A beautiful surprise!

To be compared with:

- ◆Fixed target experiments:
 →E791 200K fully reconstr. D
 →FOCUS 1M
 →SELEX almost barions
- CLEO (similar statistic to FOCUS)
- Belle and Babar (better statistic)

Even with a VERY low luminosity we can measure:

- charm meson cross section
- cc cross section
- $> D^0 D^0$ mixing
- cc/bb cross section

Beauty reconstruction:

S=24 \pm 5 events B=19 \pm 4 events S/B~1.3 σ =11 \pm 3 MeV/c²

Signal compatible with expectations
SVT efficiency 0.70 instead 0.95
SVXII coverage from 0.30 to 0.60
→ Reconstruction efficiency 0.50
We may expect improvements on all this sources of inefficiency by now

Donatella Lucehesi

Towards $B_s: D_s^{\pm} \rightarrow \phi \pi^{\pm}$ reconstruction

Here in Padova we are working on it and also $D_s^{\pm} \rightarrow f^0(980)\pi^{\pm}$

Donatella Lucchesi

Towards $B_s: D_s^{\pm} \rightarrow K^{*0}K^{\pm}$ reconstruction

Less clean but with higher Branching fraction 2 tracks Pt>2 GeV |d|>100 μm 3rd track Pt>0.4 GeV 700 3 pb⁻¹ Lxy>50 µm Number of entries per 5 MeV/c 600 831<m(Kπ)<961 MeV 500 several angular cuts

Donatella Luechesi

The future: B_{s,d} mixing

$$\Delta m_{s} > 13.1 \text{ ps}^{-1}$$

 $X_{s} > 19.0$
Domatella Lucchesi

By measuring both:

$$\frac{V_{td}}{V_{ts}} \propto \frac{\Delta m_d}{\Delta m_s}$$

Basic ingredients:

Reconstruct decay time

Tag B flavor at production and decay time

 $Sig(\Delta m_s) = \sqrt{(N \epsilon D^2/2)} e^{-(\Delta m_s \sigma_t)^2/2} \sqrt{(S/S+B)}$

Proper time resolution:45 fs achiavable with fully reconstructed decay

Hadronic decay

The future: B_{s,d} mixing

Tagging	figure c	of merit: E) 2
Method	Run I	Runll	
SLT	1.7%	1.7%	
JQT	3.0%	3.0%	
SST	1.0%	4.2%	
OSK	_	2.4%	
Total	5.7%	11.3%	
Decay C	hannel	N(2fb ⁻¹)	
$B_s \rightarrow D_s \pi$		37K	
$B_s \rightarrow D_s \pi \pi \pi$		38K	
$B_s \rightarrow D_s D_s$		2,5K	
$B_s \rightarrow D_s^* D_s$		5,7K	
$B_s \rightarrow D_s^* D_s^*$		5,2K	

Ongoing calibration on lepton+SVT track

Donatella Lucehesi

Which OP measurement in B hadronic decays?

3. $B^0 \rightarrow h^+h^-$

B⁰→ $\pi^+\pi^-$ ⇒ sin2(β+γ) (=sin2(α) if α+β+γ=π) but "penguin pollution" can be large

$B_{s}^{0} \rightarrow D_{s}^{-} K^{+}$

R. Aleksan, et al. Z Phys. C54 653 (1992) proposal: $B_{s}^{0} \rightarrow D_{s}^{-}K^{+} B_{s}^{0} \rightarrow D_{s}^{+}K^{-}$ time dependent decay rate

$$\begin{split} \Gamma(B_s^0 \to D_s^- K^+) &= \frac{|A_f|^2 e^{-\Gamma_s t}}{2} \Big\{ (1+|\lambda_f|^2) \cosh(\Delta\Gamma_s t/2) + (1-|\lambda_f|^2) \cos(\Delta m_s t) \\ &-2|\lambda_f| \cos(\delta+\gamma) \sinh(\Delta\Gamma_s t/2) - 2|\lambda_f| \sin(\delta+\gamma) \sin(\Delta m_s t) \Big\}, \\ \Gamma(B_s^0 \to D_s^+ K^-) &= \frac{|A_f|^2 e^{-\Gamma_s t}}{2} \Big\{ (1+|\lambda_f|^2) \cosh(\Delta\Gamma_s t/2) - (1-|\lambda_f|^2) \cos(\Delta m_s t) \\ &-2|\lambda_f| \cos(\delta-\gamma) \sinh(\Delta\Gamma_s t/2) + 2|\lambda_f| \sin(\delta-\gamma) \sin(\Delta m_s t) \Big\}, \\ \Gamma(\bar{B}_s^0 \to D_s^- K^+) &= \frac{|A_f|^2 e^{-\Gamma_s t}}{2} \Big\{ (1+|\lambda_f|^2) \cosh(\Delta\Gamma_s t/2) - (1-|\lambda_f|^2) \cos(\Delta m_s t) \\ &-2|\lambda_f| \cos(\delta+\gamma) \sinh(\Delta\Gamma_s t/2) + 2|\lambda_f| \sin(\delta+\gamma) \sin(\Delta m_s t) \Big\}, \\ \Gamma(\bar{B}_s^0 \to D_s^+ K^-) &= \frac{|A_f|^2 e^{-\Gamma_s t}}{2} \Big\{ (1+|\lambda_f|^2) \cosh(\Delta\Gamma_s t/2) + (1-|\lambda_f|^2) \cos(\Delta m_s t) \\ &-2|\lambda_f| \cos(\delta-\gamma) \sinh(\Delta\Gamma_s t/2) - 2|\lambda_f| \sin(\delta-\gamma) \sin(\Delta m_s t) \Big\}, \\ \Gamma(\bar{B}_s^0 \to D_s^+ K^-) &= \frac{|A_f|^2 e^{-\Gamma_s t}}{2} \Big\{ (1+|\lambda_f|^2) \cosh(\Delta\Gamma_s t/2) + (1-|\lambda_f|^2) \cos(\Delta m_s t) \\ &-2|\lambda_f| \cos(\delta-\gamma) \sinh(\Delta\Gamma_s t/2) - 2|\lambda_f| \sin(\delta-\gamma) \sin(\Delta m_s t) \Big\}, \end{split}$$

Theoretically clean Reasonable Branching Ratio(0.2,0.1x10⁻³)

Donatella Lucehesi

8–fold ambiguity

Two track trigger: N~850 events/2fb⁻¹ Difficult background separation S/B=1/1(physics) S/B=1/3 –1/10 (combinatorial)

Need time dependent analysis Need tagging: $\varepsilon D^2 = 11.3\%$

pre-tagged signal events

Donatella Lucchesi

Atwood, Dunietz and Soni Phys. Rev. Lett. 78, 3257 (1997)

 $\begin{aligned} a &= \mathcal{B}(B^- \to K^- D^0) \\ b &= \mathcal{B}(B^- \to K^- \bar{D}^0) \\ c(f_1) &= \mathcal{B}(D^0 \to f_1), \quad c(f_2) &= \mathcal{B}(D^0 \to f_2) \\ c(\bar{f}_1) &= \mathcal{B}(D^0 \to \bar{f}_1), \quad c(\bar{f}_2) &= \mathcal{B}(D^0 \to \bar{f}_2) \\ d(f_1) &= \mathcal{B}(B^- \to K^- f_1), \quad d(f_2) &= \mathcal{B}(B^- \to K^- f_2) \\ \bar{d}(f_1) &= \mathcal{B}(B^+ \to K^+ f_1), \quad \bar{d}(f_2) &= \mathcal{B}(B^+ \to K^+ f_2) \end{aligned} \qquad d(f_1) &= a \times c(f_1) + b \times c(\bar{f}_1) + 2\sqrt{a \times b \times c(f_1) \times c(\bar{f}_1)} \cos(\xi_1 - \gamma) \\ d(f_2) &= a \times c(f_2) + b \times c(\bar{f}_2) + 2\sqrt{a \times b \times c(f_2) \times c(\bar{f}_2)} \cos(\xi_2 + \gamma) \\ \bar{d}(f_2) &= a \times c(f_2) + b \times c(\bar{f}_2) + 2\sqrt{a \times b \times c(f_2) \times c(\bar{f}_2)} \cos(\xi_2 - \gamma) \end{aligned}$

No time dependent analysis No tagging Two tracks Trigger: ~130 events/2fb⁻¹ S/B=1:9(physics) $\delta\gamma$ ~15° IF:

1. combinatorial background negligible 2. $\mathcal{B}(B^+ \rightarrow K^+ D^0)$ known at 20% *Donatella Lucchesi*