Status of the Inclusive D*lv Mixing Analysis with Lepton Tag

11/12/2002 F.Colecchia M.Margoni M.Rotondo F.Simonetto

Main News:
SP3→SP4 Sample
MC Pure Signal fit almost finalized: Selection/Boost Approximation biases Constraint from χ_d
Tag Vertex: b→1/b→c→1 separate treatment Reco Vertex: D₀→1 description
MC Pure Signal Preliminary Results

SP4 Sample

ε increase ~ 20% w.r.t SP3
MC/data Statistics ~ 2 (SP3: ~1)

Year200020012002Nevt(data)143194241697147697

Search for Selection/Boost Approximation biases

Fit to pure-signal MC, SP4	$2000 B^0 B^0$ (MC truth for	$\Delta t/\Delta z$ and tag)
(generated $\tau = 1.548$ ps, Δm	$n = .473 \text{ ps}^{-1}$	
Nominal selection,	No selection,	No selection,
no vertex-quality cuts	D*l in the event	almost generic
$\Delta t \text{ fit } \tau = 1.548 \pm .002$	$1.549 {\pm} .002$	$1.539 \pm .001$
$\Delta m = .471 \pm .001$	$.471 \pm .001$	$.4711 \pm .0004$
Nevt = 480K	543K	1254K
$\Delta z \text{ fit } \tau = 1.553 \pm .002$	$1.554 \pm .002$	$1.544 {\pm}.001$
$\Delta m = .466 \pm .001$	$.466 \pm .001$	$.4665 \pm .0004$

•τ: ~no bias

• Δm : -0.005 ps⁻¹ Boost Approximation bias; -0.002 ps⁻¹ preselection bias?

χ_d constraint

•The fitted values of τ and Δm can be related to the integrated mixing χ_d :

$$\chi_{d} = x^{2}/(2*(1+x^{2})); x = \Delta m * \tau$$

•Experimentally:

$$\chi_{d}^{ex} = N_{mix} / N_{tot} = \chi_{d} d + w; d = 1 - 2w$$

•Up to now our fit did not take into account explicitly the relative fraction of Mixed events, but only the shapes of the Δz distributions for Mixed and Unmixed events.

 \longrightarrow Fit tends to underestimate χ_{d} computed in terms of Δm and τ

•Solution:

Add a binomial constraint to the log–likelihood relating the probability to have mixing p(Δm , τ , d), computed at each iteration, to the observed fraction N_{mix}/N_{tot}

Improved agreement $\chi_d^{\text{meas}}/\chi_d^{\text{gen}} + \Delta m$ statistical error reduction

Example: 2001 MC pure-signal b \rightarrow 1 fit (Nevt~77000): $\chi_d^{ex} = N_{mix}/N_{tot} = .1833 \pm .0014$ from event counting

 $\chi_{d} = x^{2}/(2*(1+x^{2})); x = \Delta m^{*}\tau$ = .167±.005 .170±.0014

to be compared with χ_d^{gen} =.173, τ^{gen} =1.548, Δm^{gen} =.473

Tag Vertex: b→1 / b→c→1 Description

Δz distribution for mixed events shows an asymmetry which prevents the data to be fitted with a symmetric function
This effect is due to the cascade lepton sample in the Btag vertex:

Solution:

Separate treatment of the prompt and cascade lepton samples in the likelihood: same pulls, different biases (~ 0 for b→1) and dilutions.
Fix the cascade fraction from external fit (up to now fixed from MC counting) better minuit behaviour (successful fits...)

Prompt Lepton fit (2000)

 $\tau = 1.539 \pm .008$ $\Delta m = 0.467 \pm .004$ $d = 0.971 \pm .002 \quad (0.978 \text{ from MC})$ counting) pulln = 0.97 \pm .02 pullw = 2.35 \pm .11 biasn = -0.02 ± .16 biasw = -0.007 ± .012 $\chi_d = 0.170 \pm 0.002$

Cascade Lepton fit (2000)

 $\tau = 1.584 \pm .048$ $\Delta m = 0.423 \pm .051$ $d = -0.459 \pm .050 \quad (-0.535 \text{ from})$ MC counting) pulln = 1.07 \pm .07 pullw = 2.15 \pm .54 biasn = -2.35 \pm .49 biasw = -0.266 \pm .044 \chi_d = 0.155 \pm 0.026

•d< 0 due to charge exchange in the cascade process •Plots don't show the b \rightarrow 1 oscillating behaviour due to the high cascade mistag w~23% (1.1% for prompt leptons)

$b \rightarrow 1 + b \rightarrow c \rightarrow 1$ fit (2000)

 F_{bcl} =6.78±.11% fixed from MC counting (in future from external fit)

 $\tau = 1.550 \pm .007$ $\Delta m = 0.470 \pm .004$ $d_{prompt} = 0.973 \pm .003$ $d_{cascade} = -0.473 \pm 0.067$ pulln = 0.96 \pm .02 pullw = 2.44 \pm .16 biasn = -2.7 \pm 1.4 biasw = -0.27 \pm .09 $\chi_{d} = 0.173 \pm 0.002$

Reco Vertex: $D^0 \rightarrow l$ Description

•The lepton tag sample from D^0 decays can be fitted with an exponential convoluted with the same resolution function as the prompt/cascade lepton events.

•Two free parameters: effective τ_{D0} , single bias

 $\tau_{D0} = 0.316 \pm 0.022$ bias = -0.233 ± 0.019

Complete pure–signal fit (2000)

 $F_{bcl} = 6.46 \pm .11\% \text{ fixed from MC}$ counting $F_{D0} \text{ from } \alpha, \rho \text{ functions vs } \cos(\theta_{I-\pi^*})$ $\tau = 1.544 \pm .007$ $\Delta m = 0.472 \pm .004$ $d_{prompt} = 0.980 \pm .003$ $d_{cascade} = -0.600 \pm 0.057$ $\tau_{D0} = 0.390 \pm 0.055$ $\chi_{d} = 0.173 \pm 0.002$

Year by Year Stability

2001: $\tau = 1.569 \pm 0.009$ $\Delta m = 0.462 \pm 0.003$

2002: $\tau = 1.574 \pm 0.009$ $\Delta m = 0.454 \pm 0.005$

Not in agreement with 2000 results... but the binomial constraint depends on $x = \tau * \Delta m$ which reflects in an anticorrelation between τ and Δm .

Two Choices:

•Fix τ to the world average: (ex. $\Delta m(2001) = 0.466 \pm 0.003$)

•Combined use of the overall, untagged sample for simulataneous τ measurement.

Conclusions

•Pure–signal MC fit almost finalized:

Constraint from the fraction of mixed events Separate description of prompt and cascade tag leptons $D^0 \rightarrow 1$ sample fitted by an exponential in terms of an effective τ_{D0}

•Next Steps:

Background description and total fit on MC

Fit with fixed $\tau_{_{B0}}$ (or combined use of the untagged sample)

Fit of data sample

•Lepton Analysis ready in time for Moriond?