B mixing @CDF: quoi de neuf

Donatella Lucchesi Infn & University of Padova

Several progress in the latest months and many more expected for the summer !

Here new results for:

- ✓ B_s yields
- ✓ Flavor tagging
- \checkmark First attempt to perform a B_d mixing measurements

News on proper time resolution and the PID from Alex

Introduction: what are we talking about

 Δm_d =0.502 ps⁻¹ Current limit: Δm_s >14.5 ps⁻¹@95% C.L. $\rightarrow x_s$ >20.8 B_s oscillation ~30 times faster than B_d

B_s Yields: Semileptonic Decays

B_s Yields: Fully Reconstructed Decays cont'd

B Tagging: A quick Introduction

Opposite side tagging

Flavor of the B at production time from the other B

Same side Tagging

Flavor of the B at production time from particle charge produced "close" to the B:

- fragmentation tracks
- $B^{\star\star} \rightarrow B^0 \pi$

B Tagging: CDF heavy flavor samples

Two displaced tracks
o grant access to fully reconstructed B⁰ and B⁺
o not so high statistics

Trigger based on dimuons: J/ψ

- $> J/\psi$
 - o Low statistics
 - o Low background

B Tagging: CDF heavy flavor samples cont'd

Background suppression:

o QCD background: removed by signed IP subtraction ($p\overline{p}\rightarrow u\overline{u}$, dd, ss events, displaced tracks from Ks/ Λ and mismeasured track)

o Charm background: removed by 2<M(track-lepton)<4 GeV

Soft Muon Tagging

M. Jones, J. Kroll, A. Wicklund, D. Usynin V. Tiwari, G. Giurgiu, M. Paulini, J. Russ, B. Wicklund

Average between e and μ trigger data Dilution corrected from mixing and sequential ΣεD² for all sub samples

Same Side Tagging

G. Bauer, G. Gomez-Ceballos, I. Kravcenko, N. Leonardo, C. Paus, J. Piedra, S. Rakitin, A. Ruiz, I. Vila, G.J. Barker, M. Feindt, U Kerzel, C. Lecci

Use the Run I algorithm

Tracks close to the B meson with:

- p_T > 350 MeV/c
- $|d_0/s(d0)| < 3$ (from PV)

If multiple track candidates, select the one with minimum p_T^{rel} as tag

Same Side Tagging cont'd

Same Side Tagging: results

	£(%)	D(%)	ε D² (%)
$B^+ \rightarrow J/\psi K^+$	63.5±1.2	22.2±3.4	3.1±1.0
$B^+ \rightarrow D^0 \pi^+$	62.4±0.8	20.2±2.4	2.5±0.6

Final results combines the two decay channels:

 $\varepsilon D^2 = 2.8 \pm 0.5$ (stat)

B⁰ mixing with SST

See Jonatan Piedra talk for details

B⁰ mixing with SST: results

Fitting function: $A^{meas}(t) =$

$$= \frac{Gaus \otimes [e^{-t'/\tau} D \cos \Delta m_d t]}{Gaus \otimes e^{-t'/\tau}}$$

χ^2 combined binned fit

Conclusions

CDF is moving as fast as possible to measure (or set a limit) the B_s mixing.

Several improvements already reached for the winter Conferences

Many other studies are in progress to learn what we are doing and what we can reach listen to the Alex talk