

Results on QCD and Heavy Flavors Production at the Tevatron

Donatella Lucchesi INFN and University of Padova

October 21 - Padova

Outline:

- Machine and detector description
- Latest results on QCD
- Heavy Flavor: c and b production
- Pentaquarks searches
- Conclusions

The Machine

October 21, 2004

Tevatron Parameter

FERMILAB'S ACCELERATOR CHAIN

October 21, 2004

Tevatron Run II Performances

Peak luminosity is above 1.10³² cm⁻²sec⁻¹

Reliable operation \rightarrow in stores ~120 hours/week

Total ~0.7 fb⁻¹ delivered in Run II \rightarrow as planned

Tevatron Long Term Luminosity Plan

The DO Detector

October 21, 2004

The CDF Detector

Data Collection

CDF and DO experiments are very complex Typical ratio of "recorded" to "delivered" luminosity is 80%-90% As of now both experiments recorded ~0.5 fb⁻¹ Results presented correspond to ~0.2 fb⁻¹

Jet Physics at 2 TeV

Jet Physics at 2 TeV : Jet algorithm

- Final state partons are revealed through collimated flows of hadrons called jets
- Measurements are performed at hadron level. Theory is at parton level:

hadron \rightarrow parton transition will depend on parton shower modeling

- Precise jet search algorithms necessary to compare with theory and to define hard physics
- Natural choice is to use a conebased algorithm in η-φ space (invariant under longitudinal boost)

Inclusive Jet Cross section

Data dominated by jet energy scale NLO error mainly from gluon at high x

Run I cone algorithm & unfolding
E_T^{jet} range increased by ~150 GeV

Comparison with pQCD NLO (over almost nine orders of magnitude)

Inclusive Jet Cross section vs y

Dijet Mass Cross section

1400

Inclusive Jet $P_{\rm T}$ Cross section

Inclusive Jet Cross section: K_T algorithm

- Inclusive K_T algorithm $d_{ij} = \min(P^2_{T,i}, P^2_{T,j}) \frac{\Delta R^2}{D_i^2} (y_i - y_j)^2 + (\varphi_i + \varphi_j)^2$ $d_i = (P_{T,i})^2 \quad jet size$
- Infrared and collinear safe
- No merging / splitting

- Reasonable data-theory agreement
- NLO still needs to be corrected for Hadronization /Underlying Event

Inclusive Jet Cross Section K_{T} vs D

Increasing D data departs from pQCD NLO \Rightarrow more soft contributions

October 21, 2004

Dijet Azimuthal Decorrelations

- LO no additional radiative effects: 2 jets correlated in ϕ ($\Delta \phi_{jets} = \pi$)
- LO + Additional soft radiation:
 2 leading jets decorrelated
- Additional hard interaction: $\Delta \phi_{jets}$ significantly lower than π

NLO and data agree within 5-10% At very large $\Delta \phi_{jets}$ calculation not predictive

October 21, 2004

Dijet Azimuthal Decorrelations: Monte Carlo - Data comparison

 $\Delta \phi$ distribution shows sensitivity to different modeling of parton cascades

PYTHIA with enhanced ISR (Tune A) provides best description across the different regions in jet p_T

HERWIG similar to PYTHIA Tune A (underestimates radiation close to leading jets)

W + jets production

Charm and Beauty production at Tevatron

> Brief introduction: Theory and experiments

- > Run II measurements:
 - Open Charm production cross section
 - \cdot J/ ψ Production Cross section measurements
 - New Y Production Studies
 - b quark and hadron Cross Section

Charm and Beauty production at Tevatron

Since $m_Q \gg \Lambda_{QCD}$ for c and b quarks, heavy quark production at the Tevatron should be well-calculable in QCD.

Diagrams at leading order:

Experiment wrong?

Theory prediction incomplete?

New physics?

Recent developments

In past years many (theoretical) developments:

- •Use b-jets (B meson) rather than b-quarks: less dependent on unfolding and fragmentation uncertainties
- Beyond NLO: resummation of log(p_T/m) terms \rightarrow FONLL (Cacciari et al). Important for medium/high p_T region
- Extraction of fragmentation function parameters from LEP data in this scheme: substantially different $\epsilon_{\rm b}$
- new PDF's
- MC@NLO → match NLO calculation with PS formalism in HERWIG (Frixione, Nason, Webber)

Charm Production: Open Charm meson

data at upper limits of theory prediction

October 21, 2004

Heavy Quarkonium Production

Prompt production of heavy quarkonium $(J/\psi, \psi', Y,...)$ described by non-relativistic QCD (NRQCD). CDF J/ψ Data, Run I

Run 1 data has shown that color singlet component only (QQ state has quantum numbers of cc pair produced in hard scattering) is not sufficient. (by a factor 50 or so...)

Color octet component in NRQCD described by matrix elements that must be fit from data but are <u>universal</u>! (CO OK: soft gluons take care of color flow)

Interesting to study high p_{T} region and polarization

October 21, 2004

Y Production

Y Production cont'd

Compare to CDF Run 1 result:

Cross section per unit of rapidity:

CDF: $\sqrt{s} = 1.8$ TeV, |y|<0.4: $d\sigma/dy^*Br = 680 \pm 15 \pm 18 \pm 26$ pb D0: $\sqrt{s} = 1.96$ TeV, |y|<0.6: $d\sigma/dy^*Br = 749 \pm 20 \pm 75 \pm 49$ pb

(PYTHIA predicts factor 1.11 between 1.96 and 1.8 TeV)

Polarization measurement is in progress...

October 21, 2004

J/ψ Production D0: 4.7 pb⁻¹ J/ψ : $p_T > 5$ GeV |y|<1.8

Depending on p_T , 10-40% of J/ ψ are from b-decay. 81% prompt J/ ψ

CDF: 39.7 pb⁻¹

Possible to explore pT~ 0

J/ψ Production Cross Section

Truly remarkable agreement!

b-hadron from J/ψ Production at CDF

B-jet Production

CDF:

- b-quark tagged using displaced secondary vertices
- invariant mass of tracks belonging to these vertices determines b fraction

D0:

- muon+jets data
- b-tagging using p_T of muon relative to jet axis.

October 21, 2004

Pentaquarks search

$uudd\bar{s}$	Θ^+	$ ightarrow pK_s^0$,	$K_s^0 \to \pi^+ \pi^-$
$ddss\bar{u}$	$\Xi_{3/2}^{}$	$ ightarrow \Xi^-\pi^-$,	$\Xi^- \to \Lambda \pi^-$, $\Lambda \to p \pi^-$
$uuss \bar{d}$	$\Xi^{0'}_{3/2}$	$ ightarrow \Xi^- \pi^+$,	$\Xi^- \to \Lambda \pi^-, \; \Lambda \to p \pi^-$
$uudd\bar{c}$	Θ_c^0	$ ightarrow D^{st -} p$,	$D^{*-} ightarrow ar{D}^0 \pi^-$, $ar{D}^0 ightarrow K^- \pi^+$
$uudd\bar{c}$	Θ_c^0	$ ightarrow D^- p$,	$D^- \rightarrow K^- \pi^+ \pi^+$
$uuud\bar{c}$	Θ_c^+	$ ightarrow ar{D}^0 p$,	$\bar{D}^0 \to K^- \pi^+$
$\bar{u}uudc$	Θ_c^+	$ ightarrow D^0 p$,	$D^0 \to K^+ \pi^-$

Data: 250 pb⁻¹

hadronic trigger data:

- at least 2 displaced tracks
- dominated by cc and $b\underline{b}$
- jet20 data
 - at least 1 jet with E=20 GeV/c
 - dominated by light quarks
- minimun bias and zero bias data
 - soft inelastic scattering

October 21, 2004

Pentaquarks reference signal

October 21, 2004

Search for Θ^+ and $\Xi_{3/2}$

Search for $\Theta^{+} \rightarrow pK_{s}$

No signal found

Search for $\Xi^{0,--}_{3/2}$ $\Xi^{0,--}_{3/2} \rightarrow \Xi^{-}\pi^{\pm}$, $\Xi^{-} \rightarrow \Lambda \pi^{-}$

channel	yield		
	fit	limit	
$\Xi^-\pi^+$	57±51	<144	
$\Xi^{-}\pi^{-}$	-54±47	<63	

October 21, 2004

Search for Θ_c

Summary & Conclusions

> QCD

- Measurement of jet cross section:
 - \checkmark to search for new physics
 - to study soft production
 - constrain gluon PDFs at high x
- Test of NLO
- Study boson + jet physics

Heavy Flavor

- Charmed meson production measured for the first time
- \bullet New J/ ψ and Y production analysis in progress
- b-jet analyses in progress
- b-hadron production: Tevatron b quark "excess" not an excess anymore
- Pentaquark search: No evidence. Production in fragmentation may be severely suppressed with respect to normal baryons

lots more data coming: 400 pb⁻¹ in the bag, 1.5 fb⁻¹ summer 2006...

October 21, 2004

Backup slides

Improved Jet Clustering Algorithms

JetClu: Run I Jet Algorithm

Not infrared safe (at NNLO)

Preclustering and Ratcheting: \rightarrow difficult to implement at the parton/hadron level, depends on the detector geometry

More difficult to compare to theory and between experiments

MidPoint: Run II Cone Algorithm

Uses rapidity, y, instead of pseudorapidity, η and transverse momentum p_T instead of transverse energy, E_T

Infrared safe and well defined

No preclustering, no ratcheting

→ Able to make more direct comparisons with theory and between experiments

Kt Clustering:

Precluster towers with $P_T > 0.1 \text{GeV}$

Merge preclusters until all jets are separated by $\Delta R > D$ where D is the scale of the jet.

No use of seeds → infrared and collinear safe

Towers uniquely assigned to jets \rightarrow no splitting/merging

Uncertainty in the energy scale is the dominant source of systematic error, can expect this to improve...

The effect of a 3% energy scale uncertainty contribution to the total systematic error

For a faster falling E_T spectrum, the error on the measured cross section becomes larger

→ Errors become larger when measuring forward jets

October 21, 2004

We now have even more data available (plot includes 353 pb⁻¹)

The increased centerof-mass energy enables us to extend our Run I results by about 200 GeV

→ Able to probe shorter distances with higher precision

\rightarrow When including more data, rise at high E_T is not as dramatic

In addition to being able to study the high E_T region we have more data in the low E_T region.

B-B di-jet Production

CDF: study b-bbar di-jet production at high p_T , $|\eta| < 1.2$ Tag b-quarks with secondary vertex tag, determine b-fractions by using additional soft electron tag, fit templates of p_T of electron relative to jet axis, and vertex mas^r Templates for Electron P_t Relative to Jet Axis

X(3872) Observation at CDF

Belle announces in August 2003 $B \rightarrow KJ/\Psi \pi^+\pi^-$ CDF confirms within a month: $X(3872) \rightarrow J/\Psi \pi^+\pi^$ both at $> 10\sigma$ level

The mass:

- not easily explained as ³D₂ cc̄
- CDF: $m_X = 3871.3 \pm 0.7 \pm 0.4 \text{ MeV}/c^2$

The width:

- compatible with zero
- CDF: σ =5.44±0.72 MeV/ c^2
- Belle: Γ =1.4±0.7 MeV/ c^2

Nature of X(3872)

Primary hypotheses:

- a charmonium state?
 - $-1^{3}D_{2}$ most natural choice
 - others possible, hep-ex/0407033
 - problems in each case!
- a DD* molecule? not clear

Measure properties:

- quantum numbers, other decays
- "lifetime", production, $m_{\pi\pi}$

At CDF:

- measure lifetimes
 - charmonium-like production
- study m_{ππ}
 signal enhancement for high m_π;
 - \Rightarrow possibly $X(3872) \rightarrow J/\Psi \rho$
 - $-m_{\pi\pi}$ shape analysis in progress

