Higgs Boson searches at the Tevatron

Donatella Lucchesi Universita' di Padova e INFN Padova

Tevatron Status

Collider Run II Integrated Luminosity

 Improved stacking rate
 Faster transfer to recycler
 Improved reliability: store-hours/week:110 now 100 2004

rate Exceptionally performing machine recycler in terms of luminosity: y: >60pb⁻¹/week, >2fb⁻¹/year :110 now >350E30cm⁻²s⁻¹ instantaneous 100 2004 7 fb⁻¹ delivered so far

Detector Status: CDF

The Physics at the Tevatron

Tevatron Run II, pp at √s = 1.96 TeV

The Physics at the Tevatron

Tevatron Run II, pp at √s = 1.96 TeV

On the way to the Higgs: Di-bosons

Diboson final states:
Test Standard Model production predictions
Look for anomalous coupling
Cross sections similar to Higgs
Important background for Higgs

On the way to the Higgs: WW

pp->WW->llvv, ll=ee, µµ, eµ +MEt

The analysis is performed as for H->WW search: a per-event probability is assigned according to a matrix element given the measured event kinematics

On the way to the Higgs: WW Results

Cross section in 3.6 fb⁻¹ $\sigma(p\bar{p} \rightarrow WW) = 12.1 \pm 0.9 (\text{stat}) \stackrel{+1.6}{_{-1.4}} (\text{syst}) \text{ [pb]}$

Theoretical expectation: $\sigma(p\bar{p} \rightarrow WW) = 11.66 \pm 0.70 \text{ pb},$

One dimensional 95% C.L. improved limits on anomalous trilinear gauge couplings

On the way to the Higgs: ZZ

Top Mass

Use up to 3.6 fb⁻¹ of data CDF and D0 combined: $M_{+}=173.1\pm0.6(stat)\pm1.1(syst)GeV/c^{2}$ Total uncertainty 1.3 GeV/c² --> relative precision of 0.75%

October 26, 2009

13

W Boson Mass

Latest results DO:

M_w 80.402±0.045 GeV

CDF has in progress the analysis on 2.4fb⁻¹ the expected statistical errow is ~15 MeV

10⁴

Direct Higgs searches @Tevatron

Analysis Tools: Lepton Identification

- Identify the decay of W/Z
 - electrons: tracks matched to ECAL
 - muons: tracks matched to muon chambers
 - taus: tracks matched to calorimeter cluster
- Expand lepton coverage:
 interplay between sub-detectors
 to cover holes
 include forward detectors

Analysis Tools: Lepton Identification

- Identify the decay of W/Z
 - electrons: tracks matched to ECAL
 - muons: tracks matched to muon chambers
 - taus: tracks matched to calorimeter cluster
- Expand lepton coverage:
 interplay between sub-detectors to cover holes

include forward detectors

Analysis Tools: Lepton Identification

- Identify the decay of W/Z
 - electrons: tracks matched to ECAL
 - muons: tracks matched to muon chambers
 - taus: tracks matched to calorimeter cluster
- Expand lepton coverage:
 interplay between sub-detectors to cover holes
 include forward detectors
 - > Good Missing E_{τ} (MET) trigger :
 - select events with neutrinos and charged lepton that fail ID
 - remove events with fake MET

Analysis Tools: b-jet identification

0.4

0.3

0.2

0.1

0

Jet ≽ B-tagging:

- exploit long lifetime of b-hadrons
- Suppress light flavor background ✓ Improves S/B
- Various algorithms used by CDF/DO
 - Identify displaced vertex
 - Exploit multiple feature of b-jets
 - Probability that tracks come from primary vertex
 - b-tagging efficiency: 40-70%
- D-jet invariant mass

Analysis Tools: Multivariate techniques

- Maximize discriminating power using global kinematics of signal and background
 - Machine learning techniques: Neural Network and Boost Decision Tree (BDT)
 - For each event calculate the probability to come from signal from LO Matrix Element
- Multivariate techniques help to improve sensitivity
- > Used already in many many analysis

Reminder: Limit Plots

Direct Higgs searches @Tevatron

Low Mass Higgs searches

Decay channels

- \blacktriangleright Look for as many final states as possible with $H \rightarrow b \,\overline{b}$, highest BR
- → gg-> $H \rightarrow b \overline{b}$ dominant production mode not available right now due to background.

Data collected with b-tag trigger:

at least 2 tracks displaced
 from primary vertex

- Lxy compatible with b-hadrons

Table 1: Trigger efficiencies for H, ϕ and Z decays

Low Mass Higgs searches cont'd

Look for VH and ZH associated production:

- Higgs decays in two high pT b-jets
- Leptonic decays of W/Z reduce QCD background and allow easy trigger strategy

Reconstruct also H->yy and H->TT with gluon-gluon fusion, associated production and Vector Boson Fusion

Low Mass Higgs: Strategy

Efficient trigger to keep most of potential Higgs candidates
 x high pt charged leptons: e µ to select W/Z
 x missing Et+jets to select HZ, Z->vv or HW W->lv (I not identified)

× lepton+track for TT modes

Increase signal yields
 increase lepton acceptance improving e/µ ID
 more efficient b-tag algorithms
 better understanding of calorimeter response

Look for a resonance in dijets mass

- × large backgrounds with large uncertainties
- × use multivariate techniques to separate signal from background

Low Mass Higgs: $ZH \rightarrow \ell^+ \ell^- b\bar{b}, \ \ell = e, \mu$

Signature: 2 high Pt leptons and 2+ b-jets CDF: 4.1 fb⁻¹ DO: 3.1 - 4.2 fb⁻¹

Major backgrounds: Z + jets/hf, top, dibosons

Small $\sigma x BR \sim 1 \text{ event/fb}^{-1}$

Important to increase acceptance

Low Mass Higgs: $ZH \rightarrow \ell^+ \ell^- b\bar{b}, \ \ell = e, \mu$

Use multivariate techniques to improve S/B

Low Mass Higgs: $WH \rightarrow \ell v b \bar{b}, \ \ell = e, \mu$

Signature: 1 high Pt lepton large MET and 2+ b-jets CDF 4.3 fb⁻¹ and DO 5.0 fb⁻¹ Major backgrounds: W+bb-jets, top, multijets

"Large" $\sigma x BR \sim 3-4 \text{ event/fb}^{-1}$

Low Mass Higgs: $WH \rightarrow \ell v b \bar{b}, \ \ell = e, \mu$

Multivariate techniques to improve S/B:

DO: NN

Signal acceptance ZH->vvbb and WH->/vbb (1 missed) Signature: large MET and 2+ b-jets CDF 3.6 and D0 : 2.1 fb⁻¹

Major backgrounds: QCD with fake MET,W/Z+bb-jets, top,diboson Background modeled using data

Multivariate techniques to improve S/B: DO: BDT on double tagged sample CDF: NN with separate training for 2 and 3 jets

Low Mass Higgs Combination

M_H=115 Expected limit 2.53 Observed limit 3.62

Low Mass Higgs Tevatron Combination

Direct Higgs searches @Tevatron

High Mass Higgs: $H \rightarrow WW$

Signal:

0 jets at LO (gg->H)

2 jets at LO (ZH/WH/VBF)

Separate in 0, 1, 2+ jets bin because of different backgrounds

LO: WW, Drell Yan, W+y October 26, 2009

38

LO: WZ, ZZ, ++

High Mass Higgs:

0 jets: Good use of LO ME majority of signal gg fusion background from WW

1 jet: ME not so powerful

extra signal: VH and VBF ~20%

2 jets: tt main background extra signal: VH and VBF ~60%

Н-	\rightarrow	W	W	
CDF	R	un II	Preliminar	v

$M_H = 165 ~{ m GeV}/c^2$									
$t\bar{t}$	1.99	\pm	0.31						
DY	128	\pm	30						
WW	447	\pm	48						
WZ	19.7	\pm	2.7						
ZZ	29.9	\pm	4.1						
$W{+}{ m jets}$	154	\pm	37						
$W\gamma$	112	\pm	19						
Total Background	893	\pm	79						
$gg \to H$	12.6	\pm	1.7						
WH	0.00	\pm	0.00						
ZH	0.00	\pm	0.00						
VBF	0.00	\pm	0.00						
Total Signal	12.6	±	1.7						
Data		950							

OS 0 Jets

CDF Run II Preliminary	$\int \mathcal{L} =$	= 4.8	$3 {\rm fb}^{-1}$					
$M_H = 165 \text{ GeV}/c^2$								
$t\bar{t}$	145	\pm	24					
DY	51	\pm	17					
WW	25.6	\pm	5.8					
WZ	5.30	\pm	0.73					
ZZ	2.36	\pm	0.32					
$W{+}\mathrm{jets}$	21.9	\pm	5.9					
$W\gamma$	2.72	\pm	0.67					
Total Background	254	\pm	33					
gg ightarrow H	2.5	\pm	1.7					
WH	1.90	\pm	0.25					
ZH	0.99	\pm	0.13					
VBF	1.04	\pm	0.17					
Total Signal	6.4	\pm	1.8					
Data		224						

OS 2+ Jets

High Mass Higgs: $H \rightarrow WW$

Apply selection cuts:

- 2 opposite sign isolated leptons
- di-lepton opening angle
- significant MET
- Then use combinations of ME and NN depending on jet bin

High Mass Higgs: add other final states

Two lepton Pt>20 GeV No forward electrons Njets≥1 No MET cut

Add 5% sensitivity

October 26, 2009

Same sign leptons

CDF Run II Preliminary	$\int \mathcal{L}$	$\int \mathcal{L} = 4.8 \text{ fb}^{-1}$							
$\underline{\qquad \qquad M_H = 165 \mathrm{GeV}/c^2}$									
$\overline{t\overline{t}}$	0.242	\pm	0.068						
DY	26.7	\pm	8.1						
WW	0.039	\pm	0.010						
WZ	9.5	\pm	1.3						
ZZ	1.98	\pm	0.27						
$W{+}\mathrm{jets}$	34	\pm	10						
$W\gamma$	4.34	\pm	0.99						
Total Background	76	\pm	13						
WH	1.61	\pm	0.21						
ZH	0.261	\pm	0.034						
Total Signal	1.87	\pm	0.24						
Data		81							

SS 1+ Jets

High Mass Higgs: Systematics

Two classes

Rate Systematics:

 \checkmark affect only templates normalization, do not affect the shapes

- dominant theoretical cross section uncertainties, 10-30%
- > Shape systematics:
 - modify the shape of NN output
 - Found negligible up to now
 (PDF modeling, Energy scale, Pt scale)

High Mass Higgs Combination

Latest gg->H cross section (Florian and Grazzini)

Latest PDF MSTW2008
 NNLL QCD

✓ NLO b-quark treatment VH from hep-ph/0406152 VBF from TEV4LHC

Expected	Observed
limit	limit
2.06	2.63
2.65	1.82
3.49	5.07
6.2	5.72
1.26	1.27
	Expected limit 2.06 2.65 3.49 6.2 1.26

High Mass Higgs: $H + X \rightarrow II + missing Et$

Analysis separated by lepton type: ee, µµ, eµ Apply minimal requirements then use NN

Sample composition input to NN

Channel	ee	еμ	μμ
Luminosity (fb ⁻¹)	4.2	4.2	3.0
Z	108	13	3987
Diboson	84	162	127
tt	40	82	13
W+jets	98	79	134
Multijets	2	1	64
Total Background	332	337	4325
Data	336	329	4084
Signal (M _H =165 GeV)	6.1	12.2	4.9

NN output

High Mass Higgs Combination

Use the same systematic of CDF, same inputs

CDF and DO Combinations

Tevatron Combination

Not just a $\int 2$ factor, many systematics are correlated between CDF and DO_{Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹}

We exclude SM Higgs in a mass range 160-170 GeV at 95% CL

- lower Met cut for WW can open door to H->ZZ
- include W->tau
- -include 3 lepton events October 26, 2009

More challenging:

- need to improve around 30% on most important analysis
- add new triggers

Efficiency respect to double tag events

Conclusions

 CDF and DO are making a lot of progress in Higgs searches
 More data are coming, the results are improving more that 1/JN
 Tevatron Run II Projection

http://www-cdf.fnal.gov/physics/new/hdg/hdg.html

http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm

Detectors Status: DZero

Detectors health: CDF

- Is radiation damage going to limit the operational lifetime of SVX?
 - Study performed recently and answer: NO
- ~ 5-6 (S/N) good for physics
- ~ 3 (S/N) Run I able to do high P_T b-tagging

October 26, 2009

Cornering the Higgs

http://lepewwg.web.cern.ch/LEPEWWG/

While this is not a proof that the Standard-Model Higgs boson actually exists, it does serve as a guideline in what mass range to look for it.

Low Mass Higgs: $H \rightarrow \tau \tau H \rightarrow \gamma \gamma$

Higgs production x-sections

Simone Pagan Griso Moriond

New ggH signal x-sections by Florian at Grazzini (arXiv:0901.2427)

included NNLL $\sigma(gg \rightarrow H)$, latest MSTW2008 pdf, 2-loop ewk corrections, exact b-quark treatment @ NLO

$M_H \; ({\rm GeV}/c^2)$	$\sigma_{gg \to H} (\mathrm{pb})$	σ_{WH} (pb)	σ_{ZH} (pb)	$\sigma_{\rm VBF}~({\rm pb})$	$Br_{H \rightarrow WW}$
110	1.413	0.208	0.124	0.084	0.044
120	1.093	0.153	0.093	0.072	0.132
130	0.858	0.114	0.071	0.061	0.287
140	0.682	0.086	0.054	0.052	0.483
145	0.611	0.075	0.048	0.048	0.573
150	0.548	0.065	0.042	0.045	0.682
155	0.492	0.057	0.037	0.041	0.801
160	0.439	0.051	0.033	0.038	0.901
165	0.389	0.044	0.029	0.035	0.957
170	0.349	0.039	0.026	0.033	0.965
175	0.314	0.034	0.023	0.031	0.951
180	0.283	0.031	0.021	0.028	0.935
190	0.231	0.024	0.017	0.024	0.776
200	0.192	0.019	0.014	0.021	0.735

H->WW Systematics O-Jet bin

0 Jet Uncertainties	WW	WZ	ZZ	$t\bar{t}$	DY	$W\gamma$	W +jet $gg \rightarrow H$	WH	ZH	VBF
Cross Section										
Scale							10.9%			
PDF Model							5.1%			
Total	10.0%	10.0%	10.0%	15.0%	5.0%	10.0%	12.0%			
Acceptance										
Scale (leptons)							2.5%			
Scale (jets)							4.6%			
PDF Model (leptons)	1.9%	2.7%	2.7%	2.1%	4.1%	2.2%	1.5%			
PDF Model (jets)							0.9%			
Higher-order Diagrams	5.5%	10.0%	10.0%	10.0%	5.0%	10.0%				
Missing Et Modeling	1.0%	1.0%	1.0%	1.0%	20.0%	1.0%	1.0%			
Conversion Modeling						20.0%				
Jet Fake Rates										
(Low S/B)							21.5%			
(High S/B)							27.7%			
MC Run Dependence	3.9%			4.5%		4.5%	3.7%			
Lepton ID Efficiencies	2.0%	1.7%	2.0%	2.0%	1.9%	1.4%	1.9%			
Trigger Efficiencies	2.1%	2.1%	2.1%	2.0%	3.4%	7.0%	3.3%			
Luminosity	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%			

H->WW Systematics 1-Jet bin

1 Jet Uncertainties	WW	WZ	ZZ	$t\bar{t}$	DY	$W\gamma$	W+jet gg	$g \to H$	WH	ZH	VBF
Cross Section											
Scale							1	0.9%			
PDF Model								5.1%			
Total	10.0%	10.0%	10.0%	15.0%	5.0%	10.0%	1	.2.0%	5.0%	5.0%	10.0%
Acceptance											
Scale (leptons)								2.8%			
Scale (jets)							-	5.1%			
PDF Model (leptons)	1.9%	2.7%	2.7%	2.1%	4.1%	2.2%		1.7%	1.2%	0.9%	2.2%
PDF Model (jets)							-	1.9%			
Higher-order Diagrams	5.5%	10.0%	10.0%	10.0%	5.0%	10.0%			10.0%	10.0%	10.0%
Missing Et Modeling	1.0%	1.0%	1.0%	1.0%	20.0%	1.0%		1.0%	1.0%	1.0%	1.0%
Conversion Modeling						20.0%					
Jet Fake Rates											
(Low S/B)							22.2%				
(High S/B)							31.5%				
MC Run Dependence	1.8%			2.2%		2.2%		2.6%	2.6%	1.9%	2.8%
Lepton ID Efficiencies	2.0%	2.0%	2.2%	1.8%	2.0%	2.0%		1.9%	1.9%	1.9%	1.9%
Trigger Efficiencies	2.1%	2.1%	2.1%	2.0%	3.4%	7.0%	:	3.3%	2.1%	2.1%	3.3%
Luminosity	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%		5.9%	5.9%	5.9%	5.9%

H->WW Systematics 2-Jet bin

≥ 2 Jets Uncertainties	WW	WZ	ZZ	$t\bar{t}$	DY	$W\gamma$	W +jet $gg \rightarrow H$	WH	ZH	VBF
Cross Section										
Scale							10.9%			
PDF Model							5.1%			
Total	10.0%	10.0%	10.0%	15.0%	5.0%	10.0%	12.0%	5.0%	5.0%	10.0%
Acceptance										
Scale (leptons)							3.1%			
Scale (jets)							-8.7%			
PDF Model (leptons)	1.9%	2.7%	2.7%	2.1%	4.1%	2.2%	2.0%	1.2%	0.9%	2.2%
PDF Model (jets)							-2.8%			
Higher-order Diagrams	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%		10.0%	10.0%	10.0%
Missing Et Modeling	1.0%	1.0%	1.0%	1.0%	20.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Conversion Modeling						20.0%				
b-tag Veto				7.0%						
Jet Fake Rates							27.1%			
MC Run Dependence	1.0%			1.0%		1.0%	1.7%	2.0%	1.9%	2.6%
Lepton ID Efficiencies	1.9%	2.9%	1.9%	1.9%	1.9%	1.9%	1.9%	1.9%	1.9%	1.9%
Trigger Efficiencies	2.1%	2.1%	2.1%	2.0%	3.4%	7.0%	3.3%	2.1%	2.1%	3.3%
Luminosity	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%