

LCcal*: a Si-Scintillator hybrid technique for ECAL

TALK SUMMARY • Design Principles

Prototype Description

Construction Details

•Test Beam Results

Conclusions and Future Plans

*LCcal: Official INFN R&D project, official DESY R&D project PRC R&D 00/02 http://www.pd.infn.it/~checchia/lccal/Welcome.html Contributors (Como, ITE-Warsaw, LNF, Padova, Trieste): M. Alemi, A.Anashkin, M. Anelli, J.Marczewski, S. Miscetti, V. Morgunov, B.Nadalut, M. Nicoletto, M. Prest, R. Peghin, L. M.Bettini, S.Bertolucci, E. Borsato, M. Caccia, Paolo Checchia, C. Fanin, M. Margoni, Ramina, F. Simonetto, E. Vallazza

19/5/04

Design principles

From the LC Physics requirements:

high granularity, (Energy Flow)

• $\sigma_E \ \mathrm{O}(10\%/\sqrt{E} + 1\%)$

• longitudinal segment. (e/π) separation

• high density (25-30 X_0 in ~ 50 cm)

working in magnetic field

- Tesla TDR solutions:
- •Si W
- Shashlik (thanks to CALEIDO)
- Alternatives: Cristals
- •Fully compensating Ecal+Hcal

Proposed solution:

Keep SiW advantages (flat geometry, high granularity)

Erec. not from Si but from Scintillator-WLS fibers

Reduce (factor >10) the number of channels

Prototype description

Pb/Sc + Si

•45 layers

 $\cdot 25 \times 25 \times 0.3 \text{ cm}^3 \text{ Pb}$

₹(

 $25 \times 25 \times 0.3$ cm³ Scint.: 25 cells 5×5 cm²

•3 planes:

• 252 0.9×0.9 cm² Si Pads at: 2, 6, 12 X₀

57 27

> Scintillation light transported with WLS σ tail fibers:

Coupled with clear fibers (to PM)

Cell separation with grooves in Sc. plates with Tyvec strips inside (light leakage!?)

Construction Details

45 Layers calorimeter prototype completely built in 2002 Fibres grouped into 25x4 bundles making a 4-fold longitudinal segmentation. Slots for the insertion of the 3 Si pad planes (Motherboard).

Mechanical support for Photomultipliers in the 3X3 central cells \

Martino Margoni IEEE/IMTC04

6

Motherboard design

Si Production details

- 6 sensors per motherboard with serial readout.
- Status of production:
- 24 sensors available I
- 3 motherboards fully and 2 partially equipped I
- Signal routing through Erni connectors

Si Production details

MIP Signal to Noise ratio

19/5/04

Test beam activity

after a 2002 pre test with the 1^{St} layer only (2.1 X_0) at CERN

• two runs at Frascati Beam Test Facility ($n \times 50 - 750$ MeV)

• run at CERN SPS H6 beam line (e/ π 5 – 150 GeV) 1.7, 2.0, 2.3 X₀ it is possible to tune the multeplicity....

All tests: two beam position monitors (telescope) put in front of the calorimeter.

- Each detector consisting of 400×400 x–y Si strips with a pitch of 240 μm
- They cover the central area of the prototype (9.5 \times 9.5 cm²)

,

Test beam results: Comparison with MC

Cern TB 2003

Martino Margoni IEEE/IMTC04

19/5/04

12

Martino Margoni IEEE/IMTC04

14

19/5/04

Test beam results: (e/π rejection)

the redundancy of the information on the linear/lateral shower development makes the rejection very easy

Cern TB 2003

(difficult to quantify below 10^{-3} due to beam contamination)

exhaustive analysis not fully accomplished

Test beam results: Si Pad two particle separation

Martino Margoni IEEE/IMTC04

19/5/04

Conclusions and Future plans

- A calorimeter prototype with the proposed technique has been built and fully tested. All the results are preliminary.
- σE/E ~11.–11.5% /√E, σ_{pos} ~2 mm (@ 30 GeV) **Energy and position resolution as expected:**
- Light uniformity acceptable ~ 2%.
- e/ π rejection very good (<10⁻³).
- **Detector response during test beam under detailed** study (preliminary to the particle separation).
- following this technique into the general LC simulation optimisation (MC). Include a calorimeter made Next steps: study geometrical-construction and Pattern recognition.
- Combined test with Hcal (?)

backup

Soft breakdown

- Bias current
 reasonable (few μA)
- Strange shape with a "soft" breakdown
- n+ or metal shallow impurities on the backplane

Solution 1: replace the implanted backside contact with a diffused one, but it does not work! Solution 2: replace the mesh backplane contact with a uniform one, it works!

"Leaky" pads: a surface effect

- No pin holes in SiO₂
- Surface leakage
 residua of polysilicon after the etching of the polysilicon layer
 - Equivalent circuit with two opposite diodes.

Yield

Quite uniform behaviour of the depletion voltage

Test beam results CALORIMETER (2.1 X₀)

4 layers

m.i.p.?check light output and uniformity in Light collection:

Ratio signal/sigma ?lower limit for photoelectrons

