B Physics Today Donatella Lucchesi **CDF** experiment **INFN** Padova In this lecture: Machine and Detectors review b hadron production mechanisms and results **B** hadron lifetimes **B-B** mixing B meson lifetime differences Next lecture from Stefano Giagu > CP Violation > Rare decays

Introduction

B physics measurements are high precision measurements

High statistic data samples

High performances detectors

Dedicated machine or pp

Tracking, Particle Identification..

Dedicated trigger needed

September 8, 2005

How & where b are produced

Accelerator	Beams	Species	√s(GeV)	σ _{bb} (nb)	$\sigma_{bb}^{-}/\sigma_{tot}$
B factories	e*e- Y(4s)	B ⁰ & B±	10.5	1.15	0.25
Tevatron	pp	all	1,960	1·10 ⁵	6.10-4
LHC	рр	all	14,000	5·10⁵	?

B factories produce only 2 species but very low background

pp interactions have all species but high background

What is needed: detectors

✓ Magnetic field Tracking system high space resolution high momentum resolution ✓ Calorimeters o fast and efficient to identify e o good energy resolution to reconstruct decays as $\pi^0 \rightarrow \gamma \gamma$ or $\eta \rightarrow \gamma \gamma$ Particle identification: • separate K from π identify µ and e

The Y(4s) Machine

Detectors: Babar

SVT:97% efficiency, 15 μm z hit resolution (inner layers, perp. tracks)SVT+DCH: $\sigma(p_T)/p_T = 0.13 \% × p_T + 0.45 \%$ DIRC:K-π separation 4.2 σ @ 3.0 GeV/c → 2.5 σ @ 4.0 GeV/cEMC: $\sigma_E/E = 2.3 \% \cdot E^{-1/4} \oplus 1.9 \%$

September 8, 2005

Detectors: Babar some details

The Tevatron Machine

Tevatron Parameter

FERMILAB'S ACCELERATOR CHAIN

Substantial upgrades for Run II: \rightarrow 10% energy increase \sqrt{s} : 1.8 \rightarrow 1.96 \rightarrow integrated luminosity increase: x50

States of the second second	1992-1995	2001-2009	
	Run I	Run IIa	Run IIb
Bunches in Turn	6 × 6	36 × 36	36 ×36
\sqrt{s} (TeV)	1.8	1.96	1.96
Typical L (cm ⁻² s ⁻¹)	1.6 ×10 ³⁰	9 ×10 ³¹	3 ×10 ³²
∫ Ldt (pb ⁻¹ /week)	3	17	50
Bunch crossing (ns)	3500	396	396
Interactions/crossing	2.5	2.3	8

6 km long Tevatron ring

September 8, 2005

Detectors: CDF

Detectors: CDF some details

Silicon tracker

Central Outer Chamber: 96 layers Max drift time 100 ns Gas: Ar-Et-CF₄ (50:35:15)

September 8, 2005

Charm and Beauty production at Tevatron

• Since $m_Q \gg \Lambda_{QCD}$ for c and b quarks, heavy quark production at the Tevatron should be well-calculable in QCD.

- Physics objects: hadrons & leptons
 (NOT quarks & gluons)
- Quarks → hadrons: hadronization (fragmentation)
 Fragmentation: phenomenological models non

perturbative

Charm and Beauty production at Tevatron Diagrams at leading order:

Full calculations have been done up to NLO (and beyond...) Therefore how do we explain Run 1 Tevatron results?

xperiment wrong?

Theory prediction incomplete?

Recent developments

In past years many (theoretical) developments:

- Use B meson rather than b-quarks: less dependent on unfolding and fragmentation uncertainties
- Beyond NLO: resummation of log(p_T/m) terms → FONLL (Cacciari et al). Important for medium/high p_T region.
 Extraction of fragmentation function parameters from LEP data in this scheme: substantially different ε_b

new PDF's
 MCONLO → match NLO
 calculation with PS formalism in
 HERWIG (Frixione, Nason, Webber)
 Need more B data to compare with theory
 Charm?

How CDF Collect Data

Raw data Level 1 Trigger Level 2 Trigger Level 3 Trigger Data set

Crossing rate 1.7 MHz Inelastic cross Section 56 mb

Acc. Rate 40 KHz Latency 5.5 µs Pipeline

Acc. Rate 300 Hz Latency 20 μ s Buffer 4 events

Acc. Rate 75 Hz

Average size 60 Kbytes/event Level 1 Synchronous streams:
Calorimeter
Fast tracker
Muons

Level 2 asynchronous systems:
Calorimeter clustering
Track parameter available
electrons

<u>Level 3</u> ≻ Offline-like

Typical CDF trigger

Two tracks vertex trigger:
 2 tracks reconstructed by SVT with:
 pt>2 GeV/c
 120 μm < d₀ < 1 mm
 pt1+pt2> 5.5 GeV/c

Lepton + displaced track trigger:

 Lepton (e or μ) with pt>4 GeV/c
 Track reconstructed by SVT with pt>2 GeV/c
 120 μm < d₀ < 1 mm

Di-muon trigger : 2 muons pt>1.5 GeV/c

Charm Production: Open Charm meson CDF: 5.8 pb⁻¹

taken with displaced track trigger. >80% prompt production

Cross sections for |y|<1: $D^{0}(p_{T}>5.5 \text{ GeV})$: 13.3 ± 1.5 µ b $D^{*+}(p_{T}>6.0 \text{ GeV})$: 5.2 ± 0.8 µ b $D^{+}(p_{T}>6.0 \text{ GeV})$: 4.3 ± 0.7 µ b $D_{s}^{+}(p_{T}>8.0 \text{ GeV})$: 0.75 ± 0.23 µ b

Theory uncertainty: vary renormalization/factorization scales data at upper limits of theory prediction

September 8, 2005

p.(D) [GeV/c]

b-hadron from J/ψ Production at CDF $J/\psi \rightarrow \mu\mu$ collected with

To extract $d\sigma/dp_T(H_b)$: Count the observed number of b-hadrons in a given $p_T(H_b)$ bin:

 w_{ij} is the fraction of b events in the ith $p_T(H_b)$ from the jth $p_T(J/\psi)$ b in obtained from MC

September 8, 2005

di-muons trigger

 σ (J/ψ from H_b) = 19.9 ± 3.8 nb σ (H_b→J/ψ, |y|<0.6) = 24.5 ± 4.7 nb

Fragmentation Function Studies at CDF

Due to QCD factorization fragmentation is supposed to be independent of the initial state. Possible fragmentation functions models studied:

- Bowler
- Lund; favored by etet collider fragmentation analysis
- Peterson (soft ϵ =0.006, hard ϵ =0.002) widely used by

experiments. It does not describe well e⁺e⁻ data.

$$z = \frac{\left(E + p_L\right)_B}{\left(E + p\right)_b}$$

Fragmentation Function Studies: Plan

Find more sensitive variables
 Compare data/Monte Carlo changing fragmentation model

 Fit the chosen variables
 Terative
 Change the hadronization parameters

Lifetimes Determination: Theory Important for: Mixing measurements Test decay dynamics information on non perturbative QCD effects Described by HQET: LO: spectator model τ(Bu)/τ(Bd)=τ(B_s)/τ(B_d)=τ(Λb)/τ(Bd)=1

NLO:

 $\frac{\tau(B^{+})}{\tau(B_{d})} = 1.09 \pm 0.03$

$$\frac{\tau(\Lambda_{\rm b})}{\tau(\mathsf{B}_{\rm d})} = 0.87 \pm 0.05$$

$$\frac{\tau(B_s)}{\tau(B_d)} = 1.00 \pm 0.01$$

hep-ph/0407004

Lifetimes: experimental techniques

Primary Vertex L = $\gamma\beta$ (†) $\gamma\beta$ = p_B/m_B ct = -Needs: 1) Decay length 2) momentum

In the transverse plane d = impact parameter respect to the beam line $ct = \frac{L^{xy} \cdot m_B}{p_B^{\dagger}}$ First measurements done by using impact parameter: $d^{xy} = \gamma\beta ct \cdot \sin\omega$ $\sin\omega \sim \gamma^{-1}$ $d^{xy} \approx ct$ (relativistic approx) Finally fit the t distribution to extract τ_B

L·mB

p_B

September 8, 2005

Exclusive life time measurement

Decay modes: B[±]: $D^{0}\pi^{\pm}$ [8380 ev.] ($D^{0} \rightarrow K\pi$) B⁰: $D^{\pm}\pi^{\mp}$ [5280 ev.] ($D^{\pm} \rightarrow K\pi\pi$) D[±] 3π [4173 ev.] ($D_{\pm} \rightarrow K\pi\pi$) B_s: $D_{s} \pi^{\pm}$ [465 ev.] ($D_{s} \rightarrow \phi\pi$) D_s 3π [133 ev.] ($D_{s} \rightarrow \phi\pi$)

 Events selected with displaced tracks trigger
 Trigger and reconstruction requirements affect L_{xy}:

 Impact parameter cuts at low ct
 SVT acceptance at high ct

"ct" efficiency from Monte-Carlo, needed:

- B production/decay model
- detailed Trigger/Detector simulation

Hadronic B⁰ and B⁺ Lifetime Results

Hadronic B_s Lifetime Results

Decay Rates of neutral B meson

Contribution at lowest order in the standard Model:

Time evolution:

$$i\frac{d}{dt}\left(\begin{vmatrix} B^{0} \\ B^{0} \\ B^{0} \end{matrix}\right) = H\left(\begin{vmatrix} B^{0} \\ B^{0}$$

with
$$H = M - i \frac{\Gamma}{2} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{pmatrix}$$

Decay Rates of neutral B meson

Mass eigenstates $|B_1\rangle$, $|B_2\rangle$ with masses $m_1^{(q)} m_2^{(q)}$ and decay widths $\Gamma_1^{(q)}$, $\Gamma_2^{(q)}$: $\Delta m_q \equiv m_1^{(q)} - m_2^{(q)}$ $\Delta \Gamma_q \equiv \Gamma_1^{(q)} - \Gamma_2^{(q)}$ $\Gamma_q \equiv \frac{1}{2} (\Gamma_1^{(q)} + \Gamma_2^{(q)})$

$$|B_1^0\rangle = \frac{|B^0\rangle - |\overline{B}^0\rangle}{\sqrt{2}}$$
 and $|B_2^0\rangle = \frac{|B^0\rangle + |\overline{B}^0\rangle}{\sqrt{2}}$

Time evolution with $\Delta\Gamma$ = 0 :

$$P_{B^{0} \to B^{0}}(t) = P_{\overline{B}^{0} \to \overline{B}^{0}}(t) = \frac{e^{-t/\tau} \left(1 + \cos\left(\Delta mt\right)\right)}{2\tau}$$
$$P_{B^{0} \to \overline{B}^{0}}(t) = P_{\overline{B}^{0} \to B^{0}}(t) = \frac{e^{-t/\tau} \left(1 - \cos\left(\Delta mt\right)\right)}{2\tau}$$

Mixing frequency

Inside the Standard Model:

$$\begin{split} \Delta m_{q} &= \frac{G_{F}^{2}}{6\pi^{2}} \left| V_{tb} \right|^{2} \left| V_{tq} \right|^{2} M_{W}^{2} M_{B_{q}^{0}} f_{B_{q}^{0}}^{2} B_{B_{q}^{0}} \eta_{B_{q}^{0}} S\left(\frac{M_{t}^{2}}{M_{W}^{2}}\right) \\ & \text{non perturbative} \\ \text{QCD} \end{split}$$

$$\begin{split} & \frac{\Delta m_{d}}{\Delta m_{s}} = \frac{\left| V_{td} \right|^{2}}{\left| V_{ts} \right|^{2}} \frac{M_{B_{d}^{0}}}{M_{B_{s}^{0}}} \frac{\eta_{B_{d}^{0}}}{\eta_{B_{s}^{0}}} \frac{f_{B_{q}^{0}}^{2} B_{B_{d}^{0}}}{f_{B_{s}^{0}}^{2} B_{B_{s}^{0}}} \end{split}$$

$\cong 1$ SU(3) Flavor breaking theoretical uncertainties <5%

ΔM_d and lifetime measurement at Babar

Probabilities of observing mixed (S⁻) or unmixed (S⁺) as function of proper time difference:

$$S^{\pm} = \frac{e^{-\Delta t/\tau_{B^0}}}{4\tau_{B^0}} (1 \pm D\cos(\Delta m_d \Delta t))$$

September 8, 2005

Partial $B^0 \rightarrow D^{*-}I^+\nu$ reconstruction

$$B^0 \rightarrow D^{*-} I_V D^{*-} \rightarrow \pi^-_{soft} D^0$$

Reconstruction cuts: > Lepton: 1.3<p<2.4 GeV/c > Soft pion: 60<p<200 MeV/c > D⁰: not reconstructed.

Limited phase space in D^{*-} decay: • $\pi_{soft}^{-} \sim at rest in D^{*-} frame$ • $p_{D^{*}} \sim || p_{\pi-soft}$ • $E_{D^{*}} \sim f(E_{\pi-soft})$ from Monte Carlo

Since $B^0 \sim at$ rest in Y(4s) frame:

$$M^{2}_{\nu} = \left(\frac{\sqrt{s}}{2} - E_{D^{*+}} - E_{l}\right)^{2} - \left(p_{D^{*+}} + p_{l}\right)^{2}$$

$$M_{v}^{2}$$
 > -2.5GeV/c2

September 8, 2005

Initial state tagging Identify the flavor of the other B: opposite side tagging

 $\sum Q < 0 \implies \overline{B}^0$

 $\sum Q > 0 \Rightarrow B^0$

Kaon Tag

kaons

kaons

d

search for a lepton or kaon coming from B decay

reconstruct the "other b" charge

 $\begin{array}{l} \epsilon = N_{tag} / N_{total} \text{ efficiency} \\ D = N_{tag} ^{W} - N_{tag} ^{R} / N_{tag} \text{ dilution} \\ D = 1 & D = 0 \\ \epsilon D^{2} = \text{figure of merit} \end{array}$

September 8, 2005

R0

d
B⁰ flavor tag

A second stiff (p>1.0 GeV/c)
lepton required to:
o Reduce continuum background
o Have a precise ∆z reconstruction
o Tag the reconstructed B flavor

Data sample: 88×10^{6} BB events $\sim 50 \times 10^{3}$ B⁰ \rightarrow D^{*-}lv candidates $\sim 27 \times 10^{3}$ background events

Sample composition and background evaluation from M_{ν}^2 fit

Fit procedure

Binned maximum likelihood fit to Δt [-18 ps, 18 ps] and σ(Δ†) [0 ps, 3 ps] Signal fitting function:

$$S^{\pm} = \frac{e^{-\Delta t/\tau_{B^0}}}{4\tau_{B^0}} (1 \pm D\cos(\Delta m_d \Delta t))$$

Detector response on Δt : Gaussian parameterization Cascade lepton tag: D evaluated from semileptonic BR Fit free parameters: b) $\tau(B^0)$ & Δm_d

a) Gaussian parameters for detector response

Fit results

Main systematic errors:
Analysis bias
Misalignment of the silicon vertex detector

 τ_{B0} = 1.501±0.008(stat)±0.030(syst) ps Δm_d = 0.523 ± 0.004(stat) ± 0.007(syst) ps⁻¹ Δm_d = 0.509 ± 0.004 ps⁻¹ World Average

September 8, 2005

How is measured at Tevatron

Production time: $bb \rightarrow one B_d^0/B_s^0$ and b-hadron Decay time: B_d^0/B_s^0 decays

Needs

- Identify B flavor at the decay time and at the production time
- Proper decay time (ct) determination with high resolution

September 8, 2005

B_d and B_s Mixing differences

Due to the different size of CKM matrix elements B_d and B_s mixing frequencies are very different

$B_{d} \Delta m_{d} = 0.47 \text{ ps}^{-1}$

 $B_s \Delta m_s = 17 \text{ ps}^{-1}$

B_c collection Fully reconstructed hadronic modes: Complete momentum reconstruction Good proper time resolution High B, mass resolution → high S/B Selected by Two Track Trigger (SVT) Two displaced tracks Low statistics Partially reconstructed semileptonic modes: $B_s^0 \rightarrow D_s^- l^+ v_l X$ Missing momentum carried by the v Visible proper time corrected from MC (K factor) Proper time resolution diluted by missing momentum Selected by dedicated trigger (I+SVT) B^{*}

 High statistics September 8, 2005

 $B^0_{\circ} \rightarrow D^-_{\circ} \pi^+$

D

 $P \vee$

P.V.

B_s hadronic decays

 $B^{0}{}_{s} \rightarrow D_{s}{}^{-}\pi^{+}$ $D_{s}{}^{-} \rightarrow \phi\pi^{-} (\phi \rightarrow K^{+}K^{-})$ $D_{s}{}^{-} \rightarrow K^{*0}K^{-}$ $D_{s}{}^{-} \rightarrow \pi^{+}\pi^{-}\pi^{-}$

 $N_{B_s} = 526\pm33$ S/B ~ 2 $\sigma_M \approx 15$ MeV

Partially reconstructed: $B_{s}^{0} \rightarrow D_{s}^{*}\pi^{+}D_{s}^{*} \rightarrow D_{s}^{-}\gamma$ $B_{s}^{0} \rightarrow D_{s}^{-}\rho^{+}\rho^{+} \rightarrow \pi^{+}\pi^{0}$ (not used)

B_s semileptonic decays

 $B^0_{s} \rightarrow D_{s}^{-} l^+ v X$ $D_{s}^{-} \rightarrow \phi \pi^{-} (\phi \rightarrow K^{+}K^{-})$ $D_{c}^{-} \rightarrow K^{*0}K^{-}$ $D_s^- \rightarrow \pi^+ \pi^- \pi^-$ No B_s mass peak: missing particles Use D_s invariant mass Charge correlation I-D_s: • signal: 1+Ds- background: I-D_s-I⁺D_s⁻ peak not pure signal ~20% background: D_s+fake lepton from PV • $B^0, B^+ \rightarrow D_s D X , D \rightarrow V X$ c-c backgrounds

September 8, 2005

Donatella Lucchesi

45

B_s decay time resolution D_s + track: sample of prompt events used to correct σ_{ct} and parameterize σ_{ct} as a function of several variables.

Hadronic Decays: <σ_{ct}⁰>: ~ 30 μm (100 fs) σp/p < 1%

September 8, 2005

Initial state tagging: Opposite side Identify the flavor of the other B: opposite side tagging

Initial state tagging: Same Side

Same side tagging: infer the production B flavor from particle produced "close" to the B: fragmentation tracks

• B^{**} production and $B^{**} \rightarrow B^0 \pi$

Same side Bs tagger performances can not be measured from data if setting a limit. Must be understood in Monte Carlo. other way?

εD²=2.33(1.0)±0.34(0.35) % B⁺(B⁰)

September 8, 2005

Opposite Side Tagging: lepton
Find event with Opposite side B→μ(e)X
Low momentum lepton
Use likelihood method to combine calorimeter muon detector, dE/dx info
High purity
Low efficinecy
Performances and calibration on SVT +lepton data

 ${
m cD}^2$ Muon: (0.70 \pm 0.04) % ${
m cD}^2$ Electron: (0.37 \pm 0.03)%

 $D_{max} \sim 0.4 \rightarrow 30\%$ mistag rate

Opposite Side Tagging: jet charge Cone based jet algorithm: compute Jet Charge of Secondary Vertex tagged jets ·Jet Probability tagged jet ·Highest P jet $D_{max} \sim 0.4 \rightarrow 30\%$ mistag rate

 εD^2 secondary vertex: (0.36 ± 0.02) % εD^2 displaced track: (0.36 ± 0.03) % εD^2 highest p jet: (0.15 ± 0.01) %

Amplitude Scan for B⁰_{d(s)}

- Introduce "Amplitude" A in the Likelihood
- > Amplitude scan:

- $L_{sig}^{t} = \frac{1}{\tau} e^{-t/\tau} \left(1 \pm A \cdot D \cdot \cos(\Delta m \cdot t) \right)$
- Fit for the amplitude A and its error $\sigma(A)$ at fixed Δm
- Repeat the fit for different Δm
- Amplitude consistent with:
- 1 if mixing present at the frequency ∆m
- 0 if there is no mixing
- Example B⁰ Hadronic decays
 - Amplitude = 1 at $\Delta m = 0.5 \text{ ps}^{-1}$
 - Amplitude = 0 at $\Delta m \gg 0.5 \text{ ps}^{-1}$

Amplitude Scan result

No sensitivity (yet) but better behaved at high Δms

CDF + World Combined Result

$B_{s,d}$ Lifetime differences: $\Delta\Gamma/\Gamma$

On-shell transition contributes to $\Delta\Gamma$

Standard Model expectation:

$$\Delta \Gamma_d / \Gamma_d = (3.0^{+0.9}_{-1.4}) \times 10^{-3}$$

If bigger \Rightarrow new physics

Fermilab-Pub-01, 197

 $\Delta \Gamma_{B_{S}} / \Gamma_{B_{S}} \sim (7-14) \times 10^{-2}$

Indirect Δm_s measurement (model dependent):

$$\frac{\Delta \Gamma_{B_s}}{\Delta m_s} = 3.9^{+0.8}_{-1.5} x 10^{-3}$$

September 8, 2005

 $\begin{array}{ll} \textbf{B}_{s,d} \ \Delta \Gamma / \Gamma \ \textbf{at} \ \textbf{Tevatron} \\ & \Gamma = (\Gamma_{long} + \Gamma_{short})/2 \\ \text{Definition:} \ \Delta \Gamma = (\Gamma_{long} - \Gamma_{short}) \\ & \tau = 1/\Gamma \\ \text{Look for evidence of two lifetimes in B decays} \end{array}$

Examine two similar decay $B_s \rightarrow J/\psi \phi$ $B_d \rightarrow J/\psi K^{*0} \qquad \qquad J/\psi \rightarrow \mu \mu$ $\phi \rightarrow KK$ $K^{*0} \rightarrow K^-\pi^+$

Total J=0 final state Two spin-1 J=0,1,2 Orbital L=0,1,2 \Rightarrow 3 Different decay amplitudes $B_{s,Light} \approx CP$ even, $B_{s,Heavy} \approx CP$ odd Disentangle different L-components of decay amplitude \Rightarrow isolate two B states September 8, 2005 Donatella Lucchesi 55

$B_{s,d} \Delta \Gamma / \Gamma$ at Tevatron

Transversity angle analysis

September 8, 2005

Decay Angular Distributions

$$\begin{aligned} \frac{d^4\mathcal{P}}{d\vec{\rho}\,dt} &\propto |A_0|^2 \cdot g_1(t) \cdot f_1(\vec{\rho}) + \\ &|A_{\parallel}|^2 \cdot g_2(t) \cdot f_2(\vec{\rho}) + \\ &|A_{\perp}|^2 \cdot g_3(t) \cdot f_3(\vec{\rho}) \pm \\ ℑ(A_{\parallel}^*A_{\perp}) \cdot g_4(t) \cdot f_4(\vec{\rho}) + \\ ℜ(A_0^*A_{\parallel}) \cdot g_5(t) \cdot f_5(\vec{\rho}) \pm \\ ℑ(A_0^*A_{\perp}) \cdot g_6(t) \cdot f_6(\vec{\rho}) \equiv \\ & \sum_{i=1}^6 \mathcal{A}_i \cdot g_i(t) \cdot f_i(\vec{\rho}) \end{aligned}$$

$$f_1(\vec{\rho}) = 2\cos^2\psi(1-\sin^2\theta\cos^2\phi)$$

$$f_2(\vec{\rho}) = \sin^2\psi(1-\sin^2\theta\sin^2\phi)$$

$$f_3(\vec{\rho}) = \sin^2\psi\sin^2\theta$$

$$f_4(\vec{\rho}) = -\sin^2\psi\sin2\theta\sin\phi$$

$$f_5(\vec{\rho}) = \frac{1}{\sqrt{2}}\sin2\psi\sin^2\theta\sin2\phi$$

$$f_6(\vec{\rho}) = \frac{1}{\sqrt{2}}\sin2\psi\sin2\theta\cos\phi$$

 $g_i(t)$ different for B_d and B_s and are rather non-trivial

 $A_0 =$ longitudinal pol. amplitude $A_{\parallel}, A_{\perp} =$ transverse pol. amplitudes

Fitting functions:

B_s :	B_d :
$rac{d^4 \mathcal{P}}{dec{ ho} dt} \propto A_0 ^2 \!\cdot\! e^{-\Gamma_L t} \!\cdot\! f_1(ec{ ho}) +$	$rac{d^4 \mathcal{P}}{dec{ ho} dt} \propto \left\{ A_0 ^2 \!\cdot\! f_1(ec{ ho}) + ight.$
$ A_{\parallel} ^2 \!\cdot\! e^{-\Gamma_L t} \!\cdot\! f_2(ec ho) +$	$ m{A}_{\parallel} ^2\!\cdot\!m{f}_2(ec{ ho})+$
$ m{A}_{\perp} ^2 {\cdot} m{e}^{-\Gamma_{m{H}}m{t}} {\cdot} f_3(ec{ ho}) +$	$ A_{\perp} ^2 \!\cdot\! f_3(ec ho) \pm$
$Re(A_0^*A_{\parallel}) \cdot e^{-\Gamma_L t} \cdot f_5(ec ho)$	$Im(A^*_{\parallel}A_{\perp}) \cdot f_4(ec{ ho}) +$
$\Gamma_L = CP - \text{even}$	$Re(A_0^*A_{\parallel}) \cdot f_5(ec{ ho}) \pm$
$\Gamma_{H} = CP - \text{odd}$	$Im(A_0^*A_{\perp}) \cdot f_6(\vec{ ho}) \Big\} \cdot e^{-\Gamma_d t}$

Fit simultaneously mass, lifetime and angular distribution convoluted with resolution function mB, τ_L , τ_H and A_0 , $A_{||} A_{\perp}$

Resusits

Perform two fits

- 1. Unconstrained: Fit data as described
- 2. Constrained: Invoke SM constraint $\Gamma_s = \frac{1}{2}(\Gamma_H + \Gamma_L) = \Gamma_d$ (Expected true to ~1%)

```
Since \tau_d = 1.54 \pm 0.014 \,\mathrm{ps}
set
\frac{1}{\Gamma_s} = \frac{2\tau_L \tau_H}{\tau_L + \tau_H} = 1.54 \pm 0.021 \,\mathrm{ps}
```

B_d **Results**

 $A_0 = 0.750 \pm 0.017 \pm 0.012$ $|A_{\perp}| = (0.464 \pm 0.035 \pm 0.007)e^{(0.15 \pm 0.04)I}$

Consistent with B factories results

September 8, 2005

B_s Lifetime difference: unconstrained fit

CP-odd fraction $(\tau_{H}) \sim 22\%$ $\Delta \Gamma_{s}$ results Δm_{s} =125 $^{+69}_{-55}$

September 8, 2005

B_s Lifetime difference: $B_s^0 \rightarrow J/\psi\phi$ constrained fit

- SM Predicts $\Gamma_s = \Gamma_d$ to ~1% : constrain in fit
- Remember, can't see angular separation of CP eigenstates in projection

$B_s \Delta \Gamma / \Gamma$ Combined

Fit results from ALEPH, CDF and DELPHI data

 $\Delta\Gamma s/\Gamma s$ (95% CL range) $\Delta\Gamma s/\Gamma s$ $\Delta\Gamma s$ $1/\Gamma s$ tau(short) = 1/\Gamma L tau(long) = 1/\Gamma H

with constraint

 $\begin{bmatrix} +0.01 ; +0.59 \end{bmatrix} = \begin{bmatrix} +0.0 \\ +0.35 & +0.12 \\ -0.16 \end{bmatrix} +0.33 \\ +0.25 & +0.09 \\ -0.11 & ps^{-1} \end{bmatrix} +0.23 \\ +0.23 \\ +0.23 \\ +0.23 \\ +0.23 \\ -0.07 & ps \end{bmatrix} = \begin{bmatrix} +0.0 \\ +0.33 \\ +0.23 \\ -0.2$

 $[+0.01;+0.59] +0.33^{+0.09} -0.11 +0.23 \pm 0.08 \text{ ps}^{-1} \\1.405^{+0.043} -0.047 \text{ ps} \\1.21 \pm 0.08 \text{ ps} \\1.68^{+0.08} -0.09 \text{ ps} \end{cases}$

I hope I convinced you that B system is a nice and important "laboratory" where precisely test the Standard Model.

For more tests and for probes for physics beyond Standard Model listen to the next talk

Backup

September 8, 2005

Future perspectives

•Add more channels • $B_s \rightarrow D_s 3\pi$ (130 events +20%) • $B_s \rightarrow D_s^* p$ •Add semileptonic B_s decays from the hadronic trigger X2 semileptonic statistic

Improve decay time resolution with PV event by event (detail)
 Incremental changes in existing algorithm (new Jet Charge +20% eD²)
 Add new tagging algorithm Same Side Kaon Tag

• New data rolling in, but increasingly peak luminosity:

- Keep alive as much as possible present triggers \rightarrow SVT upgrade
- Use new trigger strategies

•2 SVT Tracks + opposite side muon (pt>1.5 GeV) at trigger level (already in place since summer 2004 can survive at higher luminosity)

September 8, 2005

B_smixing sensitivity projection

 Analytic extrapolation, reproduce present result with current inputs
 Prediction include a reduced (50%) effective luminosity usable for B-physics from 2007 onwards
 Sensitivity to the favorite CKM range

- In case of no signal 95% C.L. up to 30 ps⁻¹ with 4 fb⁻¹
- CKM fit will imply New Physics if $\Delta m_s > 28 \text{ ps}^{-1}$ by then...

Calibration Sample for Taggers

Need high stat. sample to develop and calibrate tagging algorithm:
High purity reached after lepton+track mass cut applied

- Statistical Power of a tag: eD²
- Tagging efficiency (e)
- Tagging dilution (D = 1-2w)
 - w = mistag rate

•Parameterize dilution as a function of relevant variables and wheight events with their event-by-event dilution

Dividing events into different classes based on tagging power improves combined eD²
Calibration of the tagger performance requires high statistics! Use inclusive semileptonic decays from the lepton+track trigger (>10⁶ events) -Lepton charge gives "true" B flavour -Tag the other b

September 8, 2005

B_s^0 Lifetime: $B_s^0 \rightarrow J/\psi\phi$ one component

Ratio respect to $B_d^{0} \rightarrow J/\psi K^{*0}$ $\tau_s/\tau_d = 0.980_{-0.070}(\text{stat.}) \pm 0.003(\text{syst.})$ $\tau_s/\tau_d = 0.890 \pm 0.072(\text{tot.})$

Donatella Lucchesi

CDF/World Comparison

B_d Lifetime difference

Fully reconstruct on Bboth in CP and flavor eigenstate decay modes Tag the other B Fit the proper time distribution with:

$$\frac{dN(\Upsilon(4S) \to B_{tag}, B_{rec} \text{ after } t)}{dt} \propto e^{-\Gamma|t|} \left\{ \frac{1}{2}c_{+} \cosh \Delta \Gamma t/2 + \frac{1}{2}c_{-} \cos \Delta m t - \Re s \sinh \Delta \Gamma t/2 + \Im s \sin \Delta m t \right\}$$

 $\Delta \Gamma$ explicitly appears in the hyperbolic term

Data sample

Luminosity =82fb⁻¹

B_{flavor} 31027 events $B^0 \rightarrow D^* \pi^+(\rho^+, a_1^+)$ $B^0 \rightarrow D^- \pi^+(\rho^+, a_1^+)$ $B^0 \rightarrow J/\psi K^{*0}$

B_{CP} 2603 events B⁰→J/ ψ K⁰_s B⁰→ ψ (2s)K⁰_s B⁰→J/ ψ K⁰_L B⁰→ χ_{c1} K⁰_s
Results

$$\begin{split} & sgn[\Re(\lambda_{CP})]\Delta\Gamma/\Gamma=-0.008\pm0.037\pm0.018\\ & \text{The 90\% confidence level interval for }\Delta\Gamma/\Gamma\\ & sgn[\Re(\lambda_{CP})]\Delta\Gamma/\Gamma\in[-8.4\%, 6.8\%]\\ & -s^*\Delta\Gamma_d/\Gamma_d=-0.009+-0.037 \ \ (BABAR \ and \ DELPHI)\\ & \text{September 8, 2005} \\ & \underline{\quad Donatella \ Lucchesi} \\ \end{split}$$