A first look at CPV in mixing using P.R. D*lv and K–tag

Martino, 6/06/06

1

Motivations & Method:

Determination of detector asymmetry from D-tagged events;

Preliminary Signal fit on MC RUN1:

- - Δt fit of D-tagged events;
- - Δt fit of B-tagged events (perfect vs real tag & resolution);
- Fraction of D-tagged events;
- -Combined fit to D-tagged+B-tagged events;

Conclusions

Motivations

-Improve the |q/p| determination obtained by means of the B⁰-D*lv Partial Reconstruction, by combining the result with the Perugia–Padova analysis using the Lepton–Tag (expected statistical error on 200 fb⁻¹: ~3.1 * 10⁻³ from the latter)

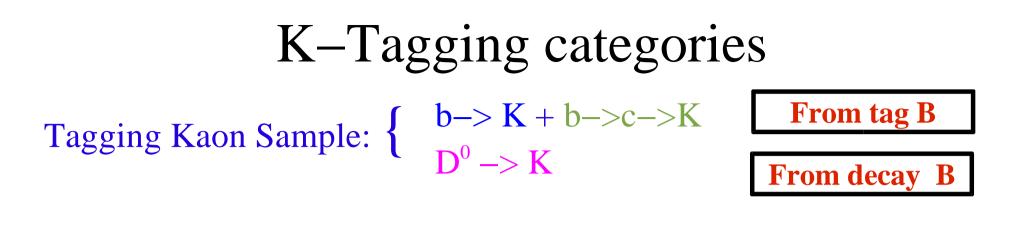
Average of the two P.R. Measurements competitive with the dilepton one: $(|q/p| -1 = (-0.8 \pm 2.7 \pm 1.9) * 10^{-3})$

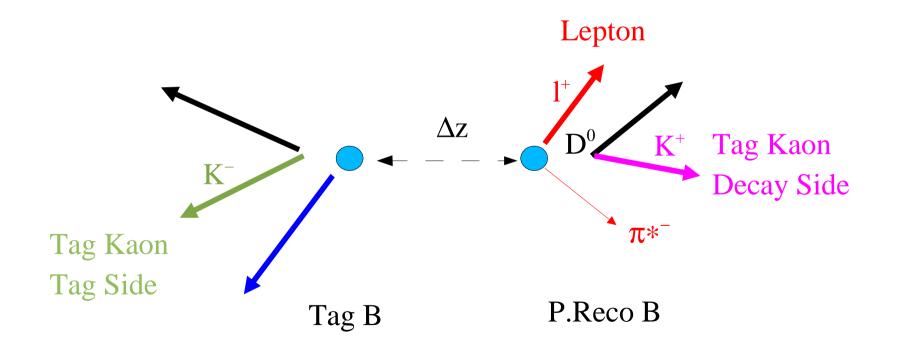
-Measurement of $\Delta\Gamma$;

•Improved Measurement of $\Delta m \& \tau B^0$ (?)

Method

Partial B⁰ → D*lv reconstruction on one side already exploited in several measurements (CPV in mixing with Lepton Tag, CP violation on Tag–side, B⁰ Lifetime & Mixing (published), B⁰ Lifetime (published),...)


-New Tag-vertex determination using only the Tag-Kaon tracks +B.S. Constraint (as for the Lepton –Tag analysis):


No bias from tracks from the un-reconstructed D^0 in the Tag-vertex.

- Used all the Tag–Kaons in the event;

-|q/p| obtained from the charge asymmetry in mixed events: $|q/p| = 1 + K_{PHYS}; K_{PHYS} = -A/2; A = N(1^+K^+)/(N(1^+K^+) + N(1^-K^-))$

-Simultaneous Δt fit to the 4 different subsamples: unmixed +, unmixed -, mixed +, mixed defined according to the Tag–K charge and the lepton charge on the Partial Reco Side; 3

Determination of detector asymmetry

•Crucial point: discriminate between physical and detector charge asymmetry without relying on control samples results to contain systematic errors;

Idea: determine the experimental charge asymmetry directly from the real data using the D-tagged event sample wich does not carry mixing & CPV information (mostly D-tag events populate the mixed sample due to 1–K charge correlation);

Separation between B-tag and D-tag events exploiting:
Different shape of the Δt distributions (Effective D lifetime τ_D floated);
D-tag fraction α(θ) from angle K-π* in the e⁺e⁻ reference frame (D-tagged

events mostly populate the low angle region);

Compatibility between B-tag & D-tag detector asymmetry checked on MC.

B-tag vs D-tag detector charge asymmetry: MC RUN1 (realistic tagging)Some definitions:

 $-\mathbf{r}_{ek} = \mathbf{r}_{e}^{*}\mathbf{r}_{k} = N(e^{+}K^{+})/N(e^{-}K^{-})$ $-A_{ek} = (N(e^{+}K^{+}) - N(e^{-}K^{-}))/(N(e^{+}K^{+}) + N(e^{-}K^{-})) = (\mathbf{r}_{ek} - 1)/(\mathbf{r}_{ek} + 1)$ $-f = N(e^{+}K^{+})/(N(e^{+}K^{+}) + N(e^{-}K^{-})) = (A_{ek} + 1)/2$ $-K = -A_{ek}/2; \quad (|q/p| = 1 + K)$

	B-tag	D–tag
N(e ⁺ K ⁺) N(e ⁻ K ⁻)	28598 27589	69607 66892
$\frac{N(\mu^+K^+)}{N(\mu^-K^-)}$	20551 19609	49275 47194

Electron on Reco-Side			
	B-tag	D–tag	
$r_{_{ek}}$	1.0366 ± 0.0087	1.0406 ± 0.0056	
$A_{_{ek}}$	0.0180 ± 0.0042	0.0199 ± 0.0027	
$f_{_{ek}}$	0.5090 ± 0.0021	0.5099 ± 0.0013	
K _{ek}	-0.0090 ± 0.0021	-0.0099 ± 0.0013	
Muon on Reco–Side			
$r_{_{\mu k}}$	1.0480 ± 0.0105	1.0441 ± 0.0067	
$A_{\mu k}$	0.0234 ± 0.0050	0.0216 ± 0.0032	
$f_{\mu k}$	0.5117 ± 0.0025	0.5108 ± 0.0016	
$\mathbf{K}_{\mu k}$	-0.0117 ± 0.0025	-0.0108 ± 0.0016	

Good agreement found between B-tag and D-tag event sample;
 Results obtained using just true Kaons: a few percent A_{1k} is induced by misidentified positive protons; Alessandro Gaz is currently working on optimisation of proton rejection.

7

Signal PDF Description

 $\mathcal{F}^{\text{st,sm}}(\Delta t, \sigma \Delta t, M^2_{\nu} | \tau, \Delta m, k) = (1 - \alpha(\theta)^{\text{sm}}) * \mathcal{F}^{\text{st,sm}}_{\text{Btag}}(\Delta t, \sigma \Delta t | \tau, \Delta m, k) \otimes \mathcal{R}_{\text{Btag}}(\delta \Delta t, \sigma \Delta t) + \alpha(\theta)^{\text{sm}} * \mathcal{F}_{\text{Dtag}}(\Delta t, \sigma \Delta t | \tau_{D}) \otimes \mathcal{R}_{\text{Dtag}}(\delta \Delta t, \sigma \Delta t)$

Resolution Function:

$$\mathcal{R} (\delta\Delta t, \sigma\Delta t) \sim (1 - f_{w} - f_{o}) \exp(-(\delta\Delta t - o_{n})^{2}/2(S_{n}\sigma\Delta t)^{2})$$
 Narrow
+ $f_{w} \exp(-(\delta\Delta t - o_{w})^{2}/2(S_{w}\sigma\Delta t)^{2})$ Wide
+ $f_{o} \exp(-\delta\Delta t/2S_{o}^{2})$ Outlier

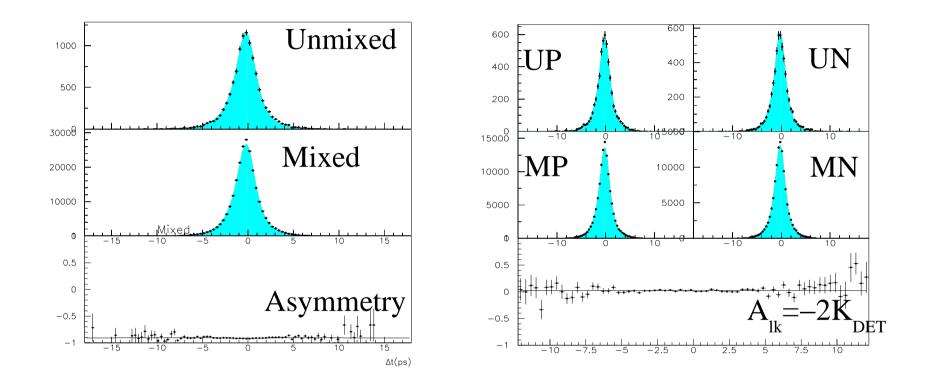
 $\delta \Delta t = \Delta t$ (measured) $-\Delta t$ (true) •Offset o_n, o_w adjusted for each sample (Btag vs Dtag)

- Fit to Δt to determine simultaneously:
- τ , Δm and dilution \mathcal{D} , constrained to the fraction of mixed events:

$$N_{mix}/N_{tot} = \chi_d \mathcal{D} + (1-\mathcal{D})/2; \ \chi_d = x^2/(1+x^2)2; x = \Delta m \tau$$

- K_{DET} constrained to the fraction of positive mixed events in the D-tag sample: $N^{\text{Dtag}}(e(\mu)^+K^+)/(N^{\text{Dtag}}(e(\mu)^+K^+)+N^{\text{Dtag}}(e(\mu)^-K^-))=(1-2*K^{e(\mu)}_{\text{DET}})/2$
- -K_{PHYS} constrained to the fraction of positive mixed events in the B-tag sample: N^{Btag}(e(μ)⁺K⁺)/(N^{Btag}(e(μ)⁺K⁺)+N^{Btag}(e(μ)⁻K⁻))= (1-2*K^{e(μ)}_{DET}-2*K_{PHYS}+4*K^{e(μ)}_{DET}*K_{PHYS})/(2+8*K^{e(μ)}_{DET}*K_{PHYS})
 Binned (100/250 Δt X 25/50 σΔt) Maximum-likelihood fit to the mixed/unmixed/K+/K- 4 subsamples
 Likelihood value computed at the bin center

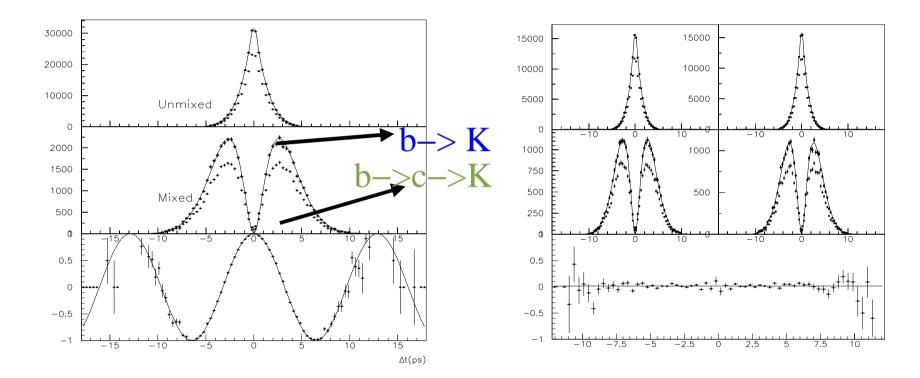
MC Validation


•Fit the D-tag sample alone with realistic resolution & tagging to check the fit strategy for K_{DET}^{Dtag}

- •Validate the resolution model and the realistic tagging comparing the generated
- τ , Δm , $K_{_{PHYS}}$ values with the results of the fits on B-tag events using:
- true Δt and tagging (Selection Bias)
- true Δz and tagging (Boost Approximation check)
- true Δz and experimental tagging (realistic tag & Check of $K^{Btag}_{DET} = K^{Dtag}_{DET}$)
- experimental Δz and true tagging (resolution function)
- experimental Δz and tagging (realistic fit)

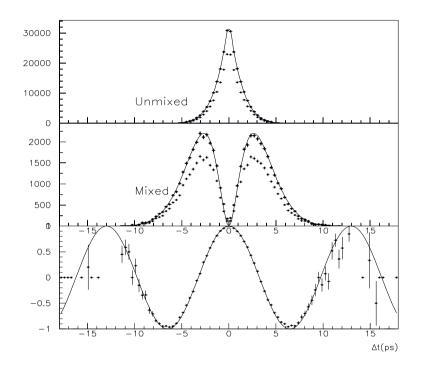
■Determine the fraction \subseteq (\neq) of D–tag events in terms of the K–*f** angle

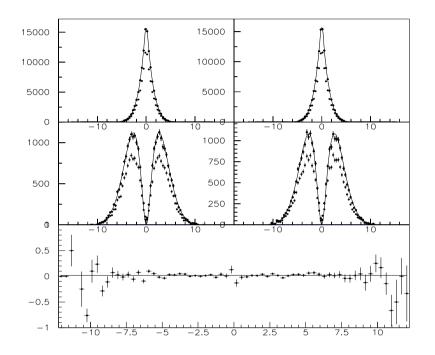
Add B-tag & D-tag samples together and repeat the fit


D-tag fit: realistic resolution & tagging

$\tau D = 0.10 \pm 0.06 \text{ ps}$

 $K_{DET}^{\mu} = -0.0100 \pm 0.0013 \quad (-0.0099 \pm 0.0013 \text{ from counting}) \\ K_{DET}^{\mu} = -0.0108 \pm 0.0015 \quad (-0.0108 \pm 0.0015 \text{ from counting}) \quad \text{Fit to } K_{DEC} \text{ OK!}$

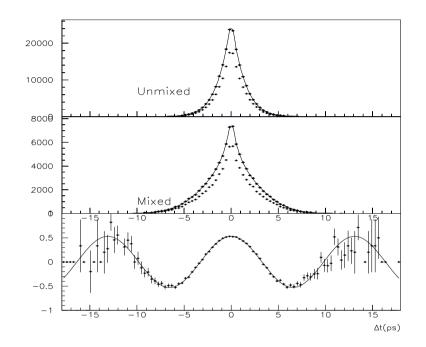

B-tag fit: true Δt & tagging

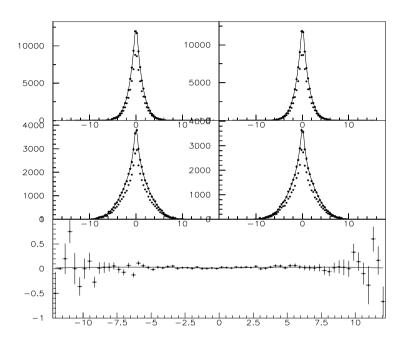


$$\begin{split} \tau B &= 1.5279 {\pm} 0.0027 \text{ps} \\ \Delta m &= 0.4879 {\pm} 0.0004 \text{ ps}^{-1} \\ \chi_{\text{fit}} &= 0.1786 {\pm} 0.0007 \\ \chi &= 0.1787 {\pm} 0.0004 \end{split}$$

MC TRUTH: $\tau B= 1.540 \text{ ps}$ $\Delta m=0.489$ $\chi=0.1809$ Selection Bias: $\delta \tau = -0.0121 \pm 0.0027 \text{ ps}$ $\delta \Delta m = -0.0011 \pm 0.0004 \text{ ps}^{-1}$ $\delta \chi = -0.0023 \pm 0.0004$

B-tag fit: true Δz & tagging

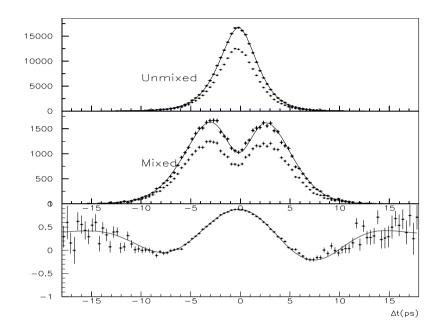


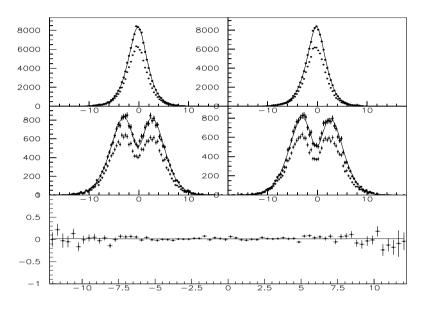


$$\begin{split} \tau B &= 1.5343 {\pm} 0.0028 ps \\ \Delta m &= 0.4842 {\pm} 0.0007 \ ps^{-1} \\ \chi_{\rm fit} &= 0.1778 {\pm} 0.0007 \end{split}$$

Boost Approx. Bias: $\delta \tau = +0.0064 \pm 0.0007 \text{ ps}$ $\delta \Delta m = -0.0037 \pm 0.0006 \text{ ps}^{-1}$ $\delta \chi = -0.0008 \pm 0.0003$

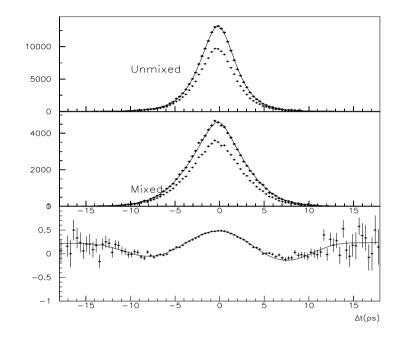
B-tag fit: true Δz & realistic tagging

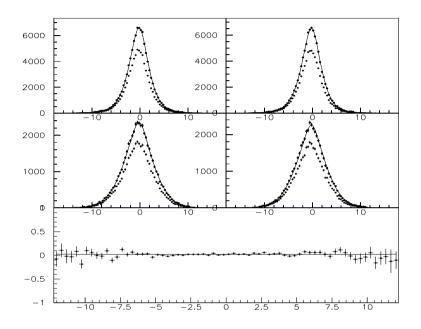




 $\tau B = 1.5334 \pm 0.0028 \text{ps}$ $\Delta m = 0.4800 \pm 0.0020 \text{ ps}^{-1}$ $\chi_{fit} = 0.1757 \pm 0.0011$ $K_{DET}^{e} = -0.0090 \pm 0.0021 \text{(identical from counting)}$ $K_{DET}^{\mu} = -0.0117 \pm 0.0025 \text{(identical from counting)}$ $w = 0.2357 \pm 0.0010 \text{ (0.2322 from counting)}$

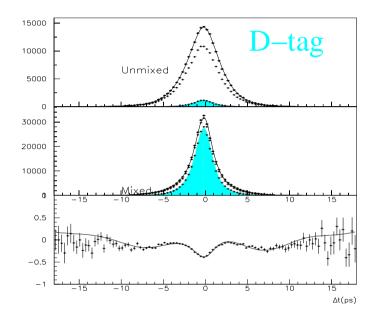
Mistag Bias: $\delta \tau = -0.0009 \text{ps}$ $\delta \Delta m = -0.0042 \pm 0.0019 \text{ps}^{-1}$ $\delta \chi = -0.0021 \pm 0.0010$

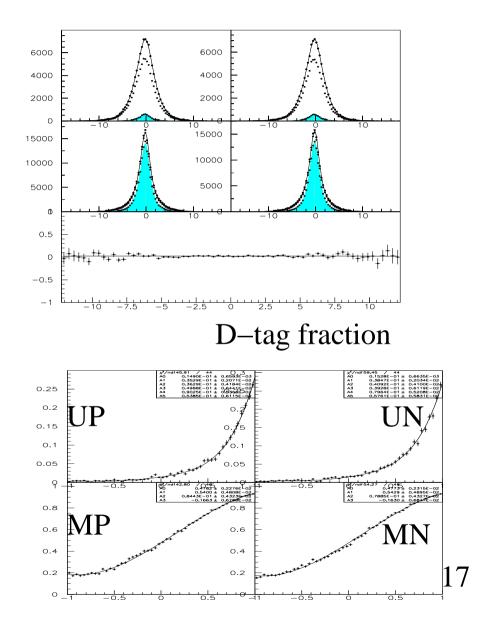

B-tag fit: realistic Δz & perfect tagging



 $\tau B= 1.5242 \pm 0.0046 \text{ps}$ $\Delta m=0.4872 \pm 0.0015 \text{ ps}^{-1}$ $\chi_{\text{fit}}=0.1777 \pm 0.0007$

B-tag fit: realistic Δz & tagging




 $\tau B = 1.5432 \pm 0.0060 \text{ps}$ $\Delta m = 0.4862 \pm 0.0038 \text{ ps}^{-1}$ $\chi_{\text{fit}} = 0.1801 \pm 0.0017$ $K_{\text{DET}}^{e} = -0.0090 \pm 0.0021$ $K_{\text{DET}}^{\mu} = -0.0117 \pm 0.0025$ $w = 0.2314 \pm 0.0014$

Resolution Bias: $\delta \tau = +0.0098 \pm 0.0053 \text{ps}$ $\delta \Delta m = +0.0062 \pm 0.0032 \text{ps}^{-1}$ $\delta \chi = -0.0044 \pm 0.0013$ $\delta w = -0.0016 \pm 0.0010$ 16

B-tag +D-tag fit: true Δz & tagging

 $K_{DET}^{\ \ e} = -0.0098 \pm 0.0013$ $K_{DET}^{\ \ \mu} = -0.0110 \pm 0.0015$ $K_{PHYS}^{\ \ \mu} = 0.0002 \pm 0.0027$ Fit to be improved: $\tau B = 1.563 \pm 0.005$ $\Delta m = 0.523 \pm 0.003$

Conclusions

•Very preliminary results show that the strategy to constrain detector effects in the B-tag sample charge asymmetry by exploiting the D-tag one seems to be reasonable.

•From the results of the fit to the B-tag vs D-tag signal samples in MC run1 (56.4fb-1) one would expect $\delta K_{PHYS}(stat)=0.0019$;

•From the combined B–tag+D–tag fit one gets $\delta K_{PHYS}(stat)=0.0027$, with a

dilution, due to the not perfect separation of the two samples, which reflects in a 0.0019 additional effect.

•From a simple rescaling to the global Run1–Run4 real data statistics one gets: $\delta K_{PHYS}(stat)=0.0014;$

•No systematics computed at the moment, but they should be not so big due to the analysis strategy;

•Fit to be improved in order to obtain a mesurement of τB and Δm