DCH Efficiency and Resolution at high Luminosity M. Margoni, M. Posocco, M. Zancan

July 8, 2003

1

- 1) Summary of Track Results for $L=2*10^{34} \text{ cm}^{-2}\text{s}^{-1}$ and $L=4*10^{34} \text{ cm}^{-2}\text{s}^{-1}$:
- Background Extrapolation versus the Beam Currents
- Charged Track Efficiency and Momentum Resolution
- 2) Bkg Impact on Exclusive Events Reconstruction: $B^0 \rightarrow D^*D^*$ Results:
- D⁰/D* Reconstruction Efficiency, Signal/Noise Ratio
- $m(D^0)$, $m(D^*)$ Resolution

Background Extrapolation vs Beam Current

•Goal: Obtain a Background description in terms of

 $\mathbf{n}_{digi} = N digis/events$ vs $(\mathbf{I}_{HER}, \mathbf{I}_{LER})$ in order to extrapolate the DCH occupancy to high Luminosity.

•Strategy: Use the "Background Runs" (February 2002) with varying beam currents and only one (both) beam(s) in the machine. Use trigger informations to select the "Cyclic Trigger" events sample.

•Single Beam: $\mathbf{n}_{digi} = p\mathbf{1} + p\mathbf{2} * \mathbf{I}$

•Two Beams:

• MC Sample:

10000 B⁺B⁻events were produced with different BKG amount (release 10.3.1a+analysis-13b)

•The average Ndigi/event increases of 154 for each BKG file added

 $\rightarrow N_{BKG \text{ files}} = n_{digi}(extrap.)/154$

•The extrapolation at the Current Luminosity underestimates by 6% the Bkg amount at the current conditions \rightarrow Correction applied.

 $= 3 \pm 1 (L = 2 \times 10^{34}); 5 \pm 2 (L = 4 \times 10^{34})$

•Systematic Error determined from a different n_{digi} parameterization.

N file_{BKG} Ndigi/evento 1400 Ndigi/evento tota digi/evento contribu 12 Ndigi/evento contributo I._ 1200 10 1000 8 800 6 600 4 400 2 200 0 10 20 30 40 50 70 L * 10³³ cm⁻²s⁻¹ Ndigi vs L **Bkg files vs L**

70

L * 10³³ cm⁻²s⁻¹

60

50

•**Track Efficiency** and **Momentum Resolution** in the different Luminosity Scenarious have been computed for each particle species (e, μ , π , K, p) and for each track selection kind (**ChargedTracks, GoodTracksVeryLoose, GoodTracksLoose, GoodTracksTight**) and compared with the current ones:

 Average Efficiency Ratio (%):

 CT
 GTVL
 GTL
 GTT

 L=2*10³⁴/Current
 99.2±.1±4
 99.1±.1±.4
 98.6±.1±.7
 98.3±.1±1.0

 L=4*10³⁴/Current
 98.8±.1±4
 98.7±.1±.6
 97.4±.1±1.0
 97.1±.1±1.0

•Average Momentum Resolution Worsening:

 $\delta P/P (L=2*10^{34}) - \delta P/P(Current L) = 4.2*10^{-5}$

 $\delta P/P$ (L=4*10³⁴) - $\delta P/P$ (Current L) = 5.5*10⁻⁵

Background Impact on Exclusive Event Reconstruction

•Goal: Study the effect of the increasing machine background on the exclusive reconstruction of many tracks-topology events;

•Strategy: Use the B^0 \rightarrow D^*D^* Analysis chain to check the Efficiency and the D^0/D^* invariant mass Resolution in the different Luminosity Scenarious.

(Many thanks to Sergio Grancagnolo + Lorenzo Vitale for providing us their analysis package and very useful imformations!)

•MC Sample:

15000 B0B0bar_DstarDstar_D0D0_exclusive events were produced with different BKG amount (release 12.4.0j + Breco analysis-14) •D* $\rightarrow \pi^* D^0$; D⁰ $\rightarrow K\pi, K3\pi, K\pi\pi^0, Ks2\pi$ (only the K π channel used up to now).

•See BAD 166 for Selection Details.

$D^0 \rightarrow K\pi$ Candidates

π: GTVLK: GTL, no PID

m(D⁰): Gaussian + Straight Background

Lumi	Current	2*10 ³⁴	4*10 ³⁴
s/(s+n) ¹	/2 35	34	33
e ratio(%) –	96.0±.5	95. 5± .5
$\sigma m(D^0)(N)$	1eV) 6.5±.2	6.5±.2	6.4±.2

 $p^{T}\pi^{*} < 200 \text{ MeV}; p^{*}(D^{*}) > 1.3 \text{ GeV};$ Vertex constrained to Beam Spot $m(D^{0})$: Gaussian + flat Background

m(D*) (m(D⁰)=PDG):
2 Gaussians (after BKG subtraction rescaled from m(D⁰) Side Bands)

Lumi	Current	2*10 ³⁴	4*10 ³⁴
s/(s+n) ^{1/}	² 31	28	27
۶ ratio	%) –	84.4±1.1	75.0±1.3
$\sigma m(D^0)(M$	eV) 6.7±.2	7.0±.3	6.9±.3
σm(D*)(M	leV) 0.80 土0	3 0.97土04	1.50 <u>±</u> 08

Conclusions:

•In a high Luminosity Scenario the Track Efficiency is lowered from 1-2% (L=2*10³⁴) to 3-4% (L=4*10³⁴) depending on the particle species and the selection category.

•The Momentum Resolution worsening w.r.t. the Current one was found to be $\Delta = 4.2*10^{-5}$ (L=2*10³⁴); $\Delta = 5.5*10^{-5}$ (L=4*10³⁴)

•The Exclusive Reconstruction of the decay $D^* \rightarrow \pi^*(K\pi)$ shows an Efficiency Reduction ~15%–25% in the two high Luminosity Scenarious respectively;

•The D* Mass Resolution increases from .80 MeV to .97 MeV (L= $2*10^{34}$) and 1.50 MeV (L= $4*10^{34}$)

•The D⁰ Mass Resolution and the signal/noise ratio seem to be unaffected

Next Steps:

•Analisys of the other D⁰ decay channels: D⁰ \rightarrow K3 π , K $\pi\pi^0$, Ks2 π

•Write a BAD with a Summary of the Results.