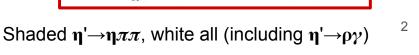
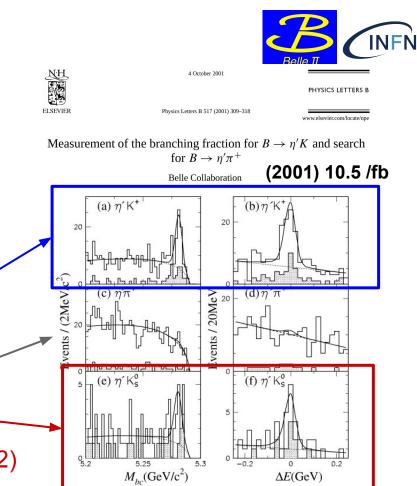
η' rediscovery in phase 3 (and 2) data


Neutrals Physics Performance Meeting 19/12/2019


Stefano Lacaprara

INFN Padova

Motivations

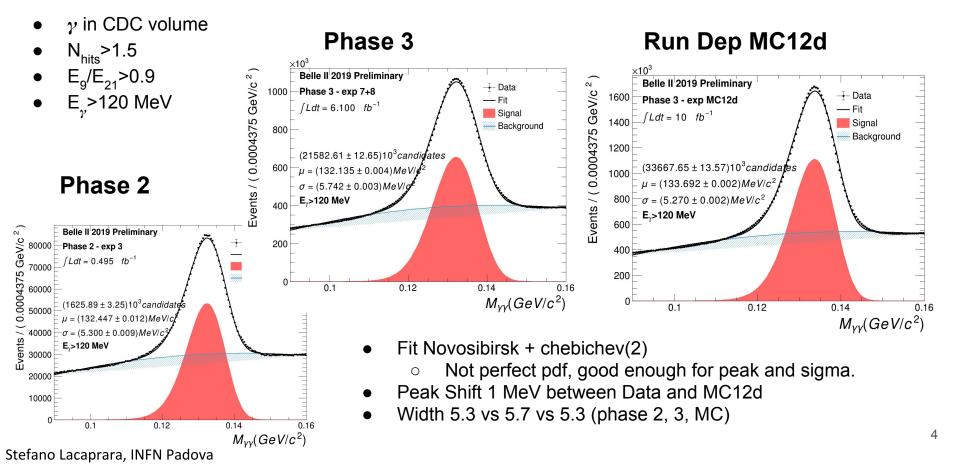
- TimeDependet CPV study with Charmless B⁰ decay: B⁰→η' K⁰_s
- From PDG:
- BR(B⁰ \rightarrow **η**' K⁰_S) = (6.6 ± 0.4) × 10⁻⁵
 - $C_{CP} (B^0 \rightarrow \eta' K^0) = -0.06 \pm 0.04$
 - $\circ -A_{CP}^{}=S_{CP}^{}(B^{0} \rightarrow \eta' K_{S}^{0}) = 0.63 \pm 0.06$
- BR(B⁺ \rightarrow η' K⁺) = (7.06 ± 0.25) × 10⁻⁵
- Can it be seen with 10/fb?
- It was done at Belle, both for:
 - B⁺: BR=(79⁺¹²₋₁₁±8) × 10⁻⁶
 - $B^0: BR=(55^{+19},\pm9) \times 10^{-6}$
 - Limit for $B^0 \rightarrow \eta' \pi^+$
- First step: rediscovery η' in Phase 3 (and 2)
 Data and study its features

Documentation

- Being documented on BELLE2-NOTE-PH-2018-038
 - https://docs.belle2.org/record/1218?ln=en
- Note started with phase 2 data
 - Was under review
 - Phill, Bryan, Torben
 - Neglected (by me)
 - Now resurrected and updated
- Should be ready before Xmas

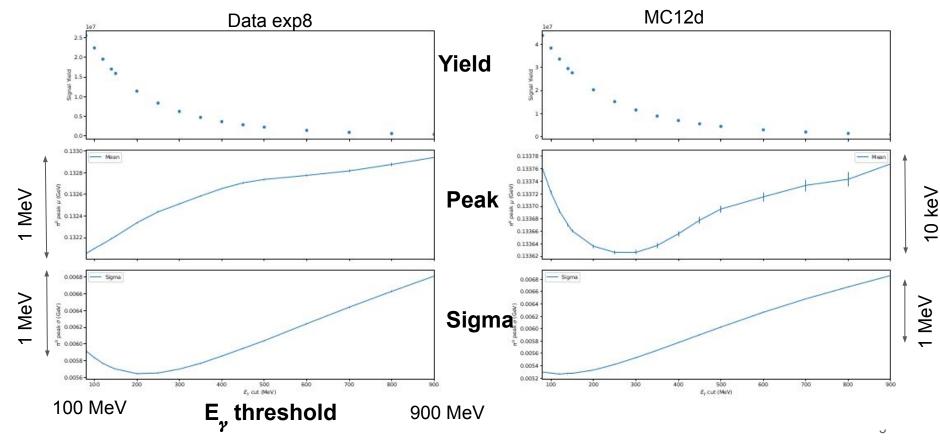
BELLE2-NOTE-PH-2018-038 DRAFT Version 1.0 December 18, 2019

Rediscovery of η and η' mesons in Belle II data


Stefano Lacaprara

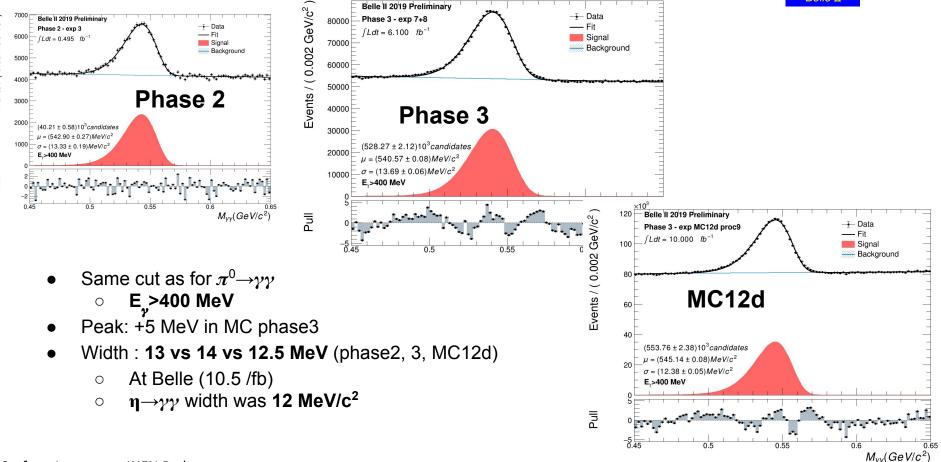
INFN sezione of Padova

Abstract


This note describes $\eta \to \gamma \gamma$, $\eta \to \pi^+ \pi^- \pi^0$, $\eta' \to \eta \pi^+ \pi^-$, and $\eta' \to \rho \gamma$ reconstruction on phase 2, experiment 3, and phase 3, experiment 7 and 8 data in Belle II, using proc9 and prompt processing. Comparison with Montecarlo results for phase 3 will be discussed as well.

 $\pi^0 \rightarrow \gamma \gamma \gamma vs E_{\gamma}$ threshold

Fit result feature


TABLE 1: Features of π^0 peak fit in different datasets. The uncertainties are only statistical.

Phase	Exp	proc	yield	μ	σ
			$(1\mathrm{E}6/\mathrm{fb}^{-1})$	(MeV)	(MeV)
II	3	proc	3.285 ± 0.007	132.447 ± 0.012	5.300 ± 0.009
	7 + 8	proc9	3.375 ± 0.003	132.118 ± 0.005	5.732 ± 0.004
III	8	prompt	3.735 ± 0.003	132.153 ± 0.005	5.752 ± 0.004
	7 + 8	all	3.497 ± 0.002	132.135 ± 0.004	5.742 ± 0.003
MC	7 + 8	proc9	3.367 ± 0.001	133.692 ± 0.002	5.270 ± 0.002
MU	8	prompt	3.213 ± 0.001	133.779 ± 0.003	5.365 ± 0.002

- Yield ok Data/MC
- Peak +1 MeV in MC (~1%)
- Width -0.4 MeV in MC

 $\eta \rightarrow \gamma \gamma$

$\eta \rightarrow \gamma \gamma$ fit features

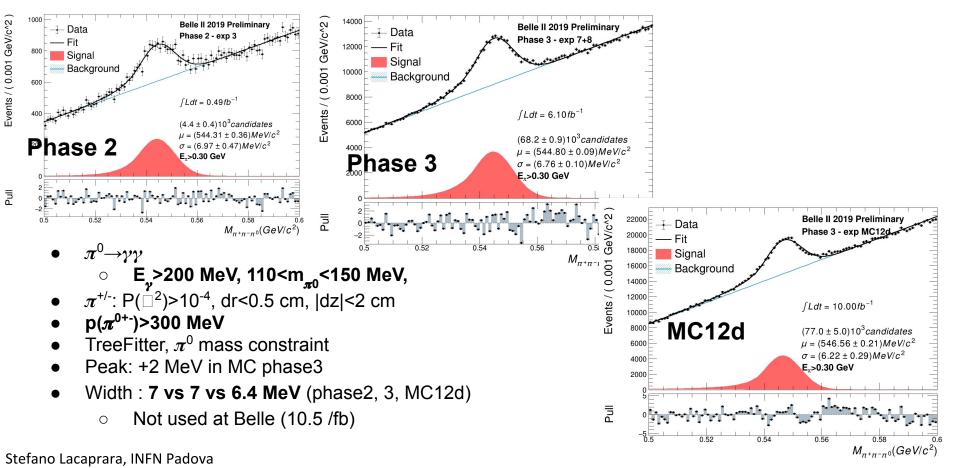
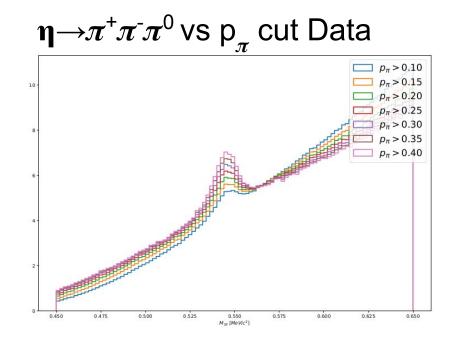

- Yield in MC significantly less than in data
- Peak position +5 MeV in MC
 - ~1% as for π^0
- Width -1 MeV in Mc

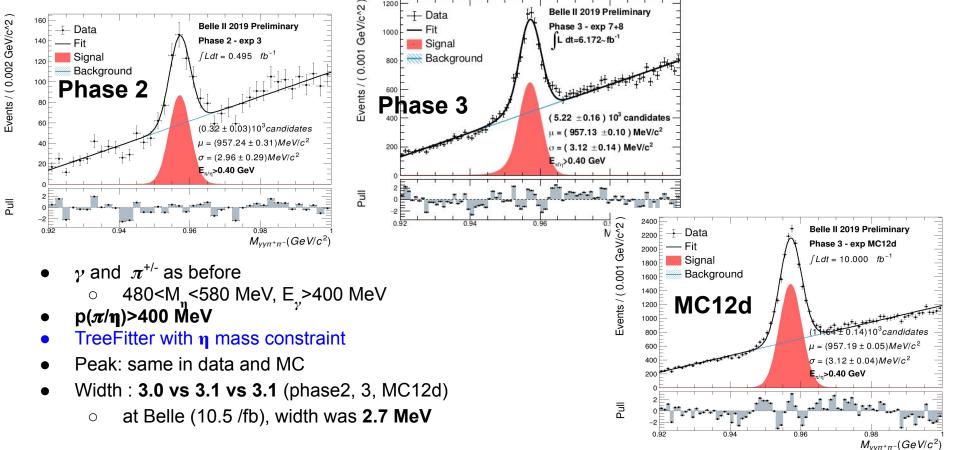
TABLE 2: Features of $\eta \to \gamma \gamma$ peak fit in different datasets

Phase	Exp	proc	yield	μ	σ
			$(1E3/{\rm fb}^{-1})$	(MeV)	(MeV)
II	3	proc9	79.1 ± 1.9	542.9 ± 0.3	13.1 ± 0.2
	7+8	proce	80.4 ± 0.8	540.6 ± 0.1	13.3 ± 0.1
III	8	prompt	87.4 ± 0.9	540.4 ± 0.1	13.4 ± 0.1
	7+8	all	82.6 ± 0.6	540.5 ± 0.1	13.4 ± 0.1
MC	7+8	proc9	53.1 ± 0.4	545.1 ± 0.1	12.1 ± 0.1
WIC	8	prompt	53.5 ± 0.4	545.1 ± 0.1	12.1 ± 0.1

 $\eta \rightarrow \pi^+ \pi^- \pi^0$

 $\eta \rightarrow \pi^+ \pi^- \pi^0$ features




TABLE 3: Features of $\eta \to \pi^+ \pi^- \pi^0$ peak fit in different datasets

Phase	Exp	proc	yield	μ	σ
			$(1\mathrm{E}3/\mathrm{fb}^{-1})$	(MeV)	(MeV)
II	3	9	8.87 ± 0.91	544.31 ± 0.36	6.97 ± 0.47
	7 + 8	9	11.84 ± 0.24	544.84 ± 0.11	6.57 ± 0.13
III	8	prompt	9.69 ± 0.20	544.66 ± 0.14	7.29 ± 0.16
	7 + 8	all	11.05 ± 0.15	544.80 ± 0.09	6.76 ± 0.10
MC	7 + 8	proc9	7.70 ± 0.50	546.56 ± 0.21	6.22 ± 0.29
WIC	8	prompt	7.23 ± 2.23	546.76 ± 0.23	5.85 ± 0.43

- Yield lower in MC (not stable in Data)
- Peak +2 MeV in MC
- Sigma -1 MeV in MC
 - Different in Prompt Data and MC wrt proc9
 - In Prompt MC -2 MeV

 $\eta' \rightarrow \eta (\rightarrow \gamma \gamma) \pi^+ \pi^-$

 $\eta' \rightarrow \eta (\rightarrow \gamma \gamma) \pi^+ \pi^-$

Peak vs $p_{\eta\pi\pi}$ cut Data

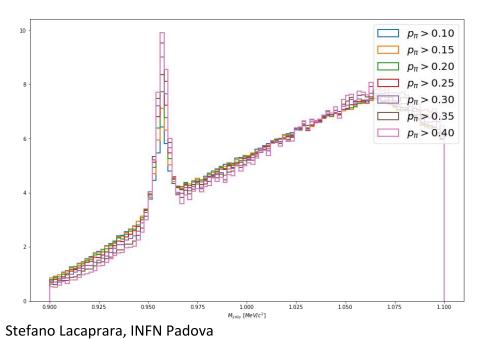
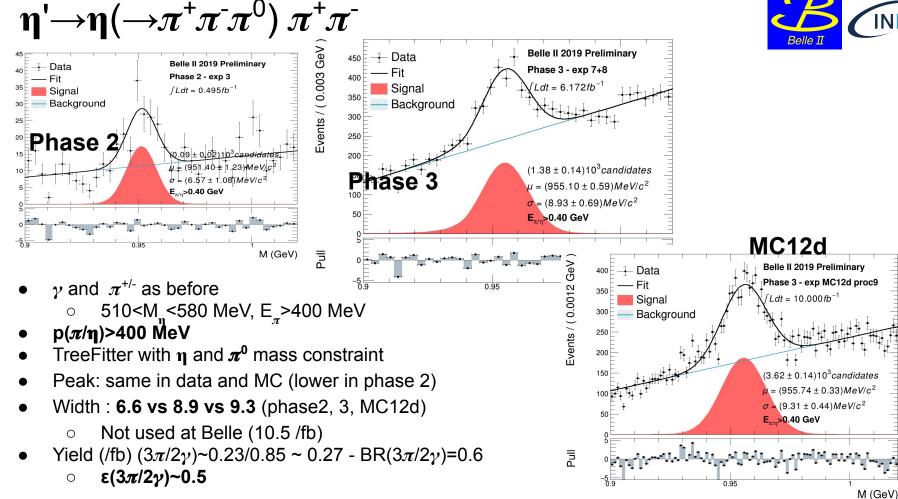



TABLE 4: Features of $\eta' \to \eta (\to \gamma \gamma) \pi^+ \pi^-$ peak fit in different datasets

Phase	Exp	proc	yield	μ	σ
			$(1\mathrm{E}3/\mathrm{fb}^{-1})$	(MeV)	(MeV)
II	3	proc9	0.65 ± 0.06	957.24 ± 0.31	2.96 ± 0.29
	7+8	proce	0.90 ± 0.03	957.06 ± 0.12	3.22 ± 0.14
III	8	prompt	0.78 ± 0.03	957.26 ± 0.13	2.89 ± 0.18
	7 + 8	all	0.85 ± 0.03	957.13 ± 0.10	3.12 ± 0.14
MC	7 + 8	proc9	1.16 ± 0.01	957.19 ± 0.05	3.12 ± 0.04
MO	8	prompt	1.13 ± 0.02	957.26 ± 0.05	2.95 ± 0.06

- Yield larger in MC than in data
 - Some fluctuation in Data
- Peak position very good agreement
- Sigma very good agreement
 - Better in Prompt than in proc9

Events / (0.003 GeV)

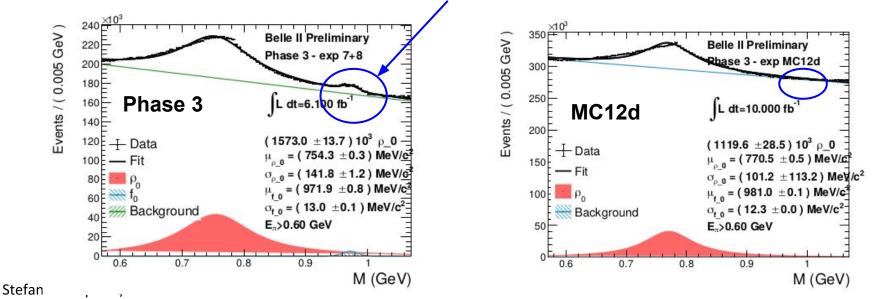
Inc

 $\eta' \rightarrow \eta (\rightarrow \pi^+ \pi^- \pi^0) \pi^+ \pi^-$

TABLE 5: Features of $\eta' \to \eta (\to \pi^+ \pi^- \pi^0) \pi^+ \pi^-$ peak fit in different datasets

	Peak vs $p_{\eta\pi\pi}$ cut Data	II
12	$p_{\pi} > 0.20$	III
10 - 8 - 6 -	$p_{\pi} > 0.30$ $p_{\pi} > 0.40$ $p_{\pi} > 0.50$ $p_{\pi} > 0.60$ $p_{\pi} > 0.70$	MC
4 - 2 -		•
0	0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04	

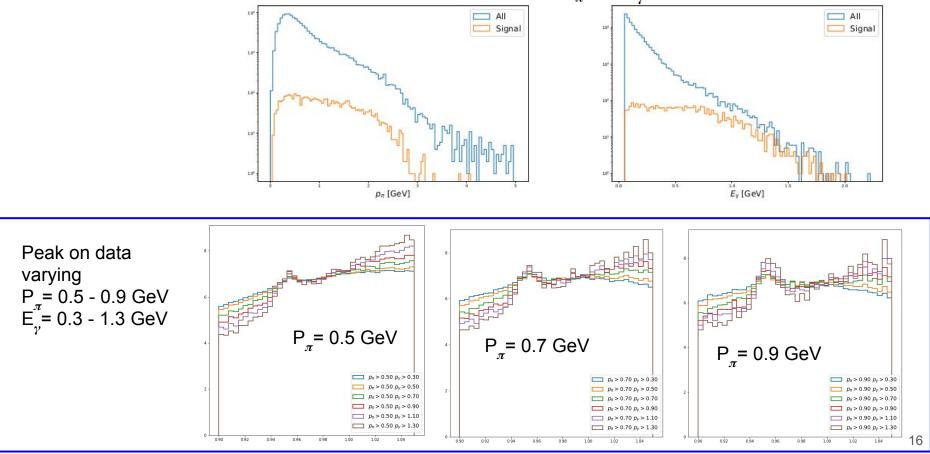
M_{5/22} [MeV/c²]


	Phase	Exp	proc	yield	μ	σ
				$(1\mathrm{E}3/\mathrm{fb}^{-1})$	(MeV)	(MeV)
	II	3	proc9	0.19 ± 0.03	951.40 ± 1.22	6.57 ± 1.08
		7 + 8	proce	0.29 ± 0.04	954.60 ± 1.13	12.37 ± 1.57
٦	III	8	prompt	0.21 ± 0.02	955.01 ± 0.66	7.06 ± 0.68
	~	7 + 8	all	0.22 ± 0.02	955.10 ± 0.59	8.93 ± 0.69
	MC	7 + 8	proc9	0.36 ± 0.01	955.74 ± 0.33	9.31 ± 0.44
	WI U	8	prompt	0.33 ± 0.01	956.05 ± 0.39	10.13 ± 0.48

- Yield larger in MC
 - Larger in phase 3 wrt phase 2
- Peak good agreement
- Sigma not so stable in data
 - Smaller in prompt than in proc9
 - Larger in MC

 $\eta' \rightarrow \rho(\rightarrow \pi^+ \pi^-) \gamma \rho(\rightarrow \pi^+ \pi^-)$

- Larger BR but larger background
 - Hard to see with release 3
 - Much better with release 4
 - Higher threshold: $p(\pi/\gamma)$ >600 MeV
- γ and $\pi^{+/-}$ as before
- ρ from $\pi^+\pi^-$: no mass constraint (large resonance)
 - Fit with BW (poor fit) plut Gauss for $f^0(980)$ in Data (not simulated in MC)



15

Cut on π and γ

MC: Signal and background P_{π} and E_{ν} distribution

 $\eta' \rightarrow \rho(\rightarrow \pi^+ \pi^-) \gamma = \pi^0/\eta$ veto

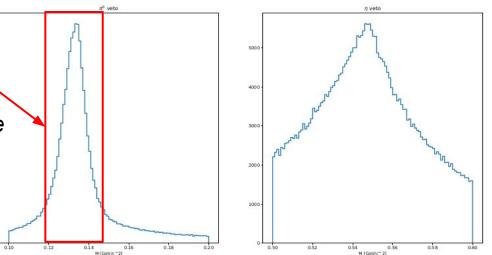
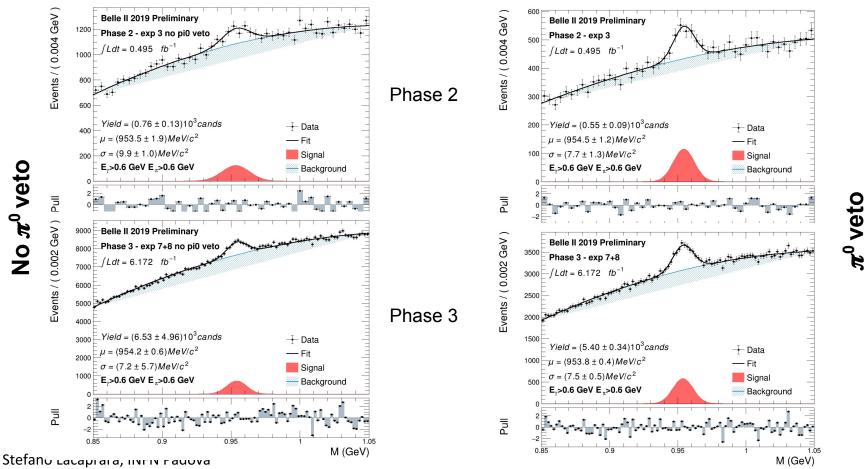
- γ background from π^0/η
- Apply veto: build π^0/η candidate from signal γ plus ROE γ
 - Select that with $M_{\gamma\gamma}$ closer to π^0/η respectively

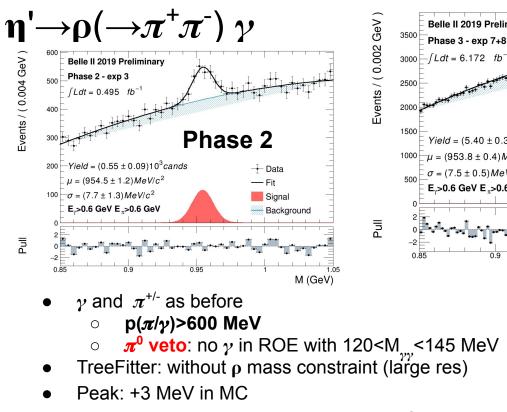
15.000

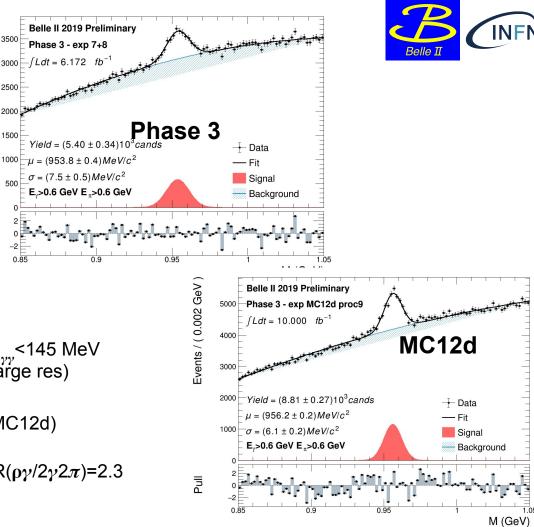
10000

5000

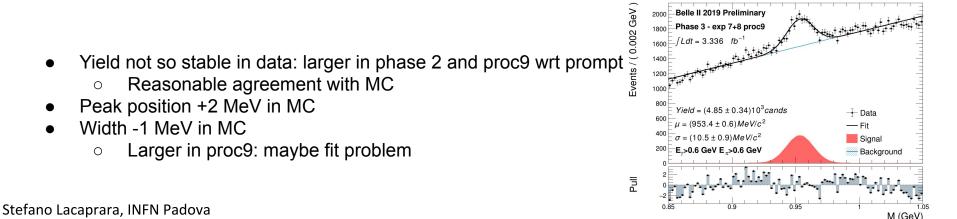
- Clear π^0 peak seen, not so for η
 - \circ Apply veto if
- $M_{yy}(sig, ROE) \in [120, 145] \text{ MeV}$
- No veto for η
- Other potential discriminating variable
 - \circ cos θ^* : angle between
 - γ in the η rest frame
 - and η momentum
 - Used in Belle


FIG. 15: Distribution of invariant mass of $\gamma \gamma$ candidates for π^0/η veto.


Impact of π^0 veto on Data $\eta' \rightarrow \rho(\rightarrow \pi^+ \pi^-) \gamma$

- Width : 7.7 vs 7.5 vs 6.6 (phase2, 3, MC12d)
 - At Belle (10.5 /fb) 8.8 MeV
- Yield (/fb) $(\rho \gamma / 2\gamma 2\pi) \sim 0.85 / 0.85 \sim 1 BR(\rho \gamma / 2\gamma 2\pi) = 2.3$
 - ε(3π/2γ)~0.4



=N

 $\eta' \rightarrow \rho(\rightarrow \pi^+ \pi^-) \gamma$ TABLE 7: Features of $\eta' \rightarrow \rho(\rightarrow \pi^+ \pi^-) \gamma$ peak fit in different datasets

Phase	Exp	proc	yield	μ	σ
			$(1\mathrm{E}3/\mathrm{fb}^{-1})$	(MeV)	(MeV)
II	3	proc9	1.12 ± 0.19	954.50 ± 1.16	7.73 ± 1.29
	7+8	proce	1.45 ± 0.10	953.43 ± 0.56	10.51 ± 0.94
III	8	prompt	0.78 ± 0.09	954.22 ± 0.65	7.16 ± 0.88
	7+8	all	0.88 ± 0.05	953.83 ± 0.41	7.46 ± 0.47
MC	7+8	proc9	0.88 ± 0.03	956.23 ± 0.22	6.12 ± 0.18
WIC	8	prompt	0.84 ± 0.04	956.34 ± 0.27	6.60 ± 0.32

Summary

- η ' seen in phase 3 (and phase 2) dataset in all final states
 - Overall good agreement with Run Dependent MC MC12d
- Resolution in good agreement also with Belle 10.5/fb publication
- Relative η' wrt to $\eta' \rightarrow \eta(\rightarrow \gamma \gamma) \pi + \pi \pi$

$$\circ \quad \mathbf{\eta}' \rightarrow \mathbf{\eta} (\rightarrow \pi^+ \pi^- \pi^0) \ \pi^+ \pi^-$$

ε(3π/2γ)~0.5

•
$$\eta' \rightarrow \rho(\rightarrow \pi + \pi -) \gamma$$

ε(3π/2γ)~0.4

Documentation almost ready BELLE2-NOTE-PH-2018-038

Signal / width (MeV)	Ph 2	Ph 3	MC12d	Belle (10.5/fb)
η→γγ	13.1	13.4	12.1	12
$\eta \rightarrow \pi^+ \pi^- \pi^0$	7.0	6.8	6.2	-
$\eta' \rightarrow \eta (\rightarrow \gamma \gamma) \pi^+ \pi^-$	3.0	3.12	3.12	2.7
$\eta' \rightarrow \eta (\rightarrow \pi^+ \pi^- \pi^0) \pi^+ \pi^-$	6.6	8.9	9.3	-
$\eta' \rightarrow ho (\rightarrow \pi^+ \pi^-) \gamma$	7.7	7.5	6.1	8.8

Backup I HAD TO USE ALL OF THE WHITE SPACE, BUT NK IT WAS WORTH SLIDE. O FIT EVERYTHING ONE. ON ONE PAGE.

Final states considered (Belle)

- $\eta' \rightarrow \eta \pi^+ \pi^-$: BR=42.6% $\circ \eta \rightarrow \gamma \gamma$: BR=38.41% $\circ \eta \rightarrow \pi^+ \pi^- \pi^0$:BR=22.94% • $\eta' \rightarrow \rho(\rightarrow \pi^+ \pi^-)\gamma$: BR=28.9% \circ Including non resonant $\pi^+ \pi^- \gamma$ • $K^0_S \rightarrow \pi^+ \pi^-$: BR=69.2 %
- In Belle, most of signal comes from
- $\eta' \rightarrow \rho(\rightarrow \pi^+ \pi^-) \gamma$

 $\eta \rightarrow \pi^+ \pi^- \pi^0$ was not used here, only $\eta \rightarrow \gamma \gamma$

Mode	NS	$\boldsymbol{\Sigma}$	ϵ (%)	$\epsilon B_{s}(\%)$	$BF(10^{-6})$
$\eta'_{\eta\pi\pi}K^+$	$28.9^{+6.5}_{-5.7}$	9.4	21.7	3.78	69^{+15}_{-14}
$\eta'_{\rho\gamma}K^+$	$42.5_{-8.3}^{+9.1}$	7.5	14.2	4.18	92^{+20}_{-18}
$\eta_{\eta\pi\pi}^{\prime}\pi^+$	$0.0^{+1.2}_{-0.0}$	0.0	23.7	4.11	_
$\eta'_{ ho\gamma}\pi^+$	$0.0\substack{+5.6 \\ -0.0}$	0.0	15.4	4.55	-
$\eta'_{\eta\pi\pi}K^0$	$6.4^{+3.4}_{-2.7}$	3.5	20.8	1.25	46^{+25}_{-20}
$\eta'_{\rho\gamma}K^0$	$10.1^{+4.4}_{-3.6}$	4.0	11.5	1.16	79^{+34}_{-28}

Plan

- Rediscover η and η' in all final states, and compare with MC expectation
- Study selection and efficiency for B0->eta'K0 in MC
 - $\eta' \rightarrow \eta (\rightarrow \gamma \gamma) \pi^+ \pi^-$,
 - $\circ \quad \boldsymbol{\eta}^{\boldsymbol{-}} \rightarrow \boldsymbol{\eta} (\rightarrow \boldsymbol{\pi}^{\boldsymbol{-}} \boldsymbol{\pi}^{\boldsymbol{-}} \boldsymbol{\pi}^{\boldsymbol{0}}) \ \boldsymbol{\pi}^{\boldsymbol{+}} \boldsymbol{\pi}^{\boldsymbol{-}},$
 - $\circ \quad \eta' {\rightarrow} \rho({\rightarrow} \pi^{+} \pi^{-}) \gamma$
- Apply selection to generic Run dependent MC to check signal yield
 - \circ Setup and 2D fit on M_{bc}- Δ E for signal extraction
- Study Data continuum and side bands for background assessment
- Repeat for B+
- Document everything
- Finalize selection for Data
 - Review process toward unblinding
- Systematics and unblinding

Plan (today)

- Rediscover η and η' in all final states, and compare with MC expectation
- Study selection and efficiency for B0->eta'K0 in MC
 - \circ $\eta' \rightarrow \eta (\rightarrow \gamma \gamma) \pi^+ \pi^-$,
 - $\circ \quad \mathbf{\eta'} \rightarrow \mathbf{\eta} (\rightarrow \pi^+ \pi^- \pi^0) \ \pi^+ \pi^-,$
 - $\circ \quad \eta' \rightarrow \rho(\rightarrow \pi^+ \pi^-) \gamma$
- Apply selection to generic Run dependent MC to check signal yield
 - Setup and 2D fit on M_{hc} - ΔE for signal extraction (not today but ready) Ο
- Study Data continuum and side bands for background assessment

A lot of work still needed,

hard for Moriond

- Repeat for B+
- Document everything
- Finalize selection for Data
 - Review process toward unblinding Ο
- Systematics and unblinding

eta->gamma gamma for low trhesholds

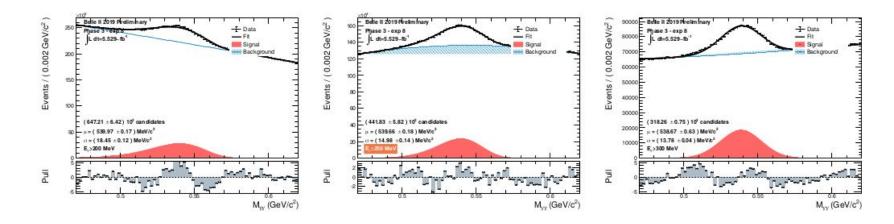


FIG. 5: $\eta \to \gamma \gamma$ fit results for low thresholds of 200, 250, and 300 MeV, showing the not optimal modelling of data of the fitting function (Novosibirsk + Chebychev(2)) for the lower one.