RC

 Meeting,

 Meeting, June 132012

News:

- Validation using uncorrelated subsamples:
\rightarrow MC: Analysis bias study
\rightarrow Data: Fit stability vs (K+, K-)
- Toy Monte Carlo
- Systematic errors

Caveat: all the results are obtained without floating the resolution parameters

Fitted vs Generated Ig/pl-1

MC
Uncorrelated Subsamples

Restricted
Range

$$
\lg / p \operatorname{lol} \text { Vs } \Delta \varepsilon_{\operatorname{Tag}}
$$

Real Data

Uncorrelated Subsamples

Restricted
Range

Tay Monte Carlo

- Previous problem of huge spread of the results was due to correlations between variables not correctly taken into account in the randomízation process

toy q / p

toy pull

Tay Monte Carlo

Likelihood Scan: $(5.52 \pm 0.95) 10^{-3}$

Nomínal Fit:
Toy Average:
Toy Pull:
$(5.38 \pm 0.80) 10^{-3}$
$(6.76 \pm 0.91) 10^{-3}$
1.167
-Toy-Nomínal=1.38 $10^{-3}(1.5)$; Toy-Scan $=1.2410^{-3}(1.3)$ OK

- $($ Toy $) \approx 0.91 / 1.026=0.89$ (Pseudo exp. have 95% the statistics of Data Sample)
- (Fit) \times Pull $=0.93$ in good agreement with (Scan)
\rightarrow Double Counting Effect does not affect the result(?)

systematics

New determínations:
-Analysis Bías: (F it ${ }_{\text {MC }}$) \times Toy Pull $=0.46 \cdot 10^{-3} \times 1.167=0.54 \cdot 10^{-3}$ -CP-eigenstates parameterization (Ceff, Seff varied by their statistical error from MC) $=$ negligible

- Sample composition determíned by external fit by floating D**, D*, Combinatorial \& assuming Continuum from rescaled Offpeak, CP-eigenstates from $M C$ and $B+/ B O$ fraction from $M C$.
$\rightarrow D^{* *}, D^{*}$, Combinatorial varied exploiting covariance matríx (biggest assumed as systematic error) 1.0910^{-3}
\rightarrow CP fraction varied by $\pm 50 \% 0.3110^{-3}$
$\rightarrow \mathrm{B}+/ \mathrm{BO}$ combinatorial BKG varied by $\pm 10 \%$
\rightarrow Offpeak statistical error taken into account in the fit

Preliminary Systematics

Source	$\Delta\|q / p\|$
\Longrightarrow Combinatorial	$\pm 1.09 \times 10^{-3}$
$D^{* *}$	$\pm 0.78 \times 10^{-3}$
D^{*}	$\pm 0.44 \times 10^{-3}$
Peaking Background	${ }_{-0.96}^{+0.22} \times 10^{-3}$
B^{-}Combinatorial Fraction	$\pm ? \times 10^{-3}$
CP-eigenstates	-0.31×10^{-3}
Total	${ }_{-?}^{+? ?} \times 10^{-3}$

Systematics from Sample
Composítion
Without B- Combinatorial
Fraction: $\delta=+1.11 /-1.49$

Table 11: Systematic uncertainties on $|q / p|$.

Source	$\Delta\|q / p\|$
$D_{\text {tag }}$ description	${ }_{-0.31}^{+1.30} \times 10^{-3}$
$\Delta \epsilon_{\text {Rec }}$	$\pm 0.02 \times 10^{-3}$
$\Delta \epsilon_{\text {Tag }}$	$\pm 0.06 \times 10^{-3}$
Resolution	$+0.60 \times 10^{-3}$
Analysis bias	$\pm 0.54 \times 10^{-3}$
Sample composition	${ }_{-?}^{+?} \times 10^{-3}$
CP-eigenstates parameterization	-
Total	${ }_{-?}^{+?} \times 10^{-3}$

> I Table of Systematics hout B-Combinatorial ction: $\delta=+1.89 /-1.72$

