Status of the $B \rightarrow h h^{\prime}$

Padova Analysis

U. Gaspariní, S. Lacaprara, M. Margoní, P. Ronchese, F. Símonetto, M. Tosí
$B \rightarrow \mu \mu$ Check Point \#6, 02/27/2013

- Analysís Strategy
oNews sínce last Check Poínt
oPreliminary Results
- Next Steps

Analysis Strategy

Motivation:

Estimate $B K G$ from $B \rightarrow$ hh' in the $B \rightarrow \mu \mu$ Analysis (not a BR measurement!)

* Use same normalization channel $\mathrm{B}^{+} \mathrm{K}^{+} \mathrm{J} / \psi$
* Use different trígger samples:

HLT_Mul2_eta2pi_DiCentral_40_20_DíBTagIP3D1stTrack_v
HLT_Mu4O_eta2pl_v

- Two different Strategies:
*Fast: Start the $B \rightarrow$ hh' reconstruction from the secondary vertices in Jets
*Strong: Use all the tracks combinations (as in the $\mu \mu$ Analysis)

Jet Based Strategy

aet Based Strategy:

* Taga b-jet by means of a High PT μ
\Rightarrow Reconstruct $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{J} / \Psi$
 $\& B \rightarrow$ hh' decays starting from secondary vertices not associated to the Tagjet.

0 "All Tracks" Strategy

"All Tracks" Strategy:

* Taga b-jet by means of a High PT μ
\Rightarrow Reconstruct $B^{+} \rightarrow K^{+} J / \Psi \& B \rightarrow$ hidecays starting from the combinations of all the tracks with PT>4 GeV not belonging to the Tagjet.
aNumber of tracks surviving PT cut seems reasonable to allow hi'reconstruction

News since last $C P$

- The preliminary results shown at the last CP were obtained using the "OR" of several triggers (see list on next slide):
* DATA: all the triggers prescaled, but HLT_Mul2_eta2pi_DiCentral_40_20_DiBTagIP3D1stTrack_v HLT_Mu4O_eta2pl_v
* MC: no prescaling for all the triggers *The efficiencies computed on MC were wrong! - Analysis redone by using only the not-prescaled triggers:
* DATA statistics:
$\Rightarrow \mathrm{B}^{+} \rightarrow \mathrm{K}^{+} / / \psi$ reduction ${ }^{\sim} 20 \%$
$\Rightarrow B \rightarrow$ hhi yield unchanged
*MC statistics: only ~ 1.5% of the selected events survives the new selection

Old Trigger List

```
"HLT_Mu5_v*"
"HLT_Mu8_v*"
"HLT_Mu12_v*"
"HLT_Mu17_v*"
"HLT_Mu15_eta2p1_v*"
"HLT_Mu24_eta2p1_v*"
"HIT Mu30 eta2n1 v*"
"HLT Mu40 eta2p1 v*"
"HLT_Mu50_eta2p1_v*"
"HLT_Mu12_eta2p1_L1Mu10erJetC12WdEtaPhi1DiJetsC_v*"
"HLT Mu12 eta2n1 DiCentral 40 20 DiBTaaIP3D1stTrack v*"
"HLT Mu12 eta2p1 DiCentral 40 20 BTagIP3D1stTrack v*"
"HLT_Mu12_eta2p1_DiCentral_40_20_v**
"HLT_Mu12_eta2p1_DiCentral_20_v*"
"HLT_Mu15_eta2p1_L1Mu10erJetC12WdEtaPhi1DiJetsC_v*"
"HLT_Mu15_eta2p1_TriCentral_40_20_20_DiBTagIP3D1stTrack_v*"
"HLT_Mu15_eta2p1_TriCentral_40_20_20_BTagIP3D1stTrack_v*"
"HLT_Mu15_eta2p1_TriCentral_40_20_20_v*"
"HLT_DoubleMu4_Jpsi_Displaced_v*"
"HLT_DoubleMu4_JpsiTk_Displaced_v*"
"HLT_DoubleMu3p5_LowMassNonResonant_Displaced_v*"
"HLT_DoubleMu3p5_LowMass_Displaced_v*"
"HLT_DoubleDisplacedMu4_DiPFJet40Neūtral_v*"
```


"Jet Based Strategy" Results

oNormalization channel $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{J} / \Psi$

about $18000 \mathrm{~J} / \Psi$ in Probe jets out of which 7500 from secondary vertices with 3 tracks - Assuming the third track is a Kaon: $N\left(K^{+} J / \Psi\right) \sim 650$

"Jet Based Strategy" Results

- Signal channel B \rightarrow hh'
alnvariant mass of vertices with 2 tracks (PT>3.5GeV) not identified
 as muons. alsolation cut applied on the Sum (PT) over a cone of $\Delta R<0.3$ au mass hypothesis for both the particles: Nhh'~140

Mass Resolution
o Data:
$\Rightarrow \mathrm{B}^{+}: M_{\mathrm{B}+}=5.27 \mathrm{GeV}, \sigma\left(M_{\mathrm{B}+}\right)=53 \mathrm{MeV}$

* hi': $M_{h h^{\prime}}=5.23 \mathrm{GeV}, \sigma\left(M_{h h^{\prime}}\right) \approx 74 \mathrm{MeV}$ (μ mass hypothesis)

MC:

* $\mathrm{B}^{+}: M_{B_{+}}=5.28 \mathrm{GeV}, \sigma\left(M_{B_{+}}\right)=45 \mathrm{MeV}[P D G: 5.28 \mathrm{GeV}]$
$\Rightarrow \mathrm{B}^{\circ}: M_{B O}=5.26 \mathrm{GeV}, \sigma\left(M_{B O}\right)=63 \mathrm{MeV}$ [PD: 5.28 GeV]
*Bs: $M_{B O}=5.35 \mathrm{GeV}, \sigma\left(M_{B s}\right) \approx 63 \mathrm{MeV}$ [PD: 5.37 GeV]
MC, μ mass hypothesis:
$\Rightarrow \mathrm{B}^{\circ}: M_{\mathrm{BO}} \approx 5.22 \mathrm{GeV}, \sigma\left(M_{\mathrm{BO}}\right)=63 \mathrm{MeV}$
$\Rightarrow \mathrm{Bs}: \mathrm{M}_{\mathrm{Bs}} \approx 5.27 \mathrm{GeV}, \sigma\left(M_{B s}\right) \approx 63 \mathrm{MeV}$
a μ mass hypothesis lowers $M_{B O}\left(M_{B s}\right)$ by 40 (80) MeV

Mass Resolution

Worse resolution in Data hi' partially due to B° / B s superposition:

$Q M C$ with $B^{\circ}+B s$ yields defined according to different $B R s$
$\Rightarrow M_{B}=5.24 \mathrm{GeV}$
$\Rightarrow \sigma\left(M_{B}\right)=66 \mathrm{MeV}$

Nhh' determination

a Goal: determine the number of hh' events in the $B \rightarrow \mu \mu$ sample from the extracted $B \rightarrow$ hh' signal in the Padova sample.

$N h h^{\prime}=$	$\left.\frac{N B p}{N B p(P D)}\right)\left(\frac{\epsilon_{\text {tot }}(B p, P D)}{\epsilon_{\text {tot }}(B p)}\left(\frac{\epsilon_{\text {tot }}(B 0)}{\epsilon_{\text {tot }}(B 0, P D)}\right) N h h^{\prime}(P D\right.$	$\omega_{\mu}(B 0)$

a Number of $B^{\circ} \rightarrow$ hi' events misidentified as $B \rightarrow \mu \mu$ Normalization Sample yields and efficiencies - Signal Sample efficiencies

- Number of hh' events selected in the Padova Analysis Muon misidentification from D^{*} (2012):

$$
\begin{aligned}
& \Rightarrow \omega_{\mu}(K)=3.18 \pm 0.4410^{-3}, \omega_{\mu}(\pi)=1.38 \pm 0.3610^{-3} \\
& \Rightarrow \omega_{\mu \mu}(K \pi)=4.4 \pm 1.310^{-6}
\end{aligned}
$$

Inputs from the Official Analysis

- B ${ }^{+}$yield and efficiency from AN_2012_358_v7, Tab 25, page 93

Table 25: Selection efficiency and number of observed events for the normalization sample. The errors are the combined statistical and systematic errors.

Variable	$B^{ \pm} \rightarrow J / \psi K^{ \pm}$Barrel	$B^{ \pm} \rightarrow J / \psi K^{ \pm}$Endcap
Acceptance	0.157 ± 0.005	0.106 ± 0.005
$\varepsilon_{\text {analysis }}$	0.0187 ± 0.0011	0.0093 ± 0.0006
$\varepsilon_{\mu}^{M C}$	0.735 ± 0.029	0.738 ± 0.059
$\varepsilon_{\mu}^{M C-T N P}$	0.775 ± 0.031	0.836 ± 0.067
$\varepsilon_{\mu}^{T N P}$	0.787 ± 0.031	0.781 ± 0.062
$\varepsilon_{\text {trig }}^{M C}$	0.532 ± 0.016	0.375 ± 0.023
$\varepsilon_{\text {trig }}^{M C}-T N P$	0.831 ± 0.000	0.719 ± 0.001
$\varepsilon_{\text {trig }}^{T N P}$	0.786 ± 0.024	0.728 ± 0.044
$\varepsilon_{\text {tot }}$	0.00094 ± 0.00008	0.00022 ± 0.00003
$N_{\text {obs }}$	241967 ± 12116	46855 ± 2355

$\mathrm{NB}^{+} \approx 288822 \pm 709 \pm 12322$ (statistical error from Tab. 22)
$<\varepsilon \mathrm{tot}^{\mathrm{B}^{+}>=(6.14 \pm 0.46) 10^{-4}}$
from weighted average according to the observed number of events in the Barrel vs Endcap corrected for efficiency

Inputs from the Official Analysis

 - B° efficiency from AN_2012_358_v7, Tab 24 page 93| Variable | $B^{0} \rightarrow \mu^{+} \mu^{-}$Barrel | $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$Barrel | $B^{0} \rightarrow \mu^{+} \mu^{-}$Endcap | $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$Endcap |
| :---: | :---: | :---: | :---: | :---: |
| Acceptance | 0.237 ± 0.008 | 0.237 ± 0.008 | 0.218 ± 0.011 | 0.218 ± 0.011 |
| $\varepsilon_{\text {analysis }}$ | 0.033 ± 0.001 | 0.032 ± 0.001 | 0.019 ± 0.001 | 0.019 ± 0.001 |
| $\varepsilon_{\mu}^{M C}$ | 0.690 ± 0.029 | 0.679 ± 0.027 | 0.813 ± 0.066 | 0.826 ± 0.066 |
| $\varepsilon_{\mu}^{M C-T N P}$ | 0.784 ± 0.031 | 0.785 ± 0.031 | 0.835 ± 0.067 | 0.835 ± 0.067 |
| $\varepsilon_{\mu}^{T N P}$ | 0.790 ± 0.032 | 0.792 ± 0.032 | 0.776 ± 0.062 | 0.779 ± 0.062 |
| $\varepsilon_{\text {trig }}^{\text {MC }}$ | 0.619 ± 0.021 | 0.620 ± 0.019 | 0.432 ± 0.029 | 0.447 ± 0.027 |
| $\varepsilon_{\text {trig }}^{M C-T N P}$ | 0.840 ± 0.025 | 0.841 ± 0.025 | 0.748 ± 0.045 | 0.750 ± 0.045 |
| $\varepsilon_{\text {trig }}^{\text {TNP }}$ | 0.793 ± 0.024 | 0.794 ± 0.024 | 0.758 ± 0.046 | 0.759 ± 0.046 |
| $\varepsilon_{\text {tot }}$ | 0.0033 ± 0.0002 | 0.0031 ± 0.0002 | 0.0014 ± 0.0002 | 0.0015 ± 0.0002 |
| $N_{\text {signal }}^{\text {exp }}$ | 0.955 ± 0.096 | 9.851 ± 1.478 | 0.260 ± 0.026 | 3.314 ± 0.497 |
| $N_{\text {cross-feed }}^{\text {exp }}$ | 0.838 ± 0.126 | 0.384 ± 0.038 | 0.653 ± 0.098 | 0.172 ± 0.017 |
| $N_{\text {non-peak. bg }}^{\exp }$ | 7.312 ± 1.581 | 9.474 ± 1.917 | 3.546 ± 1.041 | 4.463 ± 1.296 |
| $N_{\text {peak.bg }}^{\text {exp }}$ | 0.371 ± 0.141 | 0.099 ± 0.028 | 0.072 ± 0.027 | 0.036 ± 0.011 |
| $N_{\text {all bg }}^{\text {exp }}$ | 7.683 ± 1.587 | 9.572 ± 1.917 | 3.618 ± 1.041 | 4.499 ± 1.296 |
| $N_{\text {total }}^{\text {exp }}$ | 9.476 ± 1.868 | 19.808 ± 2.421 | 4.531 ± 1.163 | 7.985 ± 1.388 |
| $N_{\text {sidebands }}^{\text {oobs }}$ | 66 | | 33 | |
| $N_{\text {obs }}$ | 15 | 9 | 8 | 8 |

$<\varepsilon{ }_{\text {tot }} B s>\approx(2.44 \pm 0.14) 10^{-3}$ (total error)
from weighted average according to the expected number of signal events in the Barrel vs Endcap corrected for efficiency

Inputs from the Padova Analysis

 oh h' Efficiency from MC| | Noel | Ngen | ε | $f_{x} / f d$ | $B R$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $B^{\circ} \rightarrow K K$ | 1 | 594318 | 1.7 ± 1.710^{-6} | 1 | 1.310^{-7} |
| $\mathrm{~B}^{\circ} \rightarrow K \pi$ | 37 | 99018038 | 3.7 ± 0.610^{-7} | 1 | $1.9510^{-5}-5$ |
| $\mathrm{~B}^{\circ} \rightarrow \pi \pi$ | 6 | 8683043 | 6.9 ± 2.810^{-7} | 1 | 5.1910^{-6} |
| $\mathrm{Bs} \rightarrow \mathrm{KK}$ | 63 | 151351484 | 4.2 ± 0.510^{-7} | 0.267 | 2.5410^{-7} |
| $\mathrm{Bs} \rightarrow K \pi$ | 5 | 9724148 | 5.1 ± 2.310^{-7} | 0.267 | 510^{-6} |
| $\mathrm{Bs} \rightarrow \pi \pi$ | 5 | 9270586 | 5.4 ± 2.410^{-7} | 0.267 | 7.310^{-7} |

$<\varepsilon_{\text {tot }}\left(\mathrm{B}^{0}\right)>\approx(4.44 \pm 0.59) 10^{-7}$
(from average using $f_{x} / f d * B R$ as weight)
-Normalization channel
$\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi_{\mathrm{K}^{+}}$
9
4551542ε

$$
\left(B^{+}\right)=1.98 \pm 0.6610^{-6}
$$

Preliminary Results

$N h h^{\prime}=\left(\frac{N B p}{N B p(P D)}\right)\left(\frac{\epsilon_{t o t}(B p, P D)}{\epsilon_{\text {tot }}(B p)}\right)\left(\frac{\epsilon_{\text {tot }}(B 0)}{\epsilon_{t o t}(B 0, P D)}\right) N h h^{\prime}(P D) \omega_{\mu}(B 0)$
Without misidentification:
Nhh $^{\prime}=\frac{288822 \pm 12343}{652 \pm 31} \frac{1.98 \pm 0.6610^{-6}}{6.14 \pm 0.4610^{-4}} \frac{2.44 \pm 0.1410^{-3}}{4.44 \pm 0.5910^{-7}}(137 \pm 22)=1075491 \pm 437829$

- Assuming $\omega=4.4 \pm 1.310^{-6}$ (see slide 11):
\Rightarrow Nhh' $^{\prime}=4.7 \pm 1.9$ (method) $\pm 1.4(\omega)$
- Error dominated by $\varepsilon_{\text {tot }}\left(B^{+}, P D\right)$:
${ }_{\omega} \sigma \operatorname{Nhh} h^{\prime}\left(\varepsilon_{\text {tot }}\left(B^{+}, P D\right)\right)= \pm 1.6$
\rightarrow Reduce the statistical error: use the "All Tracks" Strat.!

Cross Checks

- Nomínal result

$$
\Rightarrow \text { Nhh' }=4.7 \pm 1.9 \text { (method) } \pm 1.4(\omega)
$$

-Only HLT_Mul2_eta2pi_DiCentral_40_20_DiBTagIP3D1stTrack_v \Rightarrow Nhh $=6.3 \pm 3.2$ (method) $\pm 1.8(\omega)$
-Only HLT_Mu40_eta2pl_v
\rightarrow Nhh' $=3.3 \pm 2.1$ (method) $\pm 1.0(\omega)$
-Using a tighter thi selection (40% lower efficiency):
$*$ Nhh' $=4.9 \pm 2.0$ (method) $\pm 1.4(\omega)$

"All Tracks" Strategy

ahh' reconstruction on real data sample still to be finalized, however... -Results for the B^{+}normalization channel already available!

"All Tracks" Strategy

- B^{+}reconstructed event statistics:

	Jet Based	All Tracks	Generated
* MC	9	78	4551542
* Efficiency	$(1.98 \pm 0.66) 10^{-6}$	$(17.14 \pm 1.94) 10^{-6}$	
* DATA	652 ± 31	6093 ± 87	

- Relative error on B^{+}efficiency reduced by a factor 3
*Use the "All Tracks" numbers in the B^{+}sector of
Padova Analysís!

"All Tracks" Strategy

$N h h^{\prime}=\frac{288822 \pm 12343}{6093 \pm 87} \frac{17.14 \pm 1.9410^{-6}}{6.14 \pm 0.4610^{-4}} \frac{2.44 \pm 0.1410^{-3}}{4.44 \pm 0.5910^{-7}}(137 \pm 22)=996251 \pm 258241$

- Assuming $\omega=4.4 \pm 1.310^{-6}$ (see slide 11):
- Nhh' $=4.1 \pm 1.1$ (method) $\pm 1.3(\omega)$
-To be compared with Nhh' $=4.7 \pm 1.9$ (method) $\pm 1.4(\omega)$
-Only HLT_Mul2_eta2pi_DíCentral_40_20_DiBTagIP3D1stTrack_v *Nh' $=4.6 \pm 1.3$ (method) $\pm 1.4(\omega)$
-Only HLT_Mu40_eta2pi_v \rightarrow Nhh' $=3.7 \pm 1.9$ (method) $\pm 1.1(\omega)$

Conclusions \& Next Steps

asolved a bug in the efficiency determination in the MC:

* Preliminary Results show now a tension wrt the Official Analysis in the peaking BKG prediction
aNext Steps:
* Cross Check: increase the B^{+}statistics in the Jet Based Analysis by removing the secondary vertex requirement for the three tracks
* Increase the hit statistics by means of the "All tracks combination" Strategy

