B_S Mixing Results at Tevatron

Donatella Lucchesi CDF Padova

Outline

Introduction

- B_s mixing in the Standard Model
- Ingredients to perform a measurement
- CDF measurement
- DO analysis and result
- New Standard Model constraints

Introduction

B_s Mixing group

Konstantin Anikeev⁶, Farrukh Azfar²⁰, Gary Barker⁸, Gerry Bauer¹⁴, Franco Bedeschi¹¹, Satyajit Behari¹⁶, Stefano Belforte¹², Alberto Belloni ¹⁴, Eli Ben-Haim ¹³, Juerg Beringer ⁵, Arkadiy Bolshov ¹⁴, Joe Boudreau ²³, Massimo Casarsa¹², Pierluigi Catastini¹¹, Alessandro Cerri⁵, Agnese Ciocci¹¹, David Clark², Saverio D'Auria⁷, Christian Dörr⁸, Saverio Da Ronco²¹, Sandro De Cecco¹⁰, Amanda Deisher⁵, Francesco Delli Paoli ²¹, Gianpiero Di Giovanni ¹³, Simone Donati ¹¹, Mauro Donega ¹⁷, Sinead Farrington ¹⁹, Michael Feindt ⁸, Armando Fella ¹¹, Ivan Furić ⁴, Stefano Giagu ¹⁰, Karen Gibson ³, Kim Giolo ¹⁵, Gavril Giurgiu ³, Guillelmo Gomez-Ceballos⁹, Robert Harr²⁶, Aart Heijboer²², Matt Herndon²⁵, Todd Huffman ²⁰, Boris Iyutin ¹⁴, Matthew Jones ¹⁵, Ulrich Kerzel ⁸, Ilya Kravchenko¹⁴, Michal Kreps⁸, Joe Kroll²², Thomas Kuhr⁸, Tom LeCompte¹, Claudia Lecci⁸, Nuno Leonardo¹⁴, Donatella Lucchesi²¹, Johannes Mülmenstädt ⁵, Petar Maksimović ¹⁶, Stephanie Menzemer ¹⁴, Jeffrey Miles ¹⁴, Michael Morello ¹¹, Reid Mumford ¹⁶, Steve Nahn ²⁷, Rolf Oldeman ¹⁹, Manfred Paulini ³, Christoph Paus ¹⁴, Jonatan Piedra ¹³, Kevin Pitts ¹⁸, Giovanni Punzi ¹¹, Jonas Rademacker ²⁰, Azizur Rahaman ²³, Marco Rescigno ¹⁰, Alberto Ruiz ⁹, Giuseppe Salamanna ¹⁰, Aurore Savoy-Navarro ¹³, Fabrizio Scuri ¹¹, Marjorie Shapiro ⁵, Paola Squillacioti ¹¹, Masa Tanaka ¹, Vivek Tiwari ³, Fumi Ukegawa ²⁴, Satoru Uozumi ²⁴, Denys Usynin ²², Ivan Vila ⁹, Barry Wicklund ¹, Chun Yang ²⁷

 Decay channels selection using Tier 1 and data stored at CNAF

Casarsa (TS), Da Ronco, Pagan, Delli Paoli, Lucchesi

 Event by event Primary Vertex determination

Casarsa (TS), Da Ronco, Lucchesi

 B_s lifetime measurement in hadronic decays: trigger efficiency determination used in mixing analysis Da Ronco, PhD thesis

B_s Mixing in The Standard Model

$$i\frac{d}{dt} \begin{pmatrix} |B(t)\rangle \\ |\overline{B}(t)\rangle \end{pmatrix} = \begin{pmatrix} M - \frac{i}{2}\Gamma \end{pmatrix} \begin{pmatrix} |B(t)\rangle \\ |\overline{B}(t)\rangle \end{pmatrix}$$
$$H = \begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}$$
$$Eigenstates are:$$
$$|B_s^H\rangle = \frac{1}{\sqrt{2}} (|B_s\rangle + |\overline{B}_s\rangle)$$
$$|B_s^L\rangle = \frac{1}{\sqrt{2}} (|B_s\rangle - |\overline{B}_s\rangle)$$
$$\Gamma = \frac{1}{2} (\Gamma_L + \Gamma_H) \equiv \frac{1}{\tau} \qquad \Delta\Gamma = \Gamma_L - \Gamma_H$$

$$\Delta m/2$$

$$M_{H,L} = M \pm \operatorname{Re}(M_{12} - \frac{i}{2}\Gamma_{12})$$

$$\Gamma_{H,L} = \Gamma \pm 2\operatorname{Im}(M_{12} - \frac{i}{2}\Gamma_{12})$$

$$\Delta \Gamma/2$$

B_s Mixing in The Standard Model cont'd

$$\Delta m_{q} = \frac{G_{F}^{2} m_{W}^{2} \eta S(m_{t}^{2} / m_{W}^{2})}{6\pi^{2}} m_{Bq} \left(f_{Bq}^{2} B_{Bq} \middle| V_{tq}^{*} V_{tb} \middle|^{2} \right)$$

In the ratio uncertainties cancels:

Applying unitarity...

B_s Mixing constraints the Standard Model

Winter 2006 Δm_s >16.6 at 95% C.L. $\overline{\rho} = 0.217 \pm 0.032$ $\overline{\eta} = 0.344 \pm 0.021$

<mark>D0 results:</mark> 17<∆m_s<21 90% C.L.

CDF effect in about one hour...

Measurement Principle in a Perfect World

$$P(t)_{B_{q}^{0} \to B_{q}^{0}} = \frac{1}{2\tau} e^{-\frac{t}{\tau}} (1 \pm \cos(\Delta m_{q} t)) \qquad A = \frac{N^{nomix} - N^{mix}}{N^{nomix} + N^{mix}} = \cos(\Delta m_{s} t)$$

B lifetime

Rather than fit for frequency perform a 'fourier transform'

Road Map to Δm_s Measurement

Detector for the measurement

Adding all the realistic effects

Road Map to Δm_s Measurement

Tevatron Luminosity

May 17, 2006

Trigger on displaced tracks: SVT

May 17, 2006

B_s Data sample

Hadronic B_s yields summary

May 17, 2006

15

Semileptonic samples

Road Map to Δm_s Measurement

B Lifetime measurement

Lifetime Measurement: hadronic and semileptonic B decays Hadronic decays: well measured

ct =
$$L_{xy}/\beta_t \gamma \beta_t \gamma = P_t(B)/M(B)$$

SVT trigger bias: P(t) = $e^{-t'/\tau} \otimes R(t',t) \cdot \epsilon(t)$ Semileptonic decays: missing X need correction factor

B Lifetime measurement

Proper time resolution, σ_t

- Lifetime measurement not very sensitive
- In the Δ ms fit each event weighted by its resolution
- Dedicated calibration need

Proper time resolution, σ_t

Layer00 is a layer of silicon placed directly on beam pipe Additional impact parameter resolution, radiation hardness

Road Map to Δm_s Measurement

Flavor tagger calibration: OST

Opposite Side Tagger (OST):

- Use data to calibrate the tagger and to evaluate D
- Fit semileptonic and hadronic B_d sample to measure: D, Δm_d

Hadronic:

 $\Delta m_d = 0.535 \pm 0.028(stat) \pm 0.006(sys) ps^{-1}$

Semileptonic:

 $\Delta m_d = 0.509 \pm 0.010(stat) \pm 0.016(sys) ps^{-1}$

W.A.:

 $\Delta m_d = 0.506 \pm 0.005 \text{ ps}^{-1}$

Flavor Tagger calibration: SSTK

 $\begin{array}{c} & & & \\ &$

B⁰/B[±] likely to have π nearby B⁰_s likely to have K Use TOF and dE/dX to separate pion from kaon Tune Monte Carlo to reproduce B⁰,B⁻ distributions then apply to B_s

Flavor Tagger performances

	εD² Hadronic (%)	εD ² Semileptonic (%)
Muon	0.48 ± 0.06 (stat)	0.62 ± 0.03 (stat)
Electron	0.09 ± 0.03 (stat)	0.10 ± 0.01 (stat)
JQ/Vertex	0.30 ± 0.04 (stat)	0.27 \pm 0.02 (stat)
JQ/Prob.	0.46 ± 0.05 (stat)	0.34 \pm 0.02 (stat)
JQ/High p _T	0.14 ± 0.03 (stat)	0.11 \pm 0.01 (stat)
Total OST	1.47 ± 0.10 (stat)	1.44 \pm 0.04 (stat)
SSKT	$3.42\pm0.49~(\text{syst})$	$4.00\pm0.56~\text{(syst)}$

- Exclusive combination of tags in OST
- SSTK-OST combination assumes independent tagging information

Amplitude Scan

- A is introduced: $P(t)_{B_q^0 \to B_q^0} = \frac{1}{2\tau} e^{-\frac{t}{\tau}} (1 \pm A\cos(\Delta m_q t))$
- A=1 when $\Delta m_s^{\text{measured}} = \Delta m_s^{\text{true}}$
- Points:
 A±σ(A) from Likelihood
 fit for different Δm
- Yellow band: A±1.645σ(A)
- Δm where A±1.645σ(A)<1 excluded at 95% C.L.
- Dashed line: 1.645σ(A) vs Δm
- Measured sensitivity: 1.645σ(A)=1 May 17, 2006

B^o mixing in hadronic decay

Choice of Procedure

- How does an evidence of a signal look like?
- What procedure if aiming at measurement?
- These questions must be asked before performing the Analysis! Otherwise lack of coverage is the punishment!
- Before un-blinding:

p-value: probability that observed effect is due background fluctuation. No search window.

p-value Estimation

∆(ln(L))= ln[L (A=1)/ lnL (A=0)]

Probability of random tag fluctuation estimated on data (randomized tags) and checked with toy Monte Carlo May 17, 2006

Systematic Uncertanties in Amplitude Scan

Related to absolute value of A important when setting a limit Cancel out in A/σ_A Very small compared to statistical error May 17, 2006

Amplitude Scan: Semileptonic decays

Amplitude Scan: Hadronic decays

Amplitude Scan: Combined

Combined Amplitude Scan: an other view

Likelihood Profile

How often random tags produce a likelihood deep this dip?

Likelihood significance

Find maximum ∆(ln(L)) in data randomizing 50,000 times tags
In 228 experiments found ∆(ln(L))>6.06 Probability of fake, p-value=0.5%

Measure $\Delta m_s \parallel \parallel$

Systematic Uncertanties on Δm_s

	Syst. Unc
SVX Alignment	0.04 ps ⁻¹
Track Fit Bias	0.05 ps ⁻¹
PV bias from tagging	0.02 ps ⁻¹
All Other Sys	< 0.01ps ⁻¹
Total	0.07 ps ⁻¹

Fit Model: negligible

Relevant only lifetime scale

Measurement of Δm_s

17.00 < ∆m_s <17.91 ps⁻¹ at 90% C.L. 16.94 < ∆m_s <17.97 ps⁻¹ at 95% C.L. May 17, 2006

$|V_{td}|/|V_{ts}|$ Determination

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{Bs}}{m_{Bd}} \xi^2 \frac{\left|V_{ts}\right|^2}{\left|V_{td}\right|^2}$$

Used as inputs:

- $m_{Bs}/m_{Bd} = 0.9830 \text{ PDG } 2006$ $\xi^2 = 1.210_{-0.35}^{+0.47}$ (M. Okamoto, hep-lat/0510113)
- $\Delta m_d = 0.507 \pm 0.005 PDG 2006$

||V_{td}|/|V_{ts}|=0.208 ^{+0.008} (stat.+syst.)|

Latest Belle result $b \rightarrow s\gamma$ (hep-ex/050679):

 $|V_{td}|/|V_{ts}| = 0.199 + 0.026 = (stat) + 0.018 = 0.015 (syst)$

DO Analysis

*М*_{(*кк*)π} [GeV]

DO Analysis

Opposite Side Tagging: -lepton (electron or muon) $Q_J^{\ell} = \sum_i q^i p_T^i / \sum_i p_T^i$ - Secondary Vertex $Q_{SV} = \sum_i (q^i p_L^i)^{0.6} / \sum_i (p_L^i)^{0.6}$

- Event Charge $Q_{\rm EV} = \sum_i q^i p_T^i / \sum_i p_T^i$

Tags combined:

$$d_{\text{tag}} = \frac{1-z}{1+z}$$

d>0 b tag

d<0 b tag

$$z = \prod_{i=1}^{n} \frac{f_i^{\overline{b}}(x_i)}{f_i^{\overline{b}}(x_i)}$$

DO Procedure

Correction factor due to missing neutrino

Several effects taken into account:

- Resolution scale factor for detector mismodeling
- Reconstruction efficiency as function of decay length
- Physical and combinatorial background contributions

DO Results

Unitarity Triangle fit with Δm_s

Old: $\overline{\rho} = 0.217 \pm 0.032$ $\overline{\eta} = 0.344 \pm 0.021$

New:

New Physics Limit UTfit

Model independent approach $|\Delta F|=2$ Hamiltonian

 $C_{Bs} = \Delta m_s^{SM+NP} / \Delta m_s^{SM} = 1.01 \pm 0.33$ [0.33,2.04] @ 95% C.L.

Conclusions

> CDF has an experimental signature for $B_s - \overline{B}_s$ oscillations > Probability of random fluctuation is 0.5%

First direct measurement of:

$$\Delta m_s = 17.33^{+0.42}_{-0.21} \pm 0.07 \text{ ps}^{-1}$$

BACKUP

The Accelerator

Detectors

Detectors

Introduction

Made Possible By the CDF Detector

- Trigger
 - high bandwidth & tremendous flexibility
 - XFT and SVT
- Exquisite charged particle tracking
 - excellent pattern recognition & mass resolution (COT, solenoid)
 - precise production & decay point reconstruction (L00) SVX)
- Particle identification
 - Time of Flight (TOF) and dE/dx in COT
- Extremely dedicated collaborators for operations
 - a lot of sleepless nights for analysis but many more for operations
 - many of the analyzers spent sleepless nights working on critical detector components too.

Designed by Padova group and detectors tests done in Padova

Flavor tagger calibration

Parametrizing tag decision

Opposite Side Taggers calibrated in our very high statistics $\ell + SVT$ samples Dependence on several variables used to increase the tagging power

Overall scale factor measured on B^{0/+} candidates to take care a possible overall (small) shift

Similar performace of semileptonic hadronic modes

Calibrating SSTK

Systematic studies cover:

- + Fragmentation Model
- bb Production Mechanisms
- + B** content
- Detector/PID resolution
- + Multiple interactions
- PID content around B
- Data/MC agreement

Small discrepancies covered

Select the most likely kaon track (PID *) as tagging track SS(K)T performance estimated from MC: $\varepsilon D^2(B_s \rightarrow D_s(\phi \pi)\pi) = 4.0^{+0.8}_{-1.2}\%$ (1rst period of the data) *) TOF & dE/dx are used for particle identification

Calibrating SSTK

Tune MC to reproduce $\mathsf{B}^{0/\underline{+}}$ dilution and then measure it for SSTK

Amplitude scan semileptonic

Amplitude scan hadronic

Sequence of CDF Run II Results on B_s Mixing

- 1st result March 2005 presented at Moriond QCD
 - hadronic modes from two-track trigger
 - semileptonic modes from lepton + SVT trigger
 - opposite-side flavor tags: muons, electrons, jet-charge
 - combined sensitivity $\Delta m_s > 8.4 \text{ ps}^{-1}$
- 1st update: October 2005 presented at PANIC 2005
 - substantial increase in semileptonic signal from TTT
 - several analysis improvements, e.g.,
 - neural net based jet-charge opposite side flavor tag
 - improved opposite side flavor tag calibration
 - improved boost resolution on semileptonic decays
 - combined sensitivity ∆ m_s ≥ 13.0 ps⁻¹

These results based on 360 pb-1 (0d data)