## A beautiful surprise!

In $50 \mathrm{pb}^{-1}$ we expect:
$>\sim 0.5 \mathrm{M} \mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+}$
$>\sim 44 \mathrm{~K} \mathrm{D} \rightarrow \mathrm{KK}$
$>\sim 16 \mathrm{~K} \mathrm{D}^{0} \rightarrow \pi \pi$
$>\sim 150 \mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$

To be compared with:
-Fixed target experiments:
-E791 200K fully reconstr. D
$\rightarrow$ FOCUS 1M
$\rightarrow$ SELEX almost barions

- CLEO (similar statistic to FOCUS)
- Belle and Babar (better statistic)

Even with a VERY low luminosity we can measure:
> charm meson cross section
> cc cross section
$>\mathrm{D}^{0}-\mathrm{D}^{0}$ mixing
> cc/bb cross section

## Beauty reconstruction:

$$
\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{0} \pi^{ \pm} \mathrm{D}^{0} \rightarrow \mathrm{~K}-\pi^{+}
$$


$S=24 \pm 5$ events $B=19 \pm 4$ events S/B~1.3
$\sigma=11 \pm 3 \mathrm{MeV} / \mathrm{c}^{2}$
Signal compatible with expectations $\rightarrow$ SVT efficiency 0.70 instead 0.95
$\rightarrow$ SVXII coverage from 0.30 to 0.60
$\Rightarrow$ Reconstruction efficiency 0.50
We may expect improvements on all this sources of inefficiency by now

## Towards $\mathrm{B}_{\mathrm{s}}: \mathrm{D}_{\mathrm{s}}{ }^{ \pm} \rightarrow \phi \pi^{ \pm}$reconstruction

Cleanest decay:
$\mathrm{D}_{\mathrm{s}}{ }^{ \pm} \rightarrow \phi \pi^{ \pm} \phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$
2 tracks Pt>2 GeV


Here in Padova we are working on it and also $D_{s}^{ \pm} \rightarrow f^{0}(980) \pi^{ \pm}$

## Towards $\mathrm{B}_{\mathrm{s}}: \mathrm{D}_{\mathrm{s}}{ }^{ \pm} \rightarrow \mathrm{K}^{* 0} \mathrm{~K}^{ \pm}$reconstruction

Less clean but with higher Branching fraction 2 tracks $\mathrm{Pt}>2 \mathrm{GeV}$ |d|>100 $\mu \mathrm{m}$ $3^{\text {rd }}$ track $\mathrm{Pt}>0.4 \mathrm{GeV}$ Lxy>50 $\mu \mathrm{m}$ $831<m(K \pi)<961 \mathrm{MeV}$ several angular cuts



## The future: $\mathrm{B}_{\mathrm{s}, \mathrm{d}}$ mixing



## The future: $\mathrm{B}_{\mathrm{s}, \mathrm{d}}$ mixing

Tagging figure of merit: $\varepsilon \mathrm{D}^{2}$

| Method | Run I | Runll |
| :--- | :--- | ---: |
| SLT | $1.7 \%$ | $1.7 \%$ |
| JQT | $3.0 \%$ | $3.0 \%$ |
| SST | $1.0 \%$ | $4.2 \%$ |
| OSK | - | $2.4 \%$ |
| Total | $5.7 \%$ | $11.3 \%$ |

Decay Channel $\quad \mathrm{N}\left(2 \mathrm{fb}^{-1}\right)$
$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \pi \quad 37 \mathrm{~K}$
$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \pi \pi \pi \quad 38 \mathrm{~K}$
$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{D}_{\mathrm{s}} \quad 2,5 \mathrm{~K}$
$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \mathrm{D}_{\mathrm{s}} \quad 5,7 \mathrm{~K}$
$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \mathrm{D}_{\mathrm{s}}{ }^{*} \quad 5,2 \mathrm{~K}$


## Which EP measurement in B hadronic decays?

CKM $\left.\left[\begin{array}{lll}V_{\text {ud }} & V_{\text {us }} & V_{\text {ub }} \\ V_{\text {cd }} & V_{\text {cs }} & V_{\text {cb }} \\ V_{\text {td }} & V_{\text {ts }} & V_{\text {tb }}\end{array}\right] \begin{array}{ccc}1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\ -\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\ A \lambda^{3}(1-\rho-i \eta)-A \lambda^{2} & 1\end{array}\right]$
unitarity

$$
\begin{aligned}
& \gamma \\
& \text { 1. } \mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{--} \mathrm{K}^{+} \\
& \text {2. } \mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-} \\
& \text {3. } \mathrm{B}^{0} \rightarrow \mathrm{~h}^{+} \mathrm{h}^{-}
\end{aligned}
$$


$\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-} \Rightarrow \sin 2(\beta+\gamma)(=\sin 2(\alpha)$ if $\alpha+\beta+\gamma=\pi)$
but "penguin pollution" can be large

## $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{-} \mathrm{K}^{+}$

R. Aleksan, et al. Z Phys. C54 653 (1992) proposal: $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}-\mathrm{K}^{+} \mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{+} \mathrm{K}^{-}$time dependent decay rate

$$
\begin{aligned}
\Gamma\left(B_{s}^{0} \rightarrow D_{s}^{-} K^{+}\right)= & \frac{\left|A_{f}\right|^{2} e^{-\Gamma_{s} t}}{2}\left\{\left(1+\left|\lambda_{f}\right|^{2}\right) \cosh \left(\Delta \Gamma_{s} t / 2\right)+\left(1-\left|\lambda_{f}\right|^{2}\right) \cos \left(\Delta m_{s} t\right)\right. \\
& \left.-2\left|\lambda_{f}\right| \cos (\delta+\gamma) \sinh \left(\Delta \Gamma_{s} t / 2\right)-2\left|\lambda_{f}\right| \sin (\delta+\gamma) \sin \left(\Delta m_{s} t\right)\right\}, \\
\Gamma\left(B_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)= & \frac{\left|A_{f}\right|^{2} e^{-\Gamma_{s} t}}{2}\left\{\left(1+\left|\lambda_{f}\right|^{2}\right) \cosh \left(\Delta \Gamma_{s} t / 2\right)-\left(1-\left|\lambda_{f}\right|^{2}\right) \cos \left(\Delta m_{s} t\right)\right. \\
& \left.-2\left|\lambda_{f}\right| \cos (\delta-\gamma) \sinh \left(\Delta \Gamma_{s} t / 2\right)+2\left|\lambda_{f}\right| \sin (\delta-\gamma) \sin \left(\Delta m_{s} t\right)\right\}, \\
\Gamma\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{-} K^{+}\right)= & \frac{\left|A_{f}\right|^{2} e^{-\Gamma_{s} t}}{2}\left\{\left(1+\left|\lambda_{f}\right|^{2}\right) \cosh \left(\Delta \Gamma_{s} t / 2\right)-\left(1-\left|\lambda_{f}\right|^{2}\right) \cos \left(\Delta m_{s} t\right)\right. \\
& \left.-2\left|\lambda_{f}\right| \cos (\delta+\gamma) \sinh \left(\Delta \Gamma_{s} t / 2\right)+2\left|\lambda_{f}\right| \sin (\delta+\gamma) \sin \left(\Delta m_{s} t\right)\right\}, \\
\Gamma\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)= & \frac{\left|A_{f}\right|^{2} e^{-\Gamma_{s} t}}{2}\left\{\left(1+\left|\lambda_{f}\right|^{2}\right) \cosh \left(\Delta \Gamma_{s} t / 2\right)+\left(1-\left|\lambda_{f}\right|^{2}\right) \cos \left(\Delta m_{s} t\right)\right. \\
& \left.-2\left|\lambda_{f}\right| \cos (\delta-\gamma) \sinh \left(\Delta \Gamma_{s} t / 2\right)-2\left|\lambda_{f}\right| \sin (\delta-\gamma) \sin \left(\Delta m_{s} t\right)\right\} .
\end{aligned}
$$

Best case:
2-fold ambiguity
$\Delta \mathrm{m}_{\mathrm{s}}$ too large
4-fold ambiguity

Theoretically clean
Reasonable Branching Ratio(0.2,0.1x10-3)
$\Delta \Gamma / \Gamma$ too small
8-fold ambiguity

## $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{-} \mathrm{K}^{+}$

Two track trigger: $\mathrm{N} \sim 850$ events/2fb ${ }^{-1}$
Difficult background separation $\mathrm{S} / \mathrm{B}=1 / 1$ (physics) $S / B=1 / 3-1 / 10$ (combinatorial)



Need time dependent analysis Need tagging: $\varepsilon \mathrm{D}^{2}=11.3 \%$

Atwood,Dunietz and Soni Phys. Rev. Lett. 78, 3257 (1997)

$$
\begin{array}{cll}
a=\mathcal{B}\left(B^{-} \rightarrow K^{-} D^{0}\right) & d\left(f_{1}\right)=a \times c\left(f_{1}\right)+b \times c\left(\bar{f}_{1}\right)+2 \sqrt{a \times b \times c\left(f_{1}\right) \times c\left(\bar{f}_{1}\right)} \cos \left(\xi_{1}+\gamma\right) \\
b=\mathcal{B}\left(B^{-} \rightarrow K^{-} \bar{D}^{0}\right) & & \bar{d}\left(f_{1}\right)=a \times c\left(f_{1}\right)+b \times c\left(\bar{f}_{1}\right)+2 \sqrt{a \times b \times c\left(f_{1}\right) \times c\left(\bar{f}_{1}\right)} \cos \left(\xi_{1}-\gamma\right) \\
c\left(f_{1}\right)=\mathcal{B}\left(D^{0} \rightarrow f_{1}\right), & c\left(f_{2}\right)=\mathcal{B}\left(D^{0} \rightarrow f_{2}\right) & \\
c\left(\bar{f}_{1}\right)=\mathcal{B}\left(D^{0} \rightarrow \bar{f}_{1}\right), & c\left(\bar{f}_{2}\right)=\mathcal{B}\left(D^{0} \rightarrow \bar{f}_{2}\right) & d\left(f_{2}\right)=a \times c\left(f_{2}\right)+b \times c\left(\bar{f}_{2}\right)+2 \sqrt{a \times b \times c\left(f_{2}\right) \times c\left(\bar{f}_{2}\right)} \cos \left(\xi_{2}+\gamma\right) \\
d\left(f_{1}\right)=\mathcal{B}\left(B^{-} \rightarrow K^{-} f_{1}\right), & d\left(f_{2}\right)=\mathcal{B}\left(B^{-} \rightarrow K^{-} f_{2}\right) & \\
\bar{d}\left(f_{1}\right)=\mathcal{B}\left(B^{+} \rightarrow K^{+} f_{1}\right), & \bar{d}\left(f_{2}\right)=\mathcal{B}\left(B^{+} \rightarrow K^{+} f_{2}\right) & \bar{d}\left(f_{2}\right)=a \times c\left(f_{2}\right)+b \times c\left(\bar{f}_{2}\right)+2 \sqrt{a \times b \times c\left(f_{2}\right) \times c\left(\bar{f}_{2}\right)} \cos \left(\xi_{2}-\gamma\right)
\end{array}
$$

No time dependent analysis
No tagging
Two tracks Trigger: ~130 events/2fb-1
$\mathrm{S} / \mathrm{B}=1: 9$ (physics)
$\delta \gamma \sim 15^{\circ} \mathrm{IF}$ :

1. combinatorial background negligible
2. $\mathcal{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{D}^{0}\right)$ known at $20 \%$
