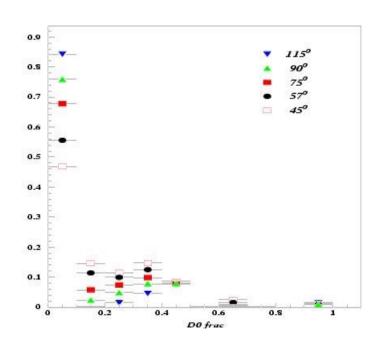

Status of τB^0 analysis with Inclusive B -> l D *v

Improvements since last meeting (13/6)

- More complete Systematics Evaluation (τB^+ , D bias in Tag Vertex)
- More Consistency Checks (Stability vs θ lepton, ϕ lepton, P^*pion)
 - → Use "Effective" τB^+ depending on Cone Cut:

B⁺ has two biases:


D⁰, D** tracks pull tag Vertex towards Reco one (effect~ twice B⁰ one)

Status of $B \rightarrow l D^* v$

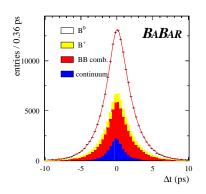
$$\delta(\tau B^+) = \delta(PDG) \oplus \delta(D^0 \text{ bias }) \oplus \delta(D^{**} \text{ bias })$$

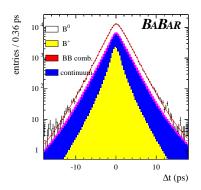
- δ (PDG) = 1.6%
- \bullet δ (D bias) from 5% variation in the fraction of events with no D tracks in Tag Vtx:

$$\rightarrow \delta(\tau B^+) = 2.4\%$$
 $\rightarrow \delta(\tau B^0) = 0.5\%$

Status of $B \rightarrow l D^* v$

Tracks from the charmed hadron from Btag displace the Tag Vertex position


Bias of the Δt distribution.


→ Systematics Evaluation from MC reweighting the charm species from the Btag decay

Channel B ⁰ → charmless	Variation +-30%	$\frac{\delta (\tau B^0) (\%)}{0.125}$
$\overline{\mathrm{DDX}}$	+-10%	0.05
\mathbf{D}^{+}	+-10%	0.10
\mathbf{D}_0	+-10%	0.09
Ds	+-20%	0.01
Λc	+-50%	0.03

Total
$$\delta(\tau B^0) = 0.19\%$$

Preliminary Results and Systematics Errors

90° Cone Cut

 $\Delta Z < 3$ mm; $\sigma(\Delta Z) < 1$ mm

Note: $\Delta Z = Z(tag) - Z(reco)$

(opposite convention...)

Source	Range of Variation	$\sigma(\tau_{B^0})/\tau_{B^0}$ (%)
B ⁺ fraction	$5.0 \pm 2.6\%$	+ 0.40
continuum fraction	$11.4 \pm 0.2\%$	±0.21
$B\overline{B}$ comb. fraction	$30.0 \pm 0.9\%$	±0.03
τ_{B^+} (effective)	1.51±0.05	+ 0.50
continuum pdf	1967 1 10000000000000000000000000000000000	±0.29
$B\overline{B}$ comb. pdf		±0.26
use of m^{++} sample		±0.02
$ au_{bk}$	±0.022 ps	∓0.61
f_{bk}	±3.6%	±1.78
f_n	5 ÷ 20%	±0.20
b_w	$0.00 \div 1.00 \mathrm{ps}$	±0.13
D^0 bias (MC stat.)	±0.78%	±0.78
D^0 bias (MC model)	see text	±1.16
tag D bias(MC model)	see text	±0.19
Total Preliminary		±2.53

Fraction of living Combinatorial:

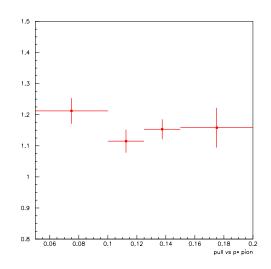
$$f_{bk}(m+-)=f_{bk}(s+-)*f_{bk}(m++)/f_{bk}(s++)$$

Systematics from MC (calculated vs true) Should be improved using more MC or cutting harder against Background (i.e. $M^2v > -1$)

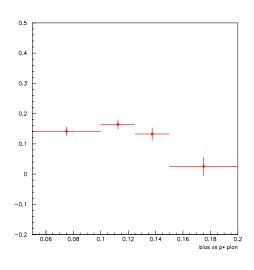
5% variation of the fraction of events with no D tracks in the Btag vertex (Probably pessimistic)

 $\tau B^0 = 1.424 + -0.010 + -0.035 \text{ ps (Blind)}$

Fit in bins of P^*pion , θ *lepton*, ϕ *lepton*:

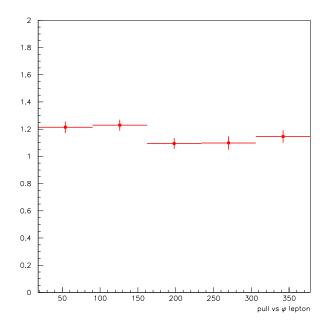

→ For each subsample recomputed: OffPeak, Combinatorial Contributions Background Fraction vs M²v

→ P* pion dependence ~OK

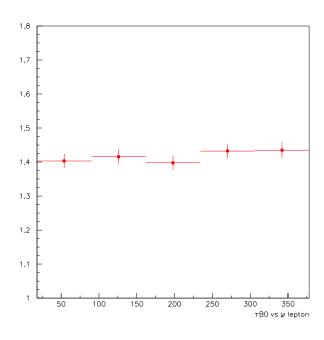

1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

 $\tau B^0 \text{ vs } P^*$

Pull vs P*

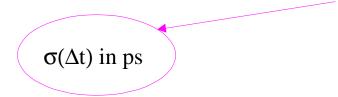


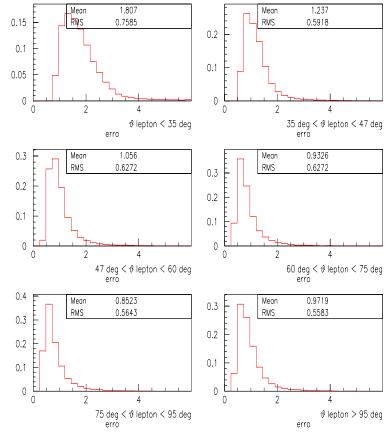
Offset (ps) vs P*

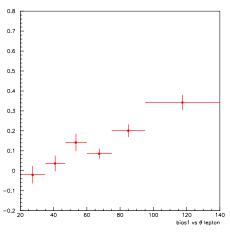


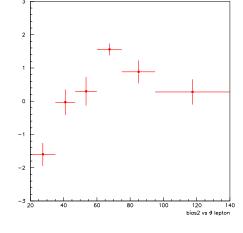
- → \$\phi\$ lepton dependence ~OK
- → Selected 5 zones according to SVT geometry.


Pull vs o


 $\tau B^0 vs \phi$


 $\rightarrow \theta$ lepton dependence, defined 6 regions:

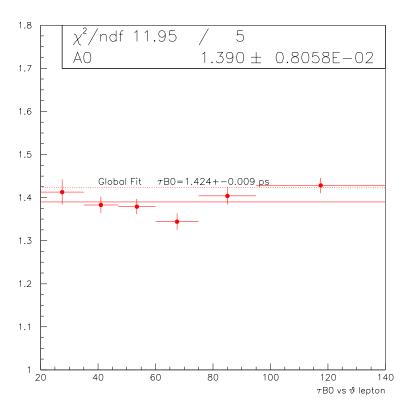

 $\rightarrow \sigma(\Delta t)$ depends on θ *lepton:*Smaller Error for $\theta \sim 90^{\circ}$ (more precise vertexing)



$\sigma(\Delta t)$ in θ bands

The offsets (ps) depend on θ *lepton*

narrow gaussian

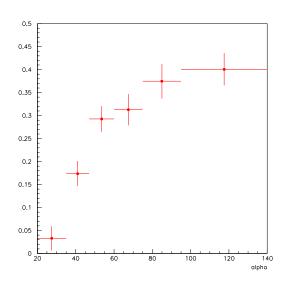

wide gaussian

- → Does the offset dependence on error (see BAD 137, D*lv Exclusive Analysis) reflect the θ dependence?
- → Cross Checks from other analyses?
 Mis-alignment problem?

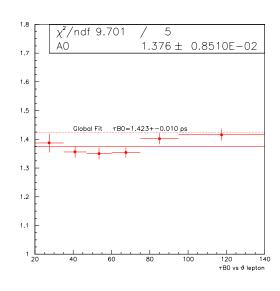
Problems:

- The result is not stable
- The average is different from the global fit result

 $\tau B^0 vs \theta$



→ Use offset = $\alpha * \sigma(\Delta t)$ in the fit (according to BAD 173, D*lv Exclusive Analysis):


Good New: The average result does not change

Bad New: Stability does not improve, α depends on θ

 α vs θ

 $\tau B^0 \text{ vs } \theta$

Conclusions and Next Steps

•New version of BAD 182 available today

•Next Steps:

Fit in bins of $\sigma(\Delta t)$

Fit using offset depending on θ

Use of a different Resolution Function $\sim G \otimes (\delta + Exp)$

•Systematics to be evaluated:

Beam Spot distortions

Outliers description

Detector Geometry and Alignment