pollution present but different predictions available

Current status:

All measurement are statistically limited

$$sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff}) \underset{\text{Summer 2016}}{\text{HFLAV}}$$

| b→ccs                                        | World Average              |               | 1   | $0.69\pm0.02$             |
|----------------------------------------------|----------------------------|---------------|-----|---------------------------|
| φ Κ <sup>0</sup>                             | Average                    | F             | * 1 | 0.74 +0.11                |
| $\eta' \ K^0$                                | Average                    | +             |     | $0.63\pm0.06$             |
| K <sub>S</sub> K <sub>S</sub> K <sub>S</sub> | Average                    | F             |     | $0.72\pm0.19$             |
| $\pi^0 \ K^0$                                | Average                    | <b>⊢</b> ★    | 4   | $0.57\pm0.17$             |
| $\rho^0 K_S$                                 | Average                    | <b>⊢</b> ★    |     | 0.54 +0.18                |
| ωK <sub>s</sub>                              | Average                    | ⊢ <b>⊢</b>    |     | $0.71\pm0.21$             |
| f <sub>0</sub> K <sub>S</sub>                | Average                    | H             | 4   | 0.69 +0.10                |
| $f_2 K_S$                                    | Average +                  | *             |     | $0.48\pm0.53$             |
| f <sub>x</sub> K <sub>s</sub>                | Average                    | *             | •   | $0.20\pm0.53$             |
| $\pi^0 \pi^0 \frac{K_S}{K_S}$                | Average                    |               |     | $\textbf{-0.72} \pm 0.71$ |
| $\phi  \pi^0  K^{}_{\rm S}$                  | Average                    |               | +   | 0.97 +0.03                |
| $\pi^{*} \: \pi^{-} \: K_{S}$                | NAverage                   | <b>*</b>      |     | $0.01\pm0.33$             |
| K+ K K0                                      | Average                    | H             | -   | 0.68 +0.09                |
| -1.6 -1.4                                    | 1.2 -1 -0.8 -0.6 -0.4 -0.2 | 0 0.2 0.4 0.6 | 0.8 | 1 1.2 1.4 1.6             |

![](_page_43_Picture_0.jpeg)

![](_page_43_Picture_1.jpeg)

### Multi dim. extended maximum likelihood fit to extract S and A.

![](_page_43_Figure_3.jpeg)

time-dependent part, taking into account mistag rate ( $\eta_f = \pm 1$  is CP state):

$$f(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left\{ 1 \mp \Delta w \pm (1 - 2w) \times \left[ -\eta_f S_f \sin(\Delta m \Delta t) - A_f \cos(\Delta m \Delta t) \right] \right\}$$
variables  $(x_k)$  used, in addition to  $\Delta t$   
•  $M_{bc}$   
•  $\Delta F$   
•  $w = 0.21, \Delta w = 0.02$ 

• Cont. Suppr.

varia

• SxF BDT/helicity angles

- 33
- $\Delta t$  resolution (convoluted)
- $\tau$ .  $\Delta m$  from PDG

$$\phi_2/\alpha \text{ from B}^0 \to \rho \rho$$

![](_page_44_Picture_1.jpeg)

Similar to  $B^0 \to \pi\pi$ : only  $\rho_L$  to be used,  $S_{\rho_0\rho_0}$  available (BaBar<sup>[4]</sup>) No ambiguity since  $\mathcal{B}_{\rho_0^0\rho_0} \ll \mathcal{B}_{\rho^+\rho^-}$ 

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Value      | $0.8 \text{ ab}^{-1}$           | $50 \text{ ab}^{-1}$                 |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------|--------------------------------------|--|--|
|                  | $f_{L,\rho^+\rho^-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.988      | $\pm 0.012 \pm 0.023$ [1]       | $\pm 0.002\pm 0.003$                 |  |  |
|                  | $\bar{f}_{L,\rho}^{,\mu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.21       | $\pm 0.20 \pm 0.15$ [2]         | $\pm 0.03 \pm 0.02$                  |  |  |
|                  | $\mathcal{B}_{a^{+}a^{-}}^{-,p}$ [10 <sup>-6</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.3       | $\pm 1.5 \pm 1.5$ [1]           | $\pm 0.19 \pm 0.4$                   |  |  |
|                  | $\mathcal{B}_{000}^{\mu}$ [10 <sup>-6</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.02       | $\pm 0.30 \pm 0.15$ [2]         | $\pm 0.04 \pm 0.02$                  |  |  |
|                  | $A_{a^{+}a^{-}}^{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00       | $\pm 0.10 \pm 0.06$ [1]         | $\pm 0.01 \pm 0.01$                  |  |  |
|                  | $S^{\rho}_{\rho^+ ho^-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.13      | $\pm 0.15 \pm 0.05$ [1]         | $\pm 0.02 \pm 0.01$                  |  |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Value      | $0.08 \text{ ab}^{-1}$          | 50 ab <sup>-1</sup>                  |  |  |
|                  | $f_{L,\rho^+\rho^0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.95       | $\pm 0.11 \pm 0.02$ [3]         | $\pm 0.004 \pm 0.003$                |  |  |
|                  | $\mathcal{B}_{\rho^+\rho^0}^{-,\rho^-\rho^-}$ [10 <sup>-6</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.7       | $\pm 7.1 \pm 5.3$ [3]           | $\pm 0.3 \pm 0.5$                    |  |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Value      | $0.5 \text{ ab}^{-1}$           | 50 ab <sup>-1</sup>                  |  |  |
|                  | A_00_0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.2       | $\pm 0.8 \pm 0.3$ [4]           | $\pm 0.08 \pm 0.01$                  |  |  |
|                  | $S_{000}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3        | $\pm 0.7 \pm 0.2$ [4]           | $\pm 0.07 \pm 0.01$                  |  |  |
| 1] <sup>[ </sup> | $[PRD93(3) 032010 (2016)]_{[2]}[PRD89, 119903 (2014)]_{[3]}[PRL91, 221801 (2003)]_{[4]}[PRD78, 071104 (2008)]_{[4]}[PRD78, 071104 (2008)]_{[4$ |            |                                 |                                      |  |  |
|                  | $\sigma^{ ho ho}_{\phi_2}\sim 0.7^\circ$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $WA \pm 5$ | 5°) Combined: $\sigma_{\phi_2}$ | $(\pi\pi, ho ho)\sim$ 0.6 $^{\circ}$ |  |  |

![](_page_44_Figure_4.jpeg)

S.Lacaprara (INFN Padova)

TDCPV at Belle II

## $\phi_2/\alpha$ from $B^0 \to \rho\rho$ and combined $B^0 \to \pi\pi, \rho\rho$

![](_page_45_Picture_1.jpeg)

![](_page_45_Figure_2.jpeg)

![](_page_45_Figure_3.jpeg)

![](_page_46_Picture_0.jpeg)

| Similar to B <sup>0</sup> - | $ ightarrow \pi\pi$ , larger | ${}^r\mathcal{B}$ and $arepsilon$ : | only $\rho_L$ to       |
|-----------------------------|------------------------------|-------------------------------------|------------------------|
| be used, $S_{\rho_0\rho_0}$ | available (B                 | aBar). $\sigma_{\phi}$              | $_{ m y}\sim5^{\circ}$ |

|                                             | Value | $0.8 \text{ ab}^{-1}$      | $50 \text{ ab}^{-1}$  |
|---------------------------------------------|-------|----------------------------|-----------------------|
| $f_{L, ho^+ ho^-}$                          | 0.988 | $\pm 0.012 \pm 0.023$ [77] | $\pm 0.002 \pm 0.003$ |
| $f_{L,\rho^0\rho^0}$                        | 0.21  | $\pm 0.20 \pm 0.15$ [83]   | $\pm 0.03 \pm 0.02$   |
| ${\cal B}_{ ho^+ ho^-}$ [10 <sup>-6</sup> ] | 28.3  | $\pm 1.5 \pm 1.5$ [77]     | $\pm 0.19 \pm 0.4$    |
| ${\cal B}_{ ho^0 ho^0}$ [10 <sup>-6</sup> ] | 1.02  | $\pm 0.30 \pm 0.15$ [83]   | $\pm 0.04 \pm 0.02$   |
| $C_{\rho^+\rho^-}$                          | 0.00  | $\pm 0.10 \pm 0.06$ [77]   | $\pm 0.01 \pm 0.01$   |
| $S_{ ho^+ ho^-}$                            | -0.13 | $\pm 0.15 \pm 0.05$ [77]   | $\pm 0.02 \pm 0.01$   |
|                                             | Value | $0.08 \text{ ab}^{-1}$     | $50 \text{ ab}^{-1}$  |
| $f_{L,\rho^+\rho^0}$                        | 0.95  | $\pm 0.11 \pm 0.02$ [68]   | $\pm 0.004\pm 0.003$  |
| ${\cal B}_{ ho^+ ho^0}$ [10 <sup>-6</sup> ] | 31.7  | $\pm 7.1 \pm 5.3$ [68]     | $\pm 0.3 \pm 0.5$     |
|                                             | Value | $0.5 \text{ ab}^{-1}$      | $50 \text{ ab}^{-1}$  |
| $C_{\rho^0\rho^0}$                          | 0.2   | $\pm 0.8 \pm 0.3$ [67]     | $\pm 0.08 \pm 0.01$   |
| $S_{ ho^0 ho^0}$                            | 0.3   | $\pm 0.7 \pm 0.2$ [67]     | $\pm 0.07 \pm 0.01$   |
|                                             |       |                            |                       |

$$\begin{split} &\sigma_{S_{00}},c_{00}\sim 0.2 \text{ with 5 ab}^{-1}\\ &\text{also improv. on } f_L B(\mathsf{B}^0\to\rho^+\rho^-) \text{ and }\\ &f_L B(\mathsf{B}^+\to\rho^+\rho^0) \text{ useful With 50 ab}^{-1} \sigma_{\phi_2}\sim 2.5^\circ \end{split}$$

### $B^0 \to \rho \pi$

- Analysis done with Dalitz plot on  $\pi^+\pi^-\pi^0$  final state.
- current analyses by BaBar and Belle suffer from low statistics
- which cause secondary solutions for  $\phi_2$  on both sides of primary
- and expected to vanish with larger dataset
- Strong motivation to repeat the analysis with at least few  $ab^{-1}$
- No prediction available

![](_page_47_Picture_0.jpeg)

![](_page_47_Picture_1.jpeg)

![](_page_47_Figure_2.jpeg)

Year

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_1.jpeg)

![](_page_48_Figure_2.jpeg)

![](_page_48_Figure_3.jpeg)

![](_page_48_Figure_4.jpeg)

![](_page_48_Figure_5.jpeg)

![](_page_48_Figure_6.jpeg)

![](_page_49_Picture_0.jpeg)

![](_page_49_Picture_1.jpeg)

•  $B \rightarrow \rho \rho$  • Unitary triangle •  $B \rightarrow \rho \rho$ 

![](_page_49_Picture_3.jpeg)

![](_page_49_Picture_4.jpeg)

![](_page_50_Picture_0.jpeg)

![](_page_50_Picture_1.jpeg)

### • $\phi_3/\gamma$ is the phase between b $\rightarrow$ c and b $\rightarrow$ u

- from interference of tree-level diagrams
  - $\checkmark\,$  no B mixing, nor penguin pollution
    - ★ theoretical ambiguity very small
  - ✗ different strong phase
    - ★ today CLEO-c results <sup>[PRD82, 112006 (2010)]</sup>
    - \* improvement from BESIII (10 fb<sup>-1</sup> @ $\psi$ (3770))

![](_page_50_Figure_9.jpeg)

interference if  $D/\overline{D} \rightarrow f$  same final state

### $\mathsf{B}^{\pm} ightarrow \mathsf{D}[ ightarrow \mathsf{K}^{0}_{\mathsf{S}}\pi^{+}\pi^{-}]\mathsf{K}^{\pm}$

- Golden mode for Belle II ;
- large  $\mathcal{B}$ , good  $K_S^0$  reconstruction
- self conjugate  $D \to K^0_S \pi^+ \pi^-$  decay
- binned Dalitz plot analysis of D  $\to$   ${\rm K}^0_{\rm S}\pi^+\pi^-$  decay (GGSZ)  $^{\rm [PRD68,\ 054018\ (2003)]}$

![](_page_50_Figure_16.jpeg)

![](_page_51_Picture_0.jpeg)

![](_page_51_Picture_1.jpeg)

#### **Current status:**

$$\phi_{3}^{\textit{Belle}} = \left(78^{+15}_{-16}\right)^{\circ} \phi_{3}^{\textit{LHCb}} = \left(76.8^{+5.1}_{-5.7}\right)^{\circ}$$

• sensitivity study on GGSZ  ${\sf B}^\pm \to {\sf D}[\to {\sf K}^0_{\sf S}\pi\mu]{\sf K}^\pm$ 

- expected sensitivity to  $\phi_3 \sim 3^\circ$  with 50 ab<sup>-1</sup>
- improvement including:
  - $\blacktriangleright~$  GGSZ  $D \rightarrow K^0_S K^+ K^-$  and  $B^\pm \rightarrow D^* K^\pm$
  - **ADS/GLW** modes  $B^{\pm} \rightarrow D^* [\rightarrow D\gamma \pi^0] K^{\pm}$
- LHCb will dominate with charged final state;
- further improvement with final states with neutrals and significant B;
  - **CP-even**  $\pi^0 \pi^0$ ,  $K_L^0 \pi^0$ ,  $K_S^0 \pi^0 \pi^0$ ,  $K_S^0 \eta \pi^0$ ,  $K_S^0 K_S^0 K_S^0$ ;
  - **CP-odd**  $K_{S}^{0}K_{S}^{0}K_{L}^{0}$ ,  $\eta\pi^{0}\pi^{0}$ ,  $\eta'\pi^{0}\pi^{0}$ ,  $K_{S}^{0}K_{S}^{0}\pi^{0}$ ,  $K_{S}^{0}K_{S}^{0}\eta$ ;
  - Self-conjugate  $K_L^0 \pi^+ \pi^-$ ,  $K_L^0 K^+ K^-$ ,  $K_S^0 \pi^+ \pi^- \pi^0$ ,  $\pi^+ \pi^- \pi^0 \pi^0$ .

# Projected $\phi_3$ sensitivity for different luminosity profile scenarios

![](_page_51_Figure_15.jpeg)

![](_page_52_Picture_0.jpeg)

![](_page_52_Picture_1.jpeg)

![](_page_52_Figure_2.jpeg)

Year

![](_page_52_Figure_4.jpeg)

![](_page_53_Picture_0.jpeg)

![](_page_53_Picture_1.jpeg)

![](_page_53_Figure_2.jpeg)