η and η' meson rediscovery (plus f_0) Some preliminary look at MC10 and DataChallenge for $B^0 \rightarrow \eta' (\rightarrow \eta (\rightarrow \gamma \gamma) \pi^+ \pi^-) K_s^0 (\rightarrow \pi^+ \pi^-)$

Stefano Lacaprara

stefano.lacaprara@pd.infn.it

INFN Padova

TDCPV meeting, SpeakApp, 31 October 2018

Light meson in Belle II - Phase II

- Start looking into Data Challenge data for TDCPV $B^0 \rightarrow \eta' K^0$;
- Some time ago Phil challenged me to look for η' on data;
 JIRA ticket is BIIPH2-62
- General strategy is:
 - Define selection based on MC phase II
 - test selection on large DataChallenge dataset
 - run on Data Phase2 (exp3, Prod6)

This presentation

- Show η and η' in data
- very preliminary studies on $\mathsf{B}^0\to\eta'\mathsf{K}^0$ for MC10
 - and also on DC

list of resonances studied $\pi^0 o \gamma \gamma$ (backup) $\rho \rightarrow \pi^+ \pi^-$ (f₀(975) $\rightarrow \pi^+ \pi^ \checkmark$ K⁰_S $\rightarrow \pi^{+}\pi^{-}$ (backup) $\checkmark \phi \rightarrow K^{+}K^{-}$ (backup) $\begin{array}{c} \eta \rightarrow \pi^{+}\pi^{-}\pi^{0} \\ \eta \rightarrow \eta (\rightarrow \gamma \gamma)\pi^{+}\pi^{-} \\ \eta \rightarrow \eta (\rightarrow \pi^{+}\pi^{-}\pi^{0})\pi^{+}\pi^{-} \\ \eta \rightarrow \eta (\rightarrow \pi^{+}\pi^{-}\pi^{0})\gamma \end{array}$

- MC phase II
 - cc̄ events
 - Warning: non inclusive MC
 - BGx0: prodID 2218
 - BGx1: prodID 2264
- Data
 - exp3, Prod6, skim Hadron [[nTracksLE>=3] and [Bhabha2Trk==0]]
 - Runs: 529:5613: Lumi: 491.5 pb⁻¹
 - Also Prod5 available for comparison:
 - * exp3, Prod5, skim Hadron [[nTracksLE>=3] and [Bhabha2Trk==0]]
 - ★ Runs: 529:5613: Lumi: 472 pb⁻¹
- Data Challenge MC phase 3
 - skim TDCPV (ProdID 5142)
 - N events (post skim) 59830371
 - Confluence page

- git repo: ssh://git@stash.desy.de:7999/~lacaprar/etaprime.git
- etaprime/Jupiter
- Ntuple processing in EtaProcessing.py
- and in EtaPrimeProcessing.py
- analysis in PiO|Eta|EtaPrime....ipynb
- Code is a messy shape, in case you want to reuse it, you might want to ask me

Selection:

- gamma:pi0 from stdPhotons
 - $\begin{array}{l} \bullet \quad 0.296706 < \theta_{\gamma} < 2.61799 \\ \bullet | clusterTiming | < clusterErrorTiming \ \text{or} \\ E > 0.1 \ \text{GeV} \\ \bullet \quad E_1/E_9 > 0.3 \ \text{or} \ E > 0.1 \ \text{GeV} \end{array}$
- 50 MeV $< E_{\gamma} <$ 6 GeV
- $E_9/E_{25} > 0.75$
- Cluster: $N_{hits} > 5$, $E_9/E_{21} > 0.95$
- Varing $E_{\gamma} > 300 500 \text{ MeV}$

UML Fit with CristalBall + Chebychev[1]

Invariant Mass plot for Data Prod6, 500 nb^{-1}

 $\Delta \mu \sim 2 \text{ MeV}, \ \Delta \sigma \sim 1 \text{ MeV}.$ Warning: MC only $c\bar{c}$ bkg shape different. Ph3-BGx1 σ 14 MeV (only fraction of full statistics - gauss fit)

Selection:

```
• \pi^0 \to \gamma \gamma
       |clusterTiming| < clusterErrorTiming or E > 0.1 \,\text{GeV}
       50 \,\mathrm{MeV} < E_{\gamma} < 6 \,\mathrm{GeV}
       Cluster: N_{hits} > 1.5, E_9/E_{21} > 0.9
       100 < M_{\gamma\gamma} < 150 \,\mathrm{MeV}
       p_{0} > 300 \, {\rm MeV}
\bullet \pi^{\exists}
       |d_0(\pi)| < 2 \ cm, \ |z_0(\pi)| < 4 \ cm
    \blacktriangleright PionID > 0.5. KaonID < 0.5
       0.296706 < 	heta_{\gamma} < 2.61799
● p<sub>n</sub> > 100 MeV
• VertexFit for decay chain (mass constrained for
   \pi^0)
UML Fit with Gauss + Chebychev[1]
```

Invariant Mass plot for Data Prod6, 500 nb^{-1} Events / (GeV / 600 800 Signs 700 600 500 40 Il Preliminary - DataProd6 30 Yield = (1944 ± 103) cands $\mu = (0.5469 \pm 0.0002) \text{ GeV/c}^2$ 200 $\sigma = (0.0044 \pm 0.0003) \text{ GeV/c}^2$ 100 p π^0>0.30 GeV llnc

S.Lacaprara (INFN Padova)

 $\eta \to \pi^+ \pi^- \pi^0$

M (GeV)

$\eta \to \pi^+ \pi^- \pi^0$ Data - MC comparison

Peak on MC \sim 2 MeV higher than data. Width significantly larger on Data (4.4 vs 3.2 MeV). S/B very different (MC only $c\bar{c}$) On Ph3 (DC) $\sigma \sim 4.1$ MeV, and S/B more similar to that of data.

 $\beta \eta' \to \eta (\to \gamma \gamma) \pi^+ \pi^-$

Selection:

```
• \eta \to \gamma \gamma
    E_9/E_{25} > 0.75
    • Cluster: N_{hits} > 5, E_9/E_{21} > 0.93
    E_{\gamma} > 400 \, \text{MeV}
       0.52 < M_{\gamma\gamma} < 0.56 \, {
m GeV}
      p_n > 800 \,\mathrm{MeV}
• \pi^{\pm}
      |d_0(\pi)| < 2 \ cm, \ |z_0(\pi)| < 4 \ cm
    ▶ PionID > 0.5. KaonID < 0.5
    p_{\pi} > 400 \, \text{MeV}
• VertexFit with \eta \rightarrow \gamma \gamma mass constrained
UML Fit with Gauss + Chebychev[1]
```

Invariant Mass plot for Data Prod6, 500 nb^{-1}

maybe a signal

Maybe is a signal. Visible also in Prod5, width smaller. Fit is rather unstable and statistics - if any - small

$\mathcal{Z}_{\mu\nu}$ $\eta' ightarrow \eta(ightarrow \gamma\gamma)\pi^+\pi^-$ Data - MC comparison

Better signal (even better with BGx0 - backup). "Peak" position is $\Delta \sim 2$ MeV, $\sigma \sim 9$ MeV is way smaller than data (17 MeV) DC nice peak $\sigma \sim 13$ MeV (not full stat)

 $\eta' \rightarrow \eta (\rightarrow \pi^+ \pi^- \pi^0) \pi^+ \pi^-$

Selection:

• $\pi^0 \to \gamma \gamma$ Cluster: $N_{hits} > 5$, $E_9/E_{21} > 0.91$ $E_{\sim} > 50 \,\mathrm{MeV}$ $\sim 125 < M_{0} < 150 \, {
m MeV}$ ▶ $p_{_0} > 100 \, \text{MeV}$ $\bullet \pi^{\pm}$ $|d_0(\pi)| < 2 \ cm, \ |z_0(\pi)| < 4 \ cm$ PionID > 0.5, KaonID < 0.5 $p_\pi > 100 \, {
m MeV}$ $\circ \eta$ $510 < M_n < 590 \, {
m MeV}$ $p_n > 200 \,\mathrm{MeV}$ • VertexFit with π^0 , η mass constrained UML Fit with Gauss + Chebychev[1]

Invariant Mass plot for Data Prod6, 500 nb^{-1}

S.Lacaprara (INFN Padova)

Almost no signal in the MC - ph2 (even before the cuts, MC truth) Wrong MC sample? Ok for DC, quite narrow ($\sigma \sim 7.5 \text{ MeV}$ vs 12.8 MeV for $\gamma\gamma$) also 200 η'_{3pi} vs 560 $\eta'_{\gamma\gamma}$) to de understood

 $\begin{array}{c} & \\ & \\ \end{array} \quad \rho \to \pi^+ \pi^- \end{array}$

Selection:

Invariant Mass plot for Data Prod6, 500 nb⁻¹

ho

Sackground

M (GeV)

All seems fine: large intrinsic width. PDG 150 MeV, my fit 125 MeV) Background on DC similar to that of Data, no $f_0(975)$ (not simulated)

 $\eta' \to \rho (\to \pi^+ \pi^-) \gamma$

Selection:

• $\rho \to \pi^+ \pi^-$ • *PionID* > 0.5, *KaonID* < 0.5 • $p_{\pi} > 0.4 \text{ GeV}$ • 0.470 < $M_{\rho} < 1.07 \text{ GeV}$ before fit • .73 < $M_{\rho} < 0.8 \text{ GeV}$ after fit

• γ

gamma:pi0 from stdPhotons Cluster: $N_{hits} > 5$, $E_9/E_{21} > 0.95$ $E_{\gamma} > 100 \, {\rm MeV}$ **Pi0Veto**

- $|M_{\gamma\gamma} M_{\pi^0}| > 20 \text{ MeV with the } \gamma \text{ from ROE}$ with $M_{\gamma\gamma}$ closest to M_{π^0} and
- N < 2 γ in ROE with $|M_{\gamma\gamma} M_{\pi^0}| <$ 20 MeV
- VertexFit with ho mass constrained

UML Fit with Gauss + Chebychev[1]

$\eta' ightarrow ho(ightarrow \pi^+\pi^-)\gamma$ Data - MC comparison

Good signal in MC phase 2. More work needed on Data, same also for DC

INFN

Motivation

- Data Challenge analysis
 - demonstrate capability to perform full analysis on $1\,{
 m ab}^{-1}$ of "data"
 - crucial to demonstrate phase 3 readiness
- twofold blind analysis:
 - do not look at signal before analysis freezing
 - some "new physics" has been included in DC [Phill several times]
- first step is to redo the old full exercise (The Belle II Physics Book) with up-to-data software and data
- start with MC10 datasets;
 - 🗸 signal
 - × continuum $(u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, mixed, charged)$ 0.8 ab⁻¹
 - I realized while writing these slides that I processed phase2 continuum and generic BB, no wonder \sim no events survived!
- eventually apply on DC;
 - 1/abinv: TDCPV skims N events: 5672E6 (pre-skim) events: 59830371 (post skim)

Δz resolution: signal and tag vertex

Signal side B2TIP True $\sigma = 69 \ \mu m$ SxF $\sigma = 70 \ \mu m$ All $\sigma = 69 \ \mu m$ Compatible

Tag side B2TIPTrue $\sigma = 52 \ \mu m$ SxF $\sigma = 141 \ \mu m$ All $\sigma = 67 \ \mu m$ Improved!

Δz resolution: signal and tag vertex

Signal side B2TIP True $\sigma = 69 \ \mu m$ SxF $\sigma = 70 \ \mu m$ All $\sigma = 69 \ \mu m$ Compatible

Tag side B2TIP True $\sigma = 52 \ \mu m$ SxF $\sigma = 141 \ \mu m$ All $\sigma = 67 \ \mu m$ Improved! Shoulder for SxF

also present: bug of physics?

S.Lacaprara (INEN Padova)

🔼 ML fit (only signal and SxF are meaningful! background is ph2) 🖉

S.Lacaprara (INFN Padova)

 $\eta,\,\eta'$ and $\mathrm{K_S^0}$ ok.

 η , η' and K_{S}^{0} ok. Where are the B⁰?? Expected $\mathcal{O}(1000)$

\bullet Some η and η' final states rediscovered on Data

- agreement with MC is decent, not perfect
- still things to understood both in MC and Data
- Belle 2 note in preparation
- started looking at ${\sf B}^0\to \eta'(\eta_{\gamma\gamma}\pi^\pm){\sf K}^0_{\sf S}$ with MC10
 - Signal eff is larger that B2TIP, but also SxF
 - * BDT not retrained yet
 - Δz improved on tag-side
 - generic BB and continuum to be processed
 - * NOTE TO SELF it is a smart idea to look at the right MC!
 - first look at DC: where are my B⁰?
- Lot of work to do

Light meson rediscovered $\checkmark \pi^0 \rightarrow \gamma \gamma$ $\checkmark \rho \rightarrow \pi^+ \pi^ \checkmark$ f₀(975) $\rightarrow \pi^+\pi^-$ new $\checkmark \mathrm{K}^{\mathrm{0}}_{\mathrm{S}} \rightarrow \pi^{+}\pi^{-}$ $\checkmark \phi \rightarrow K^+K^ \sqrt{\eta} \rightarrow \gamma \gamma$ already seen w/ lower stat $\checkmark n \rightarrow \pi^+ \pi^- \pi^0$ new $\checkmark n' \rightarrow n(\rightarrow \gamma \gamma)\pi^+\pi^-$ new $\checkmark \eta' \rightarrow \eta (\rightarrow \pi^+ \pi^- \pi^0) \pi^+ \pi^-$ new $\checkmark \eta' \rightarrow \rho (\rightarrow \pi^+ \pi^-) \gamma$ working

Additional or backup slides

candidate selection: main cuts

- Reconstruct decay chain with mass constrains for π⁰, η, η', K⁰_S,
 vertex only (w/o mass) for B⁰ (more later)
 - $\blacksquare \pi^0, \eta_{\gamma\gamma}:$
 - ho 0.06 $< E_{\gamma} <$ 6 GeV, $E_9/E_{25} >$ 0.75
 - ▶ $M(\pi^0) \in [100, 150]$ MeV
 - ▶ $M(\eta_{\gamma\gamma}) \in [0.52, 0.57]$ GeV;
 - $\blacksquare \ \eta' \to \eta_{\gamma\gamma} \pi^+ \pi^-:$
 - $d_0(\pi^{\pm}) < 0.08$ mm; $z_0(\pi^{\pm}) < 0.1$ mm;
 - ▶ N hits_{PXD} $(\pi^{\pm}) > 1$, PID
 - $M(\eta') \in [0.93, 0.98]$ GeV;

- $\ \, \blacksquare \ \, \eta' \to \eta_{3\pi} \pi^+ \pi^- :$
- $M(\eta') \in [0.93, 0.98]$ GeV;
- $\blacksquare \mathsf{K}^{\mathsf{0}} \to \pi^{+}\pi^{-}:$
- $M(K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \in [0.48, 0.52] \text{ GeV};$
- $\blacksquare B^0 \to \eta' (\to \eta_{\gamma\gamma} \pi^+ \pi^-) K_{\rm S}^{0^{+-}}$
- $M_{bc} > 5.25 \text{ GeV};$
- $|\Delta E| < 0.1 \, \text{GeV};$
- $\blacksquare B^0 \to \eta' (\to \eta_{3\pi} \pi^+ \pi^-) \mathsf{K}^{0^{+-}}_{\mathsf{S}}$
- ► $|\Delta E| < 0.15 \, \text{GeV};$

if $N_{cands} > 1$, keep all of them!

•
$$BR(\eta' \to \eta \pi^+ \pi^-) = 0.429$$

 $BR(\eta \to \gamma \gamma) = 0.3941$
 $BR(\eta' \to \eta (\to \gamma \gamma) \pi^+ \pi^-) = 0.169$
 $BR(\eta \to \pi^+ \pi^- \pi^0) = 0.3268$
 $BR(\eta' \to \eta (\to \pi^+ \pi^- \pi^0) \pi^+ \pi^-) = 0.140$
• $BR(\eta' \to \rho \gamma) = 0.291$
 $BR(\rho \to \pi^+ \pi^-) = 1$

Invariant Mass plot for Data Prod6, $\sim 200 \, { m nb}^{-1}$

Selection:

- gamma:pi0 from stdPhotons
 - $0.296706 < heta_{\gamma} < 2.61799$
 - |clusterTiming| < clusterErrorTiming
 or E > 0.1 GeV
 - $E_1/E_9 > 0.3$ or $E > 0.1\,{
 m GeV}$
- 50 MeV $< E_{\gamma} <$ 6 GeV
- $E_9/E_{25} > 0.75$
- Cluster: $N_{hits} > 1.5, E_9/E_{21} > 0.9$
- Varing $E_{\gamma} > 60 160 \, {
 m MeV}$

UML Fit with CristalBall + Chebychev[1]

M (GeV)

Montecarlo - Phase 2 BGx1

Data - Phase 2 Prod 6

Nice agreement on σ , on MC peak is a bit shifted wrt Data

$\pi^0 \rightarrow \gamma \gamma$ Data Prod5 vs Prod6 comparison

Data - Phase 2 Prod 6

Data - Phase 2 Prod 5

Peak position unchanged ($\Delta \sim 0.4$ MeV), width: Prod6 5.1 MeV, Prod5 5.3 MeV, so 4% improvement.

S.Lacaprara (INFN Padova)

MC - Phase 2 BGx1

MC - Phase 2 BGx0

Peak position shift by 1 MeV, width increase by 1 MeV

Data Challenge - Phase 3 BGx1

MC - Phase 2 BGx1

Peak position shift further by 1 MeV, width increase from 5.3 to 7.5 MeV

$\eta \rightarrow \gamma \gamma$ BGx1 vs BGx0 phase II MC comparison

BGx0 MC Phase 2

BGx1 MC Phase 3 Data Challenge

Ph2: BGx1 σ 10.3 MeV vs BGx0 8.7 MeV vs Ph3-BGx1 14 MeV

S.Lacaprara (INFN Padova)

Data Challenge - Montecarlo

Selection:

```
• \pi^0 \to \gamma \gamma
       |clusterTiming| < clusterErrorTiming or E > 0.1 \,\text{GeV}
       50 \,\mathrm{MeV} < E_{\gamma} < 6 \,\mathrm{GeV}
       Cluster: N_{hits} > 1.5, E_9/E_{21} > 0.9
       100 < M_{\gamma\gamma} < 150 \,\mathrm{MeV}
       p_{0} > 300 \, {\rm MeV}
\bullet \pi^{\exists}
       |d_0(\pi)| < 2 \ cm, \ |z_0(\pi)| < 4 \ cm
    \blacktriangleright PionID > 0.5. KaonID < 0.5
       0.296706 < 	heta_{\gamma} < 2.61799
● p<sub>n</sub> > 100 MeV
• VertexFit for decay chain (mass constrained for
   \pi^0)
UML Fit with Gauss + Chebychev[1]
```

Invariant Mass plot for Data Prod6, 500 nb⁻¹

 $\eta \to \pi^+ \pi^- \pi^0$

Peak on MC \sim 2 MeV higher than data. Width significantly larger on Data (4.4 vs 3.2 MeV). S/B very different (MC only $c\bar{c}$) Prod6 $\sigma \sim$ 3.4 MeV vs 3.2 on Prod5 (not full stat)

Width increases from 2.8 to 3.2 MeV with BGx1 On Ph3 (DC) $\sigma\sim$ 4.1 MeV, and S/B more similar to that of data.

Selection:

• stdPi(good)

 \mathbf{S} $\mathbf{K}^{0}_{\mathbf{S}} \rightarrow \pi^{+}\pi^{-}$

 $\begin{array}{l} 0.296706 < \theta_{\pi} < 2.61799 \\ \quad |d_0(\pi)| < 2 \ cm \\ \quad |z_0(\pi)| < 4 \ cm \\ \quad PionID > 0.5, \ KaonID < 0.5 \\ \text{or} \ p < 0.5 \ dr > 0.05, \ dz < 0.8, \ \cos\Delta\phi > 0.955 \\ \text{or} \ 0.5 0.03, \ dz < 1.8, \\ \cos\Delta\phi > 0.995 \\ \text{or} \ p > 1.5 \ dr > 0.02, \ dz < 2.8, \ \cos\Delta\phi > 0.9955 \\ \bullet \ NHits_{CDC} > 15 \ (\text{and} \ NHits_{SVD} = 0 \ \text{for} \ \text{DC}) \\ \bullet \ p_{\pi} > 0.3 - 1.3 \ \text{GeV} \end{array}$

UML Fit with Gauss + Chebychev[1]

Invariant Mass plot for Data Prod6, 500 nb^{-1}

Montecarlo - Phase 2 BGx1

Data - Phase 2

Significan shift in peak position, width similar (large on Data)

Peak shift not due to BGx1, only larger width. DC BGx1 has even larger width.

S.Lacaprara (INFN Padova)

 $\phi \to \mathsf{K}^+\mathsf{K}^-$

Invariant Mass plot for Data Prod6, 500 nb⁻¹

- Data

Signal

Belle II Preliminary - DataProd6

Yield = (4776 ± 114) cands

 $\mu = (1.0194 \pm 0.0001) \text{ GeV/c}^2$

 $\sigma = (0.0025 \pm 0.0001) \text{ GeV/c}^2$

PID K>0.50 GeV

- Eit

^{1.04} M (GeV)

Peak position 1 MeV higher on Data than MC, width slightly smaller in Data

Phase 3 BGx1 better than Phase 2 BGx1 ?

S.Lacaprara (INFN Padova)

$\phi \to \mathsf{K}^+\mathsf{K}^-$ peak parameters vs PID_K

S.Lacaprara (INFN Padova)

Maybe is a signal. Visible also in Prod5, width smaller. Fit is rather unstable and statistics - if any - small

Data - Phase 2 Montecarlo - Phase 2 BGx1 Events / (GeV / 67 Events / (GeV / 400 250 80 Belle II Preliminary - DataProd6 Belle II Preliminary - MC phase2 BGx1 -Yield = (55 + 17) cands Yield = (226 ± 42) cands 70 $\mu = (0.9501 \pm 0.0018) \text{ GeV/c}^2$ $= (0.9521 \pm 0.0053) \text{ GeV/c}^2$ 60 $\sigma = (0.0167 \pm 0.0051) \text{ GeV/c}^2$ $\sigma = (0.0088 \pm 0.0013) \text{ GeV/c}^2$ 50 p n>0.80 GeV p n>0.80 GeV 30 20 Data + Data - Fit - Eit Signal 10 Signal Background Background llnc Pull M (GeV) M (GeV)

Maybe is a signal. "Peak" position is $\Delta \sim 2$ MeV, $\sigma \sim 17$ MeV is larger than MC (9 MeV)

Montecarlo - Phase 3 BGx1 - Data Challenge

Nicer peak in MC phase2 BGx0 and in Data Challenge

Very maybe both in Prod5 and Prod6

$\mathcal{P}_{\text{Resp}}$ $\rho \to \pi^+ \pi^-$ Data - MC comparison

Background on DC similar to that of Data, no $f_0(975)$ (not simulated)

Montecarlo phase 3 BGx1 Data Challenge

