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Chapter 1

Chapman-Kolmogorov equation
for continuous paths:
Fokker-Planck equation

If we consider just Markov processes generating continuous paths we have to assume that all the
jump probabilities are zero i.e.

w(x′, t|x, t) = 0 (1.1)

In this case we get the partial differential equation:

∂tp(x
′, t|x0, t0) =

N
∑

m=1

(−1)m
∂m

∂x′m

[

D(m)(x′, t)p(x′, t|x0, t0)
]

(1.2)

This is what is called the Kramers-Moyal expansion and D(m)(x′, t) are the Kramers-Moyal coeffi-
cients. In general, all Kramers-Moyal coefficients are non-zero. However, there is a theorem due to
Pawula [3] which states that for a positive transition probability p(x, t|x0, t0), the expansion (1.2)
may stop either after the first term or after the second term. If, on the other hand, it does not
stop after the second term it must contain an infinite number of terms. In the words of Pawula,
”it is logically inconsistent to retain more than two terms in Kramers-Moyal expansion unless all
of the terms are retained. If this is the case, the Kramers-Moyal expansion reduces to the so called
Fokker-Planck equation:

∂tp(x
′, t|x0, t0) = (−1)

∂

∂x′

[

D(1)(x′, t)p(x′, t|x0, t0)
]

+
∂2

∂x′2

[

D(2)(x′, t)p(x′, t|x0, t0)
]

. (1.3)

Remark. It can be shown that, for a continuous Markov process, the Kramers-Moyal coefficients
of order 3 and higher are zero and the K-M expansion reduces to the Fokker-Planck equation.

Remark. Remember that, from the definition of w(x|x′, t) the assumption of continuity for the
paths x(t) is satisfied when w(x|x′, t) = 0. Hence, the Fokker-Planck equation describes processes
that have continuous paths.

The FP equation can be written as

∂p(x, t|x0, t0)

∂t
= L̂FP p(x, t|x0, t0) (1.4)

where L̂FP(x, t) is the differential operator

L̂FP (x, t) = − ∂

∂x
D(1)(x, t) +

∂2

∂x2
D(2)(x, t) . (1.5)
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Remark. 1. The F-P equation is defined by the drift term D(1)(x, t) that characterizes a
ballistic motion, and by the diffusion term D(2)(x, t) characterizing a diffusive motion.

2. The F-P equation is said to be linear if the drift and diffusion term do not depend explicitly
of time and if

D(1)(x, t) = D(1)(x) = D
(1)
1 +D

(1)
2 x, D(2)(x, t) = D(2)(x) = D2. (1.6)

If, on the other hand D(2)(x) = D2 but D(1)(x) is non linear, one has a almost-linear F-P
equation. We will see that, if the equation is linear, the solution is Gaussian. (The notion
of linearity is here related to the properties of D(1) and D(2) since the F-P equation itself is
always linear with respect to p(x, t|x0, t0).

3. A solution of the F-P equation with the initial condition p(x, t = t0|x0, t0) = δ(x− x0) (non
random initial condition) is called fundamental solution and gives the transition probability
of the diffusive Markov process. In order to determine completely the process we need to
define the one-point distribution function p(x, t) and average over the initial conditions.
Indeed by the linearity of the F-P equation we will have

p(x, t) =

∫

R

dx0p(x0, t0)p(x, t|x0, t0). (1.7)

Clearly
p(x, t) |t=t0 = p(x, t0). (1.8)

If we take the time derivative of eq. (1.7) we have

∂

∂t
p(x, t) =

∫

R

dx0p(x0, t0)
∂

∂t
p(x, t|x0, t0). (1.9)

and by using the FK equation for p(x, t|x0, t0) we get:

∂

∂t
p(x, t) =

∫

R

dx0

{

L̂FP (x, t)p(x, t|x0, t0)
}

p(x0, t0)

= L̂FP (x, t)

∫

R

dx0p(x, t|x0, t0)p(x0, t0)

= L̂FP (x, t)p(x, t). (1.10)

Hence, also the one point density function p(x, t) satisfies the F-P equation with initial
condition

p(x, t) |t=t0 = p(x, t0) (1.11)

that comes from the limit

p(x, t) |t=t0 = lim
t→t0

∫

R

dx0p(x, t|x0, t0)p(x0, t0) =

∫

R

dx0δ(x− x0)p(x0, t0) = p(x, t0). (1.12)

Definition (Stationary distribution). A distribution is called stationary, and denoted by ps(x, t),
if

∂

∂t
ps(x, t) = 0 ∀x ∈ Ω. (1.13)

If a stationary distribution ps(x, t) exists, then it will be a solution of the equation

∂

∂x

(

D(2)(x)ps(x)
)

= D(1)(x)ps(x). (1.14)

One says that the distribution converges to the stationary distribution for sufficiently large times
if

lim
t→∞

p(x, t) = ps(x) (1.15)
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1.0.1 Multidimensional case

In the case of multidimensional Markov Processes in which the random variable ξ is a vector ~ξ the
variable x′ becomes a vector that we denote as

~z(t) = {z1(t), · · · , zM (t)} (1.16)

and the CK differential equation becomes:

∂t p(~z, t|~z0, t0) =

−
∑

i

∂

∂zi

[

D
(1)
i (~z, t)p(~z, t|~z0, t0)

]

+
∑

i,j

∂2

∂zi∂zj

[

D
(2)
ij (~z, t)p(~z, t|~z0, t0)

]

+

∫

PV
d~z
[

w(~z, t|~z′, t)p(~z, t|~z0, t0)− w(~z′, t|~z, t)p(~z′, t|~z0, t0)
]

(1.17)

Again, for continuous paths ~z(t), w(~z, t|~z′, t) = w(~z′, t|~z, t) = 0 and one ends up with the multidi-
mensional F-P equation:

∂t p(~z, t|~z0, t0) =

−
∑

i

∂

∂zi

[

D
(1)
i (~z, t)p(~z, t|~z0, t0)

]

+
∑

i,j

∂2

∂zi∂zj

[

D
(2)
ij (~z, t)p(~z, t|~z0, t0)

]

(1.18)

where the drift term D(1)(~z, t) is now a vector and the diffusive term D(2)(~z, t) is a semidefinite
positive and symmetric matrix.

1.0.2 Deterministic process: Liouville equation

If the diffusion term D(2)(~z, t) is identically zero, the F-P equation reduces to the special case of
a Liouville equation

∂tp(~z, t|~z0, t0) = −
∑

i

∂

∂zi

[

D
(1)
i (~z, t)p(~z, t|~z0, t0)

]

(1.19)

that one has in classical statistical mechanics. This equation describes a completely deterministic
motion. Indeed, if ~x(~x0, t) is the solution of the ordinary differential equation

d~x(t)

dt
= D(1) [~x(t), t] (1.20)

with ~x(~x0, t) = ~x0, the solution of eq. (1.19) with initial condition p(~z, t0|~x0, t0) = δ(~z − ~x0) is

p(~z, t|~x0, t0) = δ [~z − ~x(~x0, t)] . (1.21)

This can be easily seen by a direct insertion of the solution (1.21) in equation (1.19). Indeed, the
drift term becomes

−
∑

i

∂

∂zi

{

D
(1)
i (~z, t)δ [~z − ~x(~x0, t)]

}

= −
∑

i

{

D
(1)
i (~x(~x0, t), t)

∂

∂zi
δ [~z − ~x(~x0, t)]

}

(1.22)

On the other hand, the left hand side gives:

∂

∂t
δ [~z − ~x(~x0, t)] = −

∑

i

∂

∂zi
δ [~z − ~x(~x0, t)]

d~x(~x0, t)

dt
(1.23)

and since
d~x(t)

dt
= D(1) [~x(t), t] (1.24)

we have that the left hand side of the Liouville equation is equal to its right hand side.
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Remark. The fact that the F-P equation has the Liouville equation as a particular case is not
surprising given that a deterministic process is a particular case of a continuous Markov process.

1.1 From Langevin to Fokker-Planck equation

It is possible to show that there exists a relation between the description of the fluctuations by
using a Langevin equation and the one by the Fokker-Planck. In a very general settings we can
say that, from a physics point of view, the evolution equation is governed by the deterministic
differential equation

d

dt
x(t) = F (t, x(t)). (1.25)

If, in addition, the system is subjected to random perturbations whose scales of variations are much
more rapid than the characteristic times of the evolution x(t), it is natural to use a Langevin kind
of model in which a white noise is added to the deterministic equation:

d

dt
x(t) = F (t, x(t)) + f(t), 〈f(t1)f(t2)〉 = Γδ(t1 − t2). (1.26)

The parameter Γ will be determined by the physics of the problem. In order to establish the
corresponding Fokker-Planck equation we have to determine the drift term D1 and the diffusion
term D2. This can be done by computing the moments of the variable x starting from x0 at time
t0 directly from the Langevin equation. Those moments will be then identified with the definitions

D(m)(x′, t) ≡ 1

m!
lim

∆t→0

1

∆t

∫

R

dx(x− x′)mp(x, t+∆t|x′, t)

=
1

m!
lim

∆t→0

1

∆t
E{(x(t+∆t)− x(t))m|x(t) = x′}. (1.27)

Let us consider the finite difference version of eq. (1.26)

∆x(t) ≡ x(t+∆t)− x(t) = F (t, x(t))∆t+ Γ1/2∆W (t) (1.28)

where ∆W (t) = W (t+∆t)−W (t) are increments of the Wiener process. By using the properties
E{∆W (t)} = 0, E{(∆W (t))2} = ∆t and the independence of the increments ∆W (t) one obtains:

E{F (t, x(t))∆t|x(t) = x′} = E{F (t, x(t))|x(t) = x′}∆t = F (t, x′)∆t; (1.29)

E{Γ1/2∆W (t)|x(t) = x′} = Γ1/2
E{∆W (t)|x(t) = x′} = Γ1/2

E{∆W (t)} = 0; (1.30)

E{Γ(∆W (t))2|x(t) = x′} = ΓE{(∆W (t))2|x(t) = x′}
= ΓE{(∆W (t))2} = Γ∆t. (1.31)

By using the above relation one gets

E{∆x(t)|x(t) = x′} = E{F (t, x(t))∆t+ Γ1/2∆W (t)|x(t) = x′} = F (t, x′)∆t; (1.32)

and

E{(∆x(t))2 | x(t) = x′}
= E{F 2(t, x(t))(∆t)2 + 2F (t, x(t))Γ1/2∆t∆W (t) + Γ(∆W (t))2|x(t) = x′}
= Γ∆t+O

(

(∆t)2
)

. (1.33)

Hence

D(1)(x′, t) = lim
∆t→0

1

∆t

∫

dx(x− x′)p(x, t+∆t|x′, t)

= lim
∆t→0

1

∆t
E{∆x(t)|x(t) = x′} = F (t, x′); (1.34)
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and

D(2)(x′, t) = lim
∆t→0

1

∆t

1

2

∫

dx(x− x′)2p(x, t+∆t|x′, t)

=
1

2
lim

∆t→0

1

∆t
E{(∆x(t))2|x(t) = x′} =

Γ

2
; (1.35)

The corresponding Fokker-Planck equation becomes:

∂

∂t
p(x, t|x0, t0) = − ∂

∂x
(F (x, t)p(x, t|x0, t0)) +

Γ

2

∂2

∂x2
p(x, t|x0, t0). (1.36)

Example (Ornstein- Uhlenbeck process). Let us consider as an example the 1D dynamic the
dynamic evolution of the velocity field for a mesoscopic particle in a fluid. As we have seen before
the Langevin equation of this problem is given by:

dv

dt
= −γv(t) +

1

m
F (t), with 〈F (t)〉 = 0, 〈F (t1)F (t2)〉 = σ2δ(t1 − t2). (1.37)

Following the procedure of the previous section one gets:

D(1)(v, t) = D(1)(v) = −γv, D(2)(v, t) = D =
σ2

2m2
(1.38)

and the associated Fokker-Planck equation becomes

∂

∂t
p(v, t|v0, t0) = − ∂

∂v
[(−γv) p(v, t|v0, t0)] +

σ2

2m2

∂2

∂v2
p(v, t|v0, t0). (1.39)

1.1.1 Smoluchowski equation for the position: adiabatic elimination of
the velocity process

Let us consider the motion of a mesoscopic particle in a fluid and in presence of an external force
field F (x). In the one dimensional case the deterministic motion is described by the equations

dx

dt
= v(t)

dv

dt
= −γv(t) + F (x)/m. (1.40)

In the limit of very viscous fluid (strong friction limit) the inertial force dv/dt is much smaller
than the frictional force −γv. In this limit the velocity is a dumped variable whose variations
occur in time intervals that are very small with respect to the ones over which the position varies
in an appreciate way. We can then neglect the inertial term dv/dt in the equations, i.e.

dx

dt
= v(t)

v(t) =
F (x)

γm
(1.41)

In this approximation the fast variable v relaxes very rapidly and it follows almost instantaneously
the slow variable x. One usually says that v is the slave variable of the order parameter x. The
deterministic equation reduces to

dx

dt
=

F (x(t))

γm
. (1.42)

We can perform a similar approximation for the stochastic version of the motion:

∆x = v(t)∆t

∆v(t) = −γv(t)∆t+ (F (x)/m)∆t+
σ

m
∆t1/2∆Ŵ (1.43)
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giving

v(t) =
F (x)

mγ
+

σ

γm
∆t−1/2∆Ŵ (1.44)

and the overdamped Langevin equation

∆x(t) =
F (x(t))

γm
∆t+

σ

γm
∆Ŵ (t) (1.45)

where ∆W (t) are the increments of a Wiener process. In this case D(1)(x, t) = F (x(t))
γm and

D(2)(x, t) = σ2/(2γ2m2) and the Fokker-Planck equation for the random variable x:

∂

∂t
p(x, t|x0, t0) = − ∂

∂x

[

F (x)

γm
p(x, t|x0, t0)

]

+
σ2

2γ2m2

∂2

∂x2
p(x, t|x0, t0). (1.46)

This equation is known as the Smoluchowski equation. Note that for F (x) = 0 the Smoluchowski
equation simplifies to:

∂

∂t
p(x, t|x0, t0) =

σ2

2γ2m2

∂2

∂x2
p(x, t|x0, t0). (1.47)

that describes a diffusion process for the variable x (Einstein’s). This is the so-called diffusion

equation also known as Fick’s equation when usually p(x, t) is replaced by concentrations.

Note. The approximation we have used above at the level of the deterministic equation is known
as direct adiabatic elimination. In general this is a quite rough approximation and one can doubt
about its validity in presence of a stochastic term. One indeed has to be careful in using it and
the best way to do it is, in general, at the level of Fokker-Plack equation. In the case explained
above, for example, Kramers has shown rigorously that it is possible to obtain the Smoluchowski
equation as a high viscosity limit of the Fokker Planck equations for the two variables (x, v), i.e.,
the so called Kramers equations (Ref. TODO)

1.1.2 Fokker-Planck equation for the 2D (x, v) process.

If the stochastic Markov diffusive process considered is a n-component vector ~z(t) = (z1(t), z2(t), · · · , zn(t))
process we have seen that the one dimensional Fokker-Planck equation generalizes to

∂tp(~z, t|~z0, t0) =

−
∑

i

∂

∂zi

[

D(1)(~z, t)p(~z, t|~z0, t0)
]

+
∑

i,j

∂2

∂zi∂zj

[

D
(2)
ij (~z, t)p(~z, t|~z0, t0)

]

(1.48)

where D(1)(~z, t) is a vector and D(2)(~z, t) a semidefinite positive and symmetric matrix. Perhaps
the simplest vectorial stochastic process is related to the one dimensional motion of a mesoscopic
particle in a fluid. The motion is described by the position x and by the velocity v of the mesoscopic
particle. Since x and v are obviously coupled and they are both stochastic we can see the whole
process as a bidimensional stochastic process ~z(t) = (x(t), v(t)) whose Langevin equation is given
by:

∆x(t) = v(t)∆t

∆v(t) = [−γv(t) + F (x(t))/m] ∆t+
σ

m
∆t1/2∆Ŵ (t). (1.49)

In order to establish the corresponding Fokker Planck equation one has to determine the vector

D(1)(~z, t) =

(

D
(1)
x (x, v, t)

D
(1)
v (x, v, t)

)

(1.50)
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and the matrix

D(2)(~z, t) =

(

D
(2)
xx (x, v, t) D

(2)
xv (x, v, t)

D
(2)
vx (x, v, t) D

(2)
vv (x, v, t)

)

(1.51)

with D
(2)
vx (x, v, t) = D

(2)
xv (x, v, t). By following the method presented above we can say that, as

t → t0

E{∆x(t)|x(t) = x′, v(t) = v′} = v′∆t (1.52)

E{∆v(t)|x(t) = x′, v(t) = v′} =

(

−γv′ +
F (x′)

m

)

∆t+O
(

(∆t)2
)

(1.53)

E{(∆x(t))
2 |x(t) = x′, v(t) = v′} = (v′∆t)

2
= O

(

(∆t)2
)

(1.54)

E{∆x(t)∆v(t)|x(t) = x′, v(t) = v′} = v′
(

−γv′ +
F (x′)

m

)

(∆t)2 (1.55)

E{(∆v(t))
2 |x(t) = x′, v(t) = v′} =

σ2

m2
∆t+O

(

(∆t)2
)

. (1.56)

Dividing by ∆t and letting ∆t → 0 we get

D(1)
x (x, v, t) = v

D(1)
v (x, v, t) = −γv +

F (x)

m

D(2)
xx (x, v, t) = 0

D(2)
vv (x, v, t) =

σ2

2m2

D(2)
xv (x, v, t) = 0. (1.57)

The 2D Fokker-Planck equation is then

∂tp(x, v, t|x0, v0, t0) =

− ∂

∂x
[vp(x, v, t|x0, v0, t0)]−

∂

∂v

[(

F

m
− γv

)

p(x, v, t|x0, v0, t0)

]

+
σ2

22
∂2

∂v2
[p(x, v, t|x0, v0, t0)] (1.58)

In general F (x) = −∂U
∂x .

Remark. If we rewrite the above equation as:

∂tp(x, v, t|x0, v0, t0) + v
∂

∂x
p(x, v, t|x0, v0, t0) +

F (x)

m

∂

∂v
p(x, v, t|x0, v0, t0)

= γ

(

∂

∂v
(vp(x, v, t|x0, v0, t0)) +

σ2

2γm2

∂2

∂v2
p(x, v, t|x0, v0, t0)

)

(1.59)

one can notice that it has a structure typical of a kinetic equation, i.e. of the form

∂tp(x, v, t|x0, v0, t0) + v
∂

∂x
p(x, v, t|x0, v0, t0) +

F (x)

m

∂

∂v
p(x, v, t|x0, v0, t0) = Ip(x, v, t) (1.60)

where the linear operator Ip(x, v, t) is a collision operator that represents the effects of the collisions
of the mesoscopic particle with its environment. If Ip(x, v, t) = 0 the knowledge of the flux of the
system of differential equations ẋ(t) = v(t), mv̇(t) = F (x(t)) allows to solve the FP equation.
Indeed by taking ω = (x, v), t → φ0(ω0, t) = ω(t) as a trajectory with initial condition ω0 and
P (ω0) the distribution of the initial conditions ω0, the distribution at times t defined as

P (ω, t) =

∫

R2

dω0P (ω0)δ(ω − φ(ω0, t)) = P
(

φ−1(ω, t)
)

(1.61)
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can be shown to verify the equation

∂

∂t
P (ω, t) + v

∂

∂x
P (ω, t) +

F (x)

m

∂

∂v
P (ω, t) = 0. (1.62)

For Ip(x, v, t) 6= 0 equation (1.58) cannot be resolved analytically in its generality and one has to
rely on some approximations suggested by the physical problem under investigation.

1.1.3 Kramer’s model

Historically, the 2D Fokker- Planck equation of the form given in (1.58) was first introduced by
Kramers in 1940 to study the kinetic of the chemical reactions [4]. It is also a good starting point
to study the problem of the transitions between two minima of a double- well potential. Let us
consider the following system of equations:

dx

dt
= v(t)

dv

dt
= −λv(t)− dU(x)

dx
+ F (t) (1.63)

where F (t) is the usual white noise force. This model described, for example, the Brownian
motion of a particle in a fluid that experiences a potential U(x). Suppose to consider a double
well potential .i.e. a potential having two minima in, say, xA and xB and a maximum in xC with
xA < xC < xB . With this kind of potential the system (1.63) can describe chemical reactions
where the value of the abscissa (x) represents the reaction coordinate. The reaction would then
correspond to the transition between the well of the reagents (A) and the well of products (B).
This is the so called Kramers model whose Fokker-Planck equation is given by

∂tp(x, v, t|x0, v0, t0) =

− ∂

∂x
[vp(x, v, t|x0, v0, t0)]−

∂

∂v

[(

−dU

dx
− λv

)

p(x, v, t|x0, v0, t0)

]

+D
∂2

∂v2
p(x, v, t|x0, v0, t0) (1.64)

For U(x) = ax2 + bx4 eq. (1.64) is non linear and an analytical solution is hopeless. A first
simplification can be performed in the limit of high viscosity i.e. when v(t) relaxes more rapidly
than x(t). We can then use the adiabatic elimination of the variable v by putting dv/dt = 0 is the
second equation. This gives

dx

dt
= − 1

λ

dU

dx
+

1

2
F (t) (1.65)

As before, the corresponding Fokker Planck equation would be a Smoluchowski equation :

∂tp(x, t|x0, t0) +
∂

∂x

(

− 1

λ

dU

dx
p(x, t|x0, t0)

)

=
D

λ2

∂2

∂x2
p(x, t|x0, t0). (1.66)

We will see later how to compute the stationary solution of this equation in the case of double
well potential.

1.2 Probability current and probability conservation law.

It is interesting to rewrite the Fokker-Planck equation as a continuity equation for the probability
density p(x, t). Let us focus on the one dimensional case. From remark (1) we know that the FP
equation can be written as

∂p(x, t|x0, t0)

∂t
= L̂FP p(x, t|x0, t0) (1.67)
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where L̂FP is the differential operator

L̂FP = − ∂

∂x
D(1)(x, t) +

∂2

∂x2
D(2)(x, t). (1.68)

The initial condition is
lim
t→t0

p(x, t|x0, t0) = δ(x− x0). (1.69)

The FP can be written also for the one point probability density p(x, t)( see remark (1):

∂p(x, t)

∂t
= L̂FP p(x, t) (1.70)

with initial condition
p(x, t)|t=t0 = p(x, t0). (1.71)

In analogy with what one does for the Schrodinger equation, eq. (1.70) can be written as

∂p(x, t)

∂t
+

∂

∂x
j(x, t) = 0 (1.72)

where

j(x, t) =

[

D(1)(x, t)− ∂

∂x
D(2)(x, t)

]

p(x, t). (1.73)

Eq. (1.72) is in the form of a continuity equation for the probability density p(x, t) where j(x, t)
is the probability current. Indeed if we integrate equation (1.72) for x ∈ [a, b] we get:

∂

∂t

∫ b

a

p(x, t)dx = −
∫ b

a

∂

∂x
j(x, t)dx = j(a, t)− j(b, t) (1.74)

i.e. a change in probability density in the interval [a, b], is compensated by a change of flux in
that region.

The above argument can be generalized to the Fokker-Planck equation of several variables

∂

∂t
p(~z, t|~z0, t0) = L̂FP (~z, t)p(~z, t|~z0, t0), (1.75)

where

L̂FP (~z, t) = −
n
∑

i=1

∂

∂zi
Di(~z, t) +

∑

ij

∂2

∂zi∂zj
Dij(~z, t). (1.76)

In this case the continuity equation becomes

∂

∂t
p(~z, t) + ~∇ ·~j = 0 (1.77)

where

ji(~z, t) = D
(1)
i (~z, t)p(~z, t)−

∑

j

∂

∂zj
D

(2)
ij (~z, t)p(~z, t) (1.78)

As for the 1D case, the local form of the continuity equation has an integral counterpart that can
be obtained in the following way. Let Ω be the domain of integration (where the stochastic process
lives) whose boundary is given by ∂Ω. The n dimensional version of equation (1.74) is then

∂

∂t

∫

Ω

p(~z, t)d~z = −
∫

∂Ω

n̂ ·~j(~z, t)dS (1.79)

where n̂ is the unit normal to the boundary ∂Ω (pointing out). If the probability current vanishes
on the ∂Ω, the continuity equation implies that the total probability remains constant (in time)
inside the boundary. If p(~z, t) is then normalized at time t = t0, it will remain so for any later
times, i.e,

∫

Ω

p(~z, t)d~z = 1 ∀t > t0. (1.80)
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1.3 Boundary conditions for the Fokker-Planck equation

The continuity equation in its integral form (eq. (1.74) and eq. (1.79)) suggests that, in order to
have a well defined problem, boundary conditions (BC) for the Fokker-Planck equation have to
be specified. Let us consider first the 1D case. Different BC can be taken into account

1. Natural boundary conditions In this case the process is defined on R and the condition is
the one in which the probability current vanishes at the boundaries x = xmin = −∞ and
xmax = +∞. This would imply the conservation of the normalization for p(x, t) since

∫ +∞

−∞
p(x, t)dx = const. (1.81)

Clearly the decay must be sufficiently rapid to ensure the normalization of the integral above.

2. Reflecting boundary conditions For a reflecting boundary condition at x = a the flux at
a must be zero

j(a, t) = 0 ∀t. (1.82)

This gives:

D(1)(a, t)p(a, t)− ∂

∂x
D(2)(x, t)p(x, t)

∣

∣

∣

∣

x=a

= 0 ∀t (1.83)

Note that the natural boundary conditions can be seen as a particular case of reflecting BC.
A physical example is the case of a Brownian particles near an impenetrable wall at x = a.

3. Absorbing boundary conditions An absorbing wall at x = a means that the particles are
removed from the interval (−∞, a] as soon as they first hit x = a. This can occur for
example when a chemical reaction at the wall causes molecule to be absorbed or changed to
a different chemical species. Another more mathematical reason of using absorbing BC is
when one is interested in looking at the first passage time of a process as we will see later.
The appropriate BC for an absorbing wall at x = a is

p(a, t) = 0 ∀t (1.84)

i.e. there is a zero probability of finding particles at the wall, since they are immediately
absorbed.

The above classification can be easily generalized to the multidimensional case of eq. (1.79). For
example for natural boundary conditions ~j vanishes at infinity giving

∫

Rn

p(~z, t)d~z = 1 ∀t > t0. (1.85)

An example of reflecting boundary in two dimensions (~z = (x, y)) could be the following. Suppose
there is an impenetrable wall at y = a. Writing n̂ as the (outward) unit normal vector at the wall,
the no flux condition becomes

n̂ ·~j = 0 (1.86)

i.e. (in components)

[

nxDx(~z, t)p(~z, t) + nxDx(~z, t)p(~z, t)

− nx

(

∂

∂x
Dxx(~z, t)p(~z, t) +

∂

∂y
Dxy(~z, t)p(~z, t)

)

− ny

(

∂

∂x
Dyx(~z, t)p(~z, t) +

∂

∂y
Dyy(~z, t)p(~z, t)

)]

y=a

= 0 (1.87)
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1.4 Stationary solutions of the Fokker-Planck equation

We now exploit how the Fokker-Planck equation can be applied to compute the probability den-
sity distribution of some Markovian process. Before facing the problem of calculating the time
dependence solution one can first focuss on finding the long time limit solution i.e. the stationary
solution of the process. This is defined as the probability density ps that satisfies

∂

∂t
ps(x, t|x0, t0) = 0. (1.88)

Let us first consider homogeneous Markov processes.

1.4.1 Homogeneous case with reflecting boundary conditions on a finite
domain

For homogeneous Markov diffusive processes, D(1)(x, t) and D(2)(x, t) do not depend explicitly on
time i.e.

D(1)(x, t) = D1(x), D(2)(x, t) = D2(x). (1.89)

In this case eq. (1.88), specialized to the one-point probability density p(x, t), becomes

d

dx
[D1(x)ps(x)]−

d2

dx2
[D2(x)ps(x)] = 0 (1.90)

that, written as a continuity equation becomes:

djs(x)

dx
= 0 with js(x) =

[

D1(x)−
d

dx
D2(x)

]

ps(x) (1.91)

The obvious solution is js(x) = const ≡ j∗, ∀x. Clearly, if the process occurs within an interval
[a, b], we have :

js(a) = js(b) = j∗ (1.92)

Suppose, for example, that one of the BC (say a) is reflecting. This means zero flux trough the
surface x = a implying js(a) = 0. On the other hand, from eq. (1.92) js(a) = js(b) = j∗ implying
js(b) = 0. Hence,

js(x) = 0 ∀x ∈ [a, b]. (1.93)

From (1.91) one gets

D1(x)ps(x) =
d

dx
[D2(x)ps(x)] . (1.94)

By rewriting the left hand side of the above equation as D1(x)
D2(x)

D2(x)ps(x) one ends up with a

differential equation of the form

dg

dx
= A(x)g(x) where g(x) = D2(x)ps(x) and

D1(x)

D2(x)
= A(x) (1.95)

whose formal solution is g = e
∫
A(x)dx i.e.

ps(x) =
N0

D2(x)
exp

(
∫ x

a

D1(x
′)

D2(x′)
dx′
)

≡ N0e
−Φ(x). (1.96)

It is important to stress that eq. (1.96) is valid only when the boundary x = a is reflecting. The
normalization constant N0 is chosen to satisfy

∫ b

a

ps(x)dx = 1. (1.97)
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Eq. (1.96) is often called potential solution since one introduces the notion of potential as:

Φ(x) = lnD2(x)−
∫ x

a

D1(x
′)

D2(x′)
dx′. (1.98)

Let us know consider some examples in which solution (1.96) occurs.

1.4.2 Examples

Ornstein-Uhlenbeck process The Langevin equation for the random velocity v(t) is

∆v(t) = −γv(t)∆t+ σ∆W (t) (1.99)

and the linear operator L̂FP is obtained from the relations

D1(v) = −γv, D2(v) =
σ2

2
. (1.100)

From eq. (1.96) the stationary solution is then given by

ps(v) =
2N0

σ2
exp

(
∫ v

va

dv′
(

−2γv′

σ2

))

=
2N0

σ2
exp

[

− γ

σ2
(v2 − v2a)

]

= N exp

(

−γv2

σ2

)

. (1.101)

Note. If γ > 0 the stationary solution ps(v) can be normalized on (−∞,+∞) since

N
∫ +∞

−∞
exp

(

−γv2

σ2

)

dv = N
√

π

γ
σ2. (1.102)

and by assuming σN
√

π
γ = 1 one gets

N =

√

γ

πσ2
. (1.103)

In this respect the boundary conditions are the natural ones and the stationary solution
exists laos for the process defined in R.

The normalized solution is then

ps(v) =

√

γ

πσ2
exp

(

−γv2

σ2

)

. (1.104)

Remembering the relation σ2 = 2γ2D one gets

ps(x) =

√

1

2πγD
exp

(

− v2

2γD

)

. (1.105)

or, since D = kbT/mγ ,

ps(v) =

√

m

2πkbT
exp

(

− v2m

2kbT

)

Maxwell distribution. (1.106)
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Note. Clearly, if γ < 0 a stationary solution does not exist any more in R since, in order to
have a normalizable solution, the interval (a, b) must be finite.

Brownian motion in presence of an external force: the over-damped limit. We have pre-
viously seen that if the damping coefficient γ is sufficiently big, the velocity variable can be
considered essentially as a slave variable and the system of two equations can be reduced to
a single Langevin equation for the position, i.e.,

∆x(t) =
F (x)

mγ
∆t+

σ

γ
∆W (t). (1.107)

In the Fokker-Planck picture this corresponds to

D1(x) = F (x)/mγ, D2(x) = σ2/(2γ2). (1.108)

giving the Smoluchowky equation (see eq. 1.46)

∂

∂t
p(x, t) = − ∂

∂x

[

F (x)

mγ
p(x, t)

]

+
σ2

2γ2

∂2

∂x2
p(x, t). (1.109)

From eq. (1.96) the stationary solution becomes

ps(x) =
2N0

σ2
exp

(

2γ

mσ2

∫ x

a

F (x′)dx′
)

. (1.110)

Clearly an explicit solution would depend on the form of the function F (x). A simple
example is the problem of a

Brownian particle moving in a gravitational field. In this case F = −mg and the integra-
tion in (1.110) is trivial and one obtains

ps(x) =
2γ2N0

σ2
exp

(

−2gγ

σ2

∫ x

a

dx′
)

= N exp

(

−2gγ(x− a)

σ2

)

. (1.111)

This solution can be normalized on (a, b) only if a is finite, although b can be infinite.

Note. Eq. (1.111) simply says that particles diffusing, for example, in a glass of fluid will
eventually fall down and if the glass is infinitely deep they never will stop (no existence of
ps(x)).

Force field from a potential A very interesting case is when the force field is related to a scalar
potential, i.e., in the case ~F (~r) = −~∇U(~r) (i.e. to force field for which ~∇× ~F = 0). For the
one dimensional case the starting point is eq. 1.110 that for conservative forces simplifies to

ps(x) =
2γ2N0

σ2
exp

(

− 2γ

mσ2
(U(x)− U(a))

)

= N exp

(

− 2γ

mσ2
U(x)

)

. (1.112)

Is important to notice that eq. (1.112) is the result of the condition j(x, t) = 0, that corre-
sponds to the equilibrium condition. In this respect we should expect that the fluctuation
dissipation relation mσ2 = 2κBTγ holds. Inserting this relation in eq. (1.112) we get

ps(x) = N e−βU(x), (1.113)

i.e. the expected equilibrium Boltzmann distribution. In general we can say that if p0(~r) =
N exp[−βU(~r)] is the equilibrium distribution with corresponding probability density current

~j(~r) =

(

∇D(~r)−
~F (~r

mγ

)

N exp[−βU(~r)], (1.114)



14 Chapman-Kolmogorov equation for continuous paths: Fokker-Planck equation

(where we have also considered the more general case of a diffusion diffusion coefficient
depending on ~r), the equilibrium condition becomes

(

~∇D(~r)−
~F (~r)

mγ

)

N exp[−βU(~r)] = 0. (1.115)

By using the identity ~∇D(~r) exp[−βU(~r)] = exp[−βU(~r)]
(

~∇D(~r) + β ~F (~r)
)

we have

e−βU(~r)

(

D(~r)β ~F (~r) + ~∇D(~r)−
~F (~r)

mγ

)

= 0 (1.116)

and finally
~∇D(~r) = ~F (~r)

(

(mγ)−1 −D(~r)β
)

, (1.117)

that is a more general version of the fluctuation-dissipation theorem. In the form given by
(1.117) the fluctuation-dissipation relation allows to reformulate the Fokker-Planck equation
as follows. For an arbitrary function f(~r) the following identity holds

~∇ · ~∇D(~r)f(~r) = ~∇ ·D(~r)~∇f(~r) + ~∇ · f(~r)~∇D(~r)

= ~∇ ·D(~r)~∇f(~r) + ~∇ · ~F (~r)

(

1

γm
−D(~r)β

)

f(~r). (1.118)

where we have used eq. (1.117) for the second line. Since f(~r) the above identity holds also
for the probability distribution p(~r, t|~r0, t0). This identity, once inserted in the Fokker-Planck
equation gives

∂tp(~r, t|~r0, t0) = ~∇ ·D(~r)~∇p(~r, t|~r0, t0) + ~∇ · ~F (~r)

(

1

γm
−D(~r)β

)

p(~r, t|~r0, t0)− ~∇ · F (~r)

γm
p(~r, t|~r0, t0)

= ~∇ ·D(~r)~∇p(~r, t|~r0, t0)− ~∇ ·
(

~F (~r)D(~r)βp(~r, t|~r0, t0)
)

= ~∇ ·D(~r)
(

~∇− β ~F (~r)
)

p(~r, t|~r0, t0) (1.119)

If we now consider ~F (~r) = −~∇U(~r) we can finally write

∂tp(~r, t|~r0, t0) = ~∇ ·D(~r)
(

~∇+ β~∇U(~r)
)

p(~r, t|~r0, t0)

= ~∇ ·D(~r)
(

e−βU(~r)~∇eβU(~r)
)

p(~r, t|~r0, t0), (1.120)

where the second line is obtained by the identity

~∇eβU(~r)p(~r, t|~r0, t0) = eβU(~r)~∇p(~r, t|~r0, t0) + βeβU(~r)~∇U(~r)p(~r, t|~r0, t0) (1.121)

when is multiplied from the left by e−βU(~r). In summary, a Fokker-Planck equation, with
an external force that can be expressed as the gradient of a potential, can be written in the
following form

∂tp(~r, t|~r0, t0) = ~∇ ·D(~r)e−βU(~r)~∇eβU(~r)p(~r, t|~r0, t0). (1.122)

In this form it is immediately clear that the distribution p(~r, t|~r0, t0) = e−βU(~r) is stationary
solution of the F-P equation. From eq. (1.122) the probability current becomes

~j(~r, t|~r0, t0) == D(~r)e−βU(~r)~∇eβU(~r)p(~r, t|~r0, t0) (1.123)

Eqs. (1.122) and (1.123) are often the starting points of many problems of diffusion with an
external potential (see section on Diffusion Problems).
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Bistable potential An example in which the force F (x) is given by the gradient of a potential is

the problem of the stochastic dynamic of a particle in a bistable potential U(x) = x4

4 − x2

2 .
The corresponding Langevin equation (overdamped limit) would be

∆x =
−x3 + x

mγ
∆t+

σ

γ
∆W (t). (1.124)

The deterministic problem has critical points at x = −1 and x = 1 (both stable) and an
unstable point at x = 0. Mapping to the FP equation gives a drift coefficient D(1) = D1(x) =
−U ′(x) = (−x3 + x)/(mγ) and a diffusion term D2 = σ2/(2γ2). From equation (1.96) the
stationary solution of the corresponding Fokker-Planck equation is then

ps(x) =
2γ2N0

σ2
exp

(

− 2γ

mσ2

∫ x

a

U ′(y)dy

)

= N exp

(

− 2γ

mσ2
(U(x)− U(a))

)

. (1.125)

If U(a) = 0 (this is true for a = ±
√
2 in this particular case) we finally get

ps(x) = N exp

[

− x2γ

2mσ2

(

x2

2
− 1

)]

. (1.126)

This is a bimodal distribution for small noise strength σ2: most of the time is spent near
the stable points of the deterministic system.

1.4.3 A micro electrode recessed into a surface: an example of diffusion
with absorbing boundary condition

In the previous section we have computed the stationary solutions for homogeneous process with
reflecting boundary conditions. We have seen that in particular cases these conditions reduce to
consider the more stringent (equilibrium) condition j(x, t) = 0. In this section we give an example
of a diffusion equation (i.e. D1 = 0 and D2(x) = D with absorbing boundary conditions. The
physical problem is the one of a microelectrode recessed into a surface. The concentration of ions
in the bulk is cb, the electrode is fixed at z = 0, with a flat surface at z = L. The Langevin
equation for the freely diffusing ions (we consider a quasi 1D motion) with vertical position z(t)
is given by a simple Wiener process

∆z = σ∆W (1.127)

whose corresponding FP equation is a diffusion equation

∂c(z, t)

∂t
=

σ2

2

∂2c(z, t)

∂z2
(1.128)

where we have considered the concentration c(z, t) ≡ p(z, t). This corresponds to take D(1)(z) = 0
and D(2)(z) = σ2/s. Physically is reasonable to assume absorbing boundary condition at z = 0,

c(0, t) = 0. (1.129)

Moreover, assuming the concentration at the mouth of the recess is equal to the bulk concentration
one has

c(L, t) = cb (1.130)

The goal consists in finding the steady-state current at the electrode in terms of cb and L. In this
case the probability current is simply

j(z, t) = −σ2

2

∂c(z, t)

∂z
(1.131)



16 Chapman-Kolmogorov equation for continuous paths: Fokker-Planck equation

On the other hand, since the current is proportional to the flux of ions onto electrode, it will be
proportional to the probability current at z = 0, i.e.,

I(t) = Kj(z, t)|z=0 = K
σ2

2

∂c(z, t)

∂z

∣

∣

∣

∣

z=0

(1.132)

The steady state concentration satisfies the differential equation

d2

dz2
cs(z) = 0 (1.133)

whose solution is
cs(z) = Az +B (1.134)

The constants A and B are determined by imposing the BC. This gives B = 0 and A = cb/L.
Hence

cs(z) =
cb
L
z. (1.135)

The steady state electrode current is then given by

Is = K
σ2

2

dcs(z)

dz

∣

∣

∣

∣

z=0

= K
σ2

2

cb
L
. (1.136)

Note that cs(z) exists (i.e. is a normalizable solution) because we are considering a problem defined
within a closed interval [0, L]. In R the solution (1.135) is not normalizable.



Chapter 2

Fundamental solutions (or Green’s
functions) of the Fokker-Planck
equation

The non stationary solutions of the Fokker-Planck are in general quite difficult to compute and
general analytical expressions can be found only when the coefficients D(1) and D(2) assume a
particular forms. In general one is interested first in solving the fundamental solution or Green’s

fucntion of the FP equation. This is the solution of the equation

∂tp(~r, t|~r0, t0) = L̂FP p(~r, t|~r0, t0) (2.1)

with initial conditions
p(~r, t → t0|~r0, t0) = δ(~r − ~r0). (2.2)

The boundary conditions depend instead on the problem and may be natural, adsorbing, reflecting
or a mixture. Clearly the fundamental solution will depend on the form of the coefficient D(1)(x, t)
and D(2)(x, t). The simplest situation (but also one of the well studied in physics) is the one in
which the drift term D(1)(x, t) is zero and the diffusion term D(2)(x, t) = D i.e. a constant. In this
case the Fokker-Planck equation reduces to the well known diffusion equation and the underlying
process is a Wiener process. As discussed before this situation may arises from the full Langevin
problem (i.e. the evolution of both ~v(t) and ~r(t)) in which the adiabatic approximation has been
considered. Given the importance of this case we will devote a full section to it.

2.1 The Diffusion equation: D(1) = 0, D(2) = D

If D(1)(x, t) = 0 and D(2)(x, t) = D the Fokker-Planck equation reduces to the diffusion equation

∂tp(~r, t|~r0, t0) = D∇2p(~r, t|~r0, t0) (2.3)

and the fundamental solution is given by assuming as initial condition

p(~r, t → t0|~r0, t0) = δ(~r − ~r0). (2.4)

Depending on the boundary conditions we will have different solutions. Let us start first from the
case in which natural BC are considered i.e. when

p(|~r| → ∞, t|~r0, t0) = 0. (2.5)

In this case since the domain is Rd we can use the Fourier transform approach i.e. we consider

p̃(~k, t|~r0, t0) =
∫

Rd

p(~r, t|~r0, t0)ei~k·~rd~r. (2.6)
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As t → t0, because of the initial condition, eq. (2.6) becomes

p̃(~k, t0|~r0, t0) =
∫

Rd

p(~r, t → t0|~r0, t0)ei~k·~rd~r =

∫

Rd

δ(~r − ~r0)e
i~k·~rd~r = ei

~k·~r0 . (2.7)

By Fourier transforming the diffusion equation we get, for each value of ~k, the differential equation

∂

∂t
p̃(~k, t|~r0, t0) = −D|~k|2p̃(~k, t|~r0, t0) (2.8)

whose solution in logarithmic form is

ln p̃(~k, t|~r0, t0) = −D|~k|2(t− t0) (2.9)

and inverting the log we have

p̃(~k, t|~r0, t0) = exp
[

−D|~k|2(t− t0)
]

p̃(~k, t0|~r0, t0). (2.10)

Finally, from the initial condition p̃(~k, t0|~r0, t0) = exp (i~k · ~r0) one gets

p̃(~k, t) = exp
[

i~k · ~r0 −D|~k|2(t− t0)
]

. (2.11)

By antitrasforming one obtains

p(~r, t|~r0, t0) =
1

(2π)d

∫

Rd

p̃(~k, t|~r0, t0)e−i~r·~rd~k = (4πD(t− t0))
−d/2

e
− (~r−~r0)2

4D(t−t0) . (2.12)

Given the Green’s function (2.12) it is possible to obtain the solution p(~r, t) for the system for any
initial condition, e.g. for p(~r, t → t0) = f(~r0),

p(~r, t) =

∫

R

d~r0p(~r, t|~r0, t0)f(~r0). (2.13)

In general one can write

p(~r2, t2|~r1, t1) = (4πD(t2 − t1))
d/2

e
− (~r2−~r1)2

4D(t2−t1) t2 > t1. (2.14)

Note. The process just found is the Wiener-Levy process i.e. a Markov process that is homoge-
neous (but not stationary), Gaussian and with zero average. The realizations of such process are
the Brownian paths starting at the origin. It is interesting to verify the well know result:

C(t1, t2) = E{~r(t1)~r(t2)} = 2Dmin(t1, t2) (2.15)

by using the solution of the FP equation found above. Indeed by considering first t2 > t1 we have:

E{~r(t1)~r(t2)} =

∫

R2d

d~r1d~r2~r1~r2p(~r1, t1;~r2, t2)

=

∫

R2d

d~r1d~r2~r1~r2p(~r1, t1)p(~r2, t2|~r1, t1)

=

∫

Rd

d~r1~r1 (4πDt1)
d/2

e−
~r21

4Dt1

∫

Rd

d~r2~r2 (4πD(t2 − t1))
d/2

e
− (~r2−~r1)2

4D(t2−t1)

=

∫

Rd

d~r1~r
2
1 (4πDt1)

d/2
e−

~r21
4Dt1

= 2dDt1. (2.16)

Since E{~r(t1)~r(t2)} is a symmetric function we find (2.15).

We now consider solutions in which different BC are taken into account.
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2.1.1 Free diffusion in one-dimensional Half-space: method of images

As a first example we consider a particle diffusing freely in a one-dimensional half-space x ≥ 0.
This problem is governed by the diffusion equation in one dimension

∂tp(x, t|x0, t0) = D∂2
xp(x, t|x0, t0). (2.17)

If we look for the fundamental solution we should consider the initial condition

p(x, t → t0|x0, t0) = δ(x− x0). (2.18)

Reflective Wall

The region Ω is here limited by a reflective wall at x = 0. This is described by the boundary
condition

j(x, t|x0, t0) = ∂xp(x, t|x0, t0) = 0. (2.19)

Assuming that the particle started diffusion at some finite x0 we can assume a natural boundary
condition at x → ∞, i.e.

p(x → ∞, t|x0, t0) = 0. (2.20)

Without the wall the BC (2.19) would be replaced by a natural BC for x → −∞, p(x →
−∞, t|x0, t0) = 0 and the solution is

p(x, t|x0, t0) =
1

√

4πD(t− t0)
exp

[

− (x− x0)
2

4D(t− t0)

]

. (2.21)

To satisfy the BC at x = 0 the idea consists in introducing a sink, or negative image at position
−x0 and extending the problem to the entire space. This gives

p(x, t → t0|x0, t0) =
1

√

4πD(t− t0)
exp

[

− (x− x0)
2

4D(t− t0)

]

+
1

√

4πD(t− t0)
exp

[

− (x+ x0)
2

4D(t− t0)

]

, x ≥ 0. (2.22)

This solution holds only in the half-space x ≥ 0. Clearly, this function is a solution of (2.17) since
both terms satisfy this equation. By differentiating (2.25) it is easy to show that it satisfies the
BC (2.19). Clearly also the natural BC condition at x → ∞ is satisfied. A simple interpretation of
(2.25) is the following: the first term describes a diffusion vanishing which is unaware of the wall at
x = 0 (it travels into the non available half space x < 0). This loss of probability is corrected by the
second term which, with its tail for x ≥ 0, balances the missing probability. In fact the x ≥ 0 tail
of the second term is exactly the mirror image of the missing x ≥ 0 tail of the second term. This
problem can be easily generalized in d dimensions supposing a freely-diffusing particle in d space
with a reflecting boundary at z = 0. With the initial condition p(~r, t → t0|~r0 = ẑa, t0) = δ(~r− ẑa)
(starting point at a distance z = a away from the wall) and the reflecting boundary at z = 0 we
have:

p(~r, t → t0|ẑa, t0) = (4πD(t− t0))
d/2

[

e
− (~r−ẑa)2

4D(t−t0) + e
− (~x+ẑa)2

4D(t−t0)

]

(2.23)

Absorbing Wall

We now consider the case in which the wall is absorbing (i.e. a wall which consumes every particle
imping on it). In this case the boundary condition (2.19) must be replaced by

p(x, t|x0, t0) = 0. (2.24)
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Also in this case it is useful to think in terms of images although here the image must be negative.
This gives

p(x, t → t0|x0, t0) =
1

√

4πD(t− t0)
exp

[

− (x− x0)
2

4D(t− t0)

]

− 1
√

4πD(t− t0)
exp

[

− (x+ x0)
2

4D(t− t0)

]

, x ≥ 0. (2.25)

In this case the x ≥ 0 tail of the first term which describes free diffusion is not cancelled by the
second term, but rather the second term describes a further particle loss. Because of particle
removal by the wall at x = 0, the total number of particles is not conserved. It is interesting to
compute the number of particles at time t by using the fundamental solution

N(t|x0, t0) =

∫

R

p(x, t|x0, t0)dx. (2.26)

To perform the integral let us introduce the variable

y =
x

√

4D(t− t0)
. (2.27)

The integral becomes

N(t|x0, t0) =
1√
π

∫

R

exp [−(y − y0)
2]− 1√

π

∫

R

exp [−(y + y0)
2]

=
1√
π

∫ ∞

−y0

exp [−(y − y0)
2]− 1√

π

∫ ∞

y0

exp [−(y + y0)
2]

=
1√
π

∫ y0

−y0

exp [−(y − y0)
2]

=
2√
π

∫ y0

0

exp [−(y − y0)
2]

= erf(y0). (2.28)

This gives

N(t|x0, t0) = erf

[

x0
√

4D(t− t0)

]

. (2.29)

From the property of erf(z) we have

N(t|x0, t0) ∼
x0

√

4D(t− t0)
for t → ∞. (2.30)

In other words the particle number decays to zero asymptotically. This is because one-dimensional
Brownian motion will visit almost surely every point of the space and in particular the absorbing
wall. The rate of particle decay is given by

∂tN(t|x0, t0) = − x0
√

2πD(t− t0)(t− t0)
exp

[

− x2
0

4D(t− t0)

]

. (2.31)

2.1.2 Free diffusion in a 1d finite domain

A particle diffusing freely (no potential U) within a one dimensional interval

Ω = [x1, x2] (2.32)
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is governed by the Fokker-Planck equation

∂tp(x, t|x0, t0) = D∂2
xp(x, t|x0, t0). (2.33)

Note that the above equation may be written ad

∂tp(x, t|x0, t0) = ∂xj(x, t|x0, t0) (2.34)

where
j(x, t|x0, t0) = D [∂xp(x, t|x0, t0)] . (2.35)

A general set of BC conditions can then be written as

j(x1, t|x0, t0) = k1p(x1, t|x0, t0)

j(x2, t|x0, t0) = k2p(x2, t|x0, t0) (2.36)

that in this case simplify to

D∂xp(x, t|x0, t0)|x=x1
− k1p(x1, t|x0, t0) = 0

D∂xp(x, t|x0, t0)|x=x2
− k2p(x2, t|x0, t0) = 0 (2.37)

This equation can be easily solved with the method of the separation of variables. The idea is
to assume the solution p(x, t|x0, t0) to be separable in x and t. This gives:

p(x, t|x0, t0) = X(x)T (t) (2.38)

so that eq. (??) becomes
X ′′T = D−1XṪ (2.39)

or, by diving by X(x)T (t)

X ′′

X
= D−1 Ṫ

T
= k, (2.40)

where k is the separation constant. The two equations must to be solved independently. The time
equation

Ṫ = DkT, (2.41)

has solution
T (t) = T (t0)e

Dk(t−t0). (2.42)

Clearly T (t) will increase in time if k is positive while it will decrease in time only if k is negative.
Let us take

k = −λ2. (2.43)

This gives the spatial equation

d2X

dx2
+ λ2X = 0. (2.44)

The BC (2.37) become in this case

−k1X(x1) +D
dX

dx
|x=x1

= 0

−k2X(x2) +D
dX

dx
|x=x2

= 0 (2.45)

(2.46)

Equation (2.44) with the associated BC (2.46) is an example of the so-called Sturm-Liouville

problem discussed in many textbooks of mathematical physics and quantum mechanics (eigenval-
ues problem) and that here we recall for completeness.
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Sturm-Liouville problem

In general the Sturm-Liouville problem associated to eq. such as (2.44), defined on the closed
interval x1 ≤ x ≤ x2, will satisfy satisfying the following mixed BC

α1X + β1
dX

dx
= 0 (x = x1) (2.47)

α2X + β2
dX

dx
= 0 (x = x2), (2.48)

with real coefficients α1, β1, α2, β2, and λ2, has the general solution

X(x) =
∑

λ

Xλ(x). (2.49)

The eigenfunctions Xλ(x) depend on the sign of λ′s.

λ2 > 0 The eigenfunctions are periodic,

Xλ(x) = Aλ sin(λx) +Bλ cos(λx) (2.50)

λ2 = 0 Linear,
X0(x) = A0x+B0 (2.51)

λ2 < 0 The eigenfunctions are exponential,

Xλ(x) = Aλ exp(λx) +Bλ exp(−λx) (2.52)

In our case λ2 is positive and the eigenfuctions are the periodic ones. The BC conditions (2.48)
require that the coefficients Aλ and Bλ satisfy the constraints

α1 (Aλ sin(λx1) +Bλ cos(λx1)) + β1 (λAλ cos(λx1)− λBλ sin(λx1)) = 0

α2 (Aλ sin(λx2) +Bλ cos(λx2)) + β2 (λAλ cos(λx2)− λBλ sin(λx2)) = 0. (2.53)

To simplify a little bit these conditions let us consider the following change of variables

z = x− x1

L = x2 − x1. (2.54)

In this case the interval is z ∈ [0, L] and the BC simplify to:

α1Bλ + β1Aλ = 0, (2.55)

α2 (Aλ sin(λL) +Bλ cos(λL)) + β2 (λAλ cos(λL)− λBλ sin(λL)) = 0, (2.56)

leading to a homogeneous system of two linear equations for Aλ and Bλ which requires the de-
terminant of the system to be zero. This requirement results in a transcendental equation for
λ2,

(

α1α2 + λ2β1β2

) sin(λL)

λL
= (α2β1 − α1β2) cos(λL), (2.57)

which can be written as
λ cot(λL) = aλ2 + b (2.58)

with

a =
β1β2

α2β1 − α1β2
, b =

α1α2

α2β1 − α1β2
. (2.59)

Notice that eq. (2.57) and (2.58) are the eigenvalues equations for λ2 ∈ R and not for λ.
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Two absorbing BC

If both extremities are absorbing i.e. if k1 = k2 = ∞ or zero boundary conditions we have
p(0, t|z0, t0) = p(L, t|z0, t0) = 0. In the general formalism above this corresponds to take β1 =
β2 = 0 and α1 = α2 = 1 and eq. (2.55) (2.56) simplify to

Bλ = 0, (2.60)

and
sin(λL) = 0 (2.61)

whose possible solutions are given by the eigenvalues

λn = nπ/L. (2.62)

For each value of n the complete solution is

AnT0 sin
(nπ

L
z
)

e−Dn2π2(t−t0)/L
2

(2.63)

and the general solution is obtained by summing over n

p(z, t|z0, t0) = T0

∞
∑

n=1

An sin
(nπ

L
z
)

e−Dn2π2(t−t0)/L
2

(2.64)

Exercise. Find the expression for p(z, t|z0, t0) when the boundary at z = 0 is absorbing while
the boundary at z = L is reflecting.

Initial condition

The final step is to apply the initial conditions, namely

p(z, t → t0|z0, t0) =
∞
∑

n=1

A′
n sin

(nπ

L
z
)

= δ(z − z0) (2.65)

where A′
n ≡ T (t0)An. This can be obtained by inverting the Fourier series

A′
n =

2

L

∫ L

0

δ(z − z0) sin
(nπ

L
z
)

dz, (2.66)

for all positive integers, n. This gives

A′
n =

2

L
sin
(nπ

L
z0

)

(2.67)

Finally we get

p(z, t|z0, t0) =
2

L

∞
∑

n=1

sin
(nπ

L
z
)

sin
(nπ

L
z0

)

e−Dλ2
n(t−t0), (2.68)

where

λ2
n =

(nπ

L

)2

(2.69)

are the eigenvalues. Going back to the original problem where x ∈ [x1, x2] we finally get

p(x, t|x0, t0) =
2

L

∞
∑

n=1

sin

(

nπ

(x2 − x1)
(x− x1)

)

sin

(

nπ

(x2 − x1)
(x0 − x1)

)

e
− Dn2π2

(x2−x1)2
(t−t0)

, .

(2.70)
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Laplace transform solution

The above problem can also be solved by using the Laplace transform on the time coordinate.
This allow us to obtain p(x, t|x0, t0) as a single function instead than an infinite Fourier series.
The problem will be then to invert the Laplace transform and getting back the solution in real
time. If we perform a Laplace transform of the diffusion equation (2.33) we get

−sp̃(x, s|x0, t0) + δ(x− x0) +D
d2

dx2
p̃(x, s|x0, t0) = 0 (2.71)

where

p̃(x, s|x0, t0) =

∫

R+

e−stp(x, t|x0, t0) (2.72)

and the δ function reflects the initial condition p(x, t|x0, t0) = δ(x− x0). To simplify the notation

let us consider the following change of variable: y = x
√

s
D and re-write the equation as follows:

D
d2

dy2
p̃(y, s|y0, t0)− p̃(y, s|y0, t0) = −δ(y − y0)

√

1

sD
(2.73)

The above equation must be solved in two distinct domains: y1 < y < y0 and y0 < y < y2. In
each subinterval equation (2.73) becomes

D
d2

dy2
p̃(y, s|y0, t0)− p̃(y, s|y0, t0) = 0 (2.74)

whose general solution is of the form

p̃(y, s|y0, t0) = Aey +Be−y (2.75)

Let us denote by p̃<(y, s|y0, t0) and p̃>(y, s|y0, t0) the solution of (2.74) respectively for y ∈ [y1, y0]
and y ∈ [y0, y2]. We can now impose the BC in y1 and y2. These are

p̃(x1, s|x0, t0) = 0 = p̃

(

y1

√

D

s
, s|y0

√

D

s
, t0

)

= 0

p̃(x2, s|x0, t0) = 0 = p̃

(

y2

√

D

s
, s|y0

√

D

s
, t0

)

= 0 (2.76)

giving
B< = −A<e

2y1 B> = −A>e
2y2 (2.77)

Hence

p̃<(y, s|y0, t0) = A<e
y1
(

ey−y1 − ey1−y
)

= 2A<e
y1 sinh(y − y1) = C< sinh(y − y1)

p̃<(y, s|y0, t0) = A>e
y2
(

ey2−y − ey−y2
)

= 2A>e
y2 sinh(y2 − y) = C> sinh(y2 − y). (2.78)

The constants C can be now determined by imposing the continuity of the two solutions and the
discontinuity of their first derivatives (because of the delta) at y = y0 i.e.

p̃>(y0, s|y0, t0)− p̃<(y0, s|y0, t0) = 0
(

d

dy
p̃>(y, s|y0, t0)− p̃<(y, s|y0, t0)

)
∣

∣

∣

∣

y=y0

= − 1√
sD

(2.79)

where the second condition has been obtained by integrating equation 2.33 around y0. The first
condition is satisfied if

p̃(y, s|y0, t0) = K sinh(y< − y1) sinh(y2 − y>), (2.80)
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where y< = min(y, y0) and y> = max(y, y0). The second condition is used to get the constant K.
Finally

p̃(y, s|y0, t0) =
1√
sD

sinh(y< − y1) sinh(y2 − y>)

sinh(y0 − y1) sinh(y2 − y0) + sinh(y0 − y1) sinh(y2 − y0)
. (2.81)

Note that in the case in which x1 = 0 and x2 = L we have y1 = 0 and y2 = L
√

s/D giving

p̃(x, s|x0, t0) =
1

2
√
sD

sinh(
√

s/Dx<) sinh(
√

s/D(L− x>))

sinh(
√

s/Dx0) sinh(
√

s/D(L− x0))
. (2.82)

To obtain the solution as a function of time one needs to perform the inverse Laplace transform,
keeping in mind that p̃(y, s|y0, t0) depends on s also through y:

p(x, t|x0, t0) =

∫ γ+i∞

γ−i∞
ds

ets

2
√
sD

sinh(
√
s(y< − y1) sinh(

√
s(y2 − y>)

sinh(
√
s(y0 − y1)) sinh(

√
s(y2 − y0))

. (2.83)

where y<,> =
x<,>√

D
. The integral must be evaluated along a line parallel to the imaginary axis. In

order to apply the residue theorem we should chose a contour made by two semi-circles. Indeed,
since the function

√
s is a multi-valued function and has s = 0 as a branch cut point, we should

choose a path as the one skectched in figure ??, use Jordan theorem for the external circle and the
fact that being lims→0 sp(x, s|x0, t0) = 0, also the integral along the small semi-circle vanishes.
We then have to evaluate the integral along the full closed curve that is related to the sum of the
residues of the poles inside the curve. Since est is rapidly growing, the only pole to be considered
is the one with the largest real part. TODO

Exercise. Show that for mixed boundary conditions i.e. when

∂xp(x, t|x0, t0) |x=L = 0 ∀t
p(x = 0, t|x0, t0) = 0 (2.84)

the solution in the Laplace space is given by

p̃(x, s|x0, t0) =
1√
sD

sinh(
√

s/Dx<) cosh(
√

s/D(L− x>))

sinh(
√

s/Dx0) sinh(
√

s/D(L− x0)) + cosh(
√

s/Dx0) cosh(
√

s/D(L− x0))
.

(2.85)

2.1.3 Free diffusion around a spherical object

One of the most useful example of a diffusion process is the one in which a molecule diffuses around
a target and either reacts with it or vanishes out of its vicinity. Suppose for simplicity that the
target is stationary and spherical with radius a. Moreover let us suppose that the reaction may
occur anywhere on the surface of the target with the same probability. We consider an initial
condition in which the molecule are uniformly distributed at a distance ~r0 from the center of the
target

p(~r, t0|~r0, t0) =
1

4π~r20
δ(|~r| − |~r0|). (2.86)

Since neither the initial condition nor the reaction-diffusion condition have any orientation prefer-
ence, we should expect a spherically symmetric distribution p(r, t|r0, t0) that follows the diffusion
equation

∂tp(r, t|r0, t0) = D∇2p(r, t|r0, t0). (2.87)

Let us now consider the boundary conditions of the problem. If we assume that the distribution
vanishes at distances from the target which are much larger than r0 the following natural boundary

condition can be consider
lim
r→∞

p(r, t|r0, t0) = 0. (2.88)
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The reaction at the target may be described by a radiation boundary condition (known also as
Robin BC ) which for a spherical boundary, may be described by

n̂ · jr(r, t|r0, t0) = D∂tp(r, t|r0, t0) = kp(r, t|r0, t0), for r = a. (2.89)

Clearly k = 0 corresponds to non reactive surface (reflecting BC), whereas the limit k >> 1 to a
surface for which every collision leads to reaction that diminishes p(r, t|r0, t0) (in the k → ∞ limit
we have absoring BC). For this problem it is easier to write the diffusion equation in spherical
coordinates remembering that

∇2 =
1

r2

[

∂r
(

r2∂r
)

+
1

sin2 θ
∂2
φ +

1

sin θ
∂θ (sin θ∂θ)

]

. (2.90)

Since the probability distribution is spherically symmetric it depends only on r. Moreover,from
the identity

1

r2
∂r
(

r2∂rf(r)
)

=
1

r
∂2
r (rf(r)) , (2.91)

we get
∂trp(r, t|r0, t0) = D∂2

rrp(r, t|r0, t0). (2.92)

Because of the mixed BC (2.89) it is convenient to partition the solution into two terms

p(r, t|r0, t0) = u(r, t|r0, t0) + v(r, t|r0, t0), (2.93)

with initial condition

u(r, t → t0|r0, t0) =
1

4πr20
δ(r − r0)

v(r, t → t0|r0, t0) = 0. (2.94)

Each function has to satisfy the diffusion equation and their sum must satisfy the mixed BC. Let
us first compute u(r, t → t0|r0, t0). It must satisfy

∂tru(r, t|r0, t0) = D∂2
r (ru(r, t|r0, t0))

ru(r, t → t0|r0, t0) =
1

4πr20
δ(r − r0). (2.95)

Let us consider the Fourier transform

ũ(k, t|r0, t0) =
∫

R

ru(r, t|r0, t0)e−ikrdr. (2.96)

By Fourier transforming equation (2.95) we get

∂tũ(k, t|r0, t0) = −Dk2ũ(k, t|r0, t0) (2.97)

and integrating with respect to t gives

ũ(k, t|r0, t0) = A(k|r0)e−D(t−t0)k
2

(2.98)

where A(k|r0) can be obtained from the initial condition in (2.95). Indeed, from the identity

δ(r − r0) =
1

2π

∫

R

dkeik(r−r0) (2.99)

we have

u(r, t → t0|r0, t0) =
1

2πr

∫

R

dkũ(k, t → t0|r0, t0)eikr

=
1

2πr

∫

R

dkA(k|r0)eikr

=
1

4πr0
δ(r − r0)

=
1

8π2r0

∫

R

dkeik(k−k0) (2.100)
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giving

A(k|r0) =
1

4πr0
e−ikr0 . (2.101)

This results in the expression

ru(r, t|r0, t0) =
1

8π2r0

∫

R

dk exp [−D(t− t0)k
2]eik(r−r0) (2.102)

and from the identity
∫

R

dke−αk2

eixk =
(π

α

)1/2

e−
x2

4α (2.103)

we finally get

ru(r, t|r0, t0) =
1

4πr0

1
√

4πD(t− t0)
exp− (r − r0)

2

4D(t− t0)
. (2.104)

We now consider the solution v(r, t|r0, t0) that must satisfy

∂t (rv(r, t|r0, t0)) = D∂2
r (rv(r, t|r0, t0)) (2.105)

with initial condition
rv(r, t → t0|r0, t0) = 0. (2.106)

If we apply the Laplace transform

ṽ(r, s|r0, t0) =
∫

R

e−stv(r, t|r0, t0)dt (2.107)

to eq. (2.105) we get an expression, that integrated by parts, gives

−rv(r, t0t0|r0, t0) + srṽ(r, s|r0, t0). (2.108)

Because of the initial condition (2.106) the first term vanishes and we obtain

s

D
(rṽ(r, s|r0, t0)) = ∂2

r (rṽ(r, s|r0, t0)) (2.109)

A solution that satisfies the natural BC (2.88) is

rṽ(r, s|r0, t0) = A(s|r0) exp
[

−
√

s

D
r

]

. (2.110)

Where the constant A(s|r0) will be determined by imposing the BC (2.89). We now take the
Laplace transform of the BC (2.89). Denoting by p̃(r, s|r0, t0) the Laplace transform of the full
solution p(r, t|r0, t0) one may verify that

D∂r (rp̃(r, s|r0, t0)) = Dp̃(r, s|r0, t0) + rD∂rp̃(r, s|r0, t0). (2.111)

Using this identity in (2.89) we get

∂rrp̃(r, s|r0, t0)|r=a =
ka+D

Da
ap̃(a, s|r0, t0). (2.112)

We now need the Laplace transform of u(r, t|r0, t0). By using the identity

∫

R

e−st 1√
4πDt

exp

[

− (r − r0)
2

4Dt

]

=
1√

4πDs
exp

[

−
√

s

D
|r − r0|

]

(2.113)

we get

rp̃(r, s|r0, t0) =
1

4πr0

1√
4πDs

exp

[

−
√

s

D
|r − r0|

]

+A(s|r0) exp
[

−
√

s

D
r

]

. (2.114)
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The BC condition (2.112) for r = a < r0 becomes
√

s

D

(

1

4πr0

1√
4πDs

exp

[

−
√

s

D
(r0 − a)

]

−A(s|r0) exp
[

−
√

s

D
a

])

(2.115)

=
ka+D

Da
a

(

1

4πr0

1√
4πDs

exp

[

−
√

s

D
(r0 − a)

]

+A(s|r0) exp
[

−
√

s

D
a

])

.(2.116)

This gives

A(s|r0) =
(s/D)1/2 − (ka+D)/(Da)

(s/D)1/2 + (ka+D)/(Da)

1

4πr0

1√
4πDs

exp

[

−
√

s

D
(r0 − 2a)

]

, (2.117)

and we finally get

rp̃(r, s|r0, t0) =

=
1

4πr0

1√
4πDs

exp

[

−
√

s

D
|r − r0|

]

+
(s/D)1/2 − (ka+D)/(Da)

(s/D)1/2 + (ka+D)/(Da)

1

4πr0

1√
4πDs

exp

[

−
√

s

D
(r + r0 − 2a)

]

=
1

4πr0

1√
4πDs

(

exp

[

−
√

s

D
|r − r0|

]

+ exp

[

−
√

s

D
(r + r0 − 2a)

])

− (ka+D)/(Da)
√

s
D + (ka+D)/(Da)

1

4πr0

1√
Ds

exp

[

−
√

s

D
(r + r0 − 2a)

]

. (2.118)

By applying the inverse Laplace transform we obtain the final result

rp(r, t|r0, t0) =

=
1

4πr0

1
√

4πD(t− t0)

(

exp

[

− (r − r0)
2

4D(t− t0)

]

+ exp

[

− (r + r0 − 2a)2

4D(t− t0)

])

− 1

4πr0

ka+D

Da
exp

[

(

ka+D

Da

)2

D(t− t0) +
ka+D

Da
(r + r0 − 2a)

]

× Erfc

[

ka+D

Da

√

D(t− t0) +
r + r0 − 2a
√

4D(t− t0)

]

. (2.119)

Reflective boundary

If the boundary at r = a is reflective we have k = 0 and the solution (2.119) simplifies to

p(r, t|r0, t0) =

=
1

4πrr0

1
√

4πD(t− t0)

(

exp

[

− (r − r0)
2

4D(t− t0)

]

+ exp

[

− (r + r0 − 2a)2

4D(t− t0)

])

− 1

4πarr0
exp

[

D

a2
(t− t0) +

r + r0 − 2a

a

]

× Erfc

[

√

D(t− t0)

a
+

r + r0 − 2a
√

4D(t− t0)

]

. (2.120)

Absorbing boundary

This condition is equivalent to take k → ∞. We need to look at the asymptotic behaviour of the
error function i.e.

√
πz exp z2Erfc(z) ∼ 1 +O

(

1

z2

)

. (2.121)
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If we consider the substitutions γ = (ka + D)/(Da) z = γz1 + z2, z1 =
√

D(t− t0) and z2 =

(r + r0 − 2a)/
√

4D(t− t0) we have

γ exp [γ2D(t− t0) + γ(r + r0 − 2a)]Erfc
[

γ
√

D(t− t0)
]

= γez
2

e−z2
2Erfc(z) ∼ γ√

πz
e−z2

2

(

1 +O

(

1

γ2

))

(2.122)

in the asymptotic limit γ → ∞. Hence, at leading order

γ exp [γ2D(t− t0) + γ(r + r0 − 2a)]Erfc
[

γ
√

D(t− t0)
]

∼
(

2
√

4πD(t− t0)
+O

(

1

γ2

)

)

exp

[

− (r + r0 − 2a)2

4D(t− t0)

]

. (2.123)

The full solution becomes, in the limit k → ∞,

p(r, t|r0, t0) =
1

4πrr0

1
√

4πD(t− t0)

(

exp

[

− (r − r0)
2

4D(t− t0)

]

− exp

[

− (r + r0 − 2a)2

4D(t− t0)

])

. (2.124)

2.1.4 Free diffusion in a cylinder

Let us now consider the problem of a particle diffusion within a cylinder of radius ρ and z ∈ [0, L0].
The diffusion equation can be written as

∂tp(x, y, z, t|x0, y0, z0, t0) = D⊥
(

∂2
x + ∂2

y

)

ip(x, y, z, t|x0, y0, z0, t0) +D||∂
2
zp(x, y, z, t|x0, y0, z0, t0)

(2.125)
where we have supposed D⊥ 6= D||. It is clearly convenient to pass to cylindrical coordinates
(r, φ, z):

∂tp(r, φ, z, t|r0, φ0, z0, t0) = D⊥

[

1

r

∂

∂r

(

r
∂p

∂r
+

1

r

∂2p

∂φ2

)]

+D||∂
2
zp(r, φ, z, t|r0, φ0, z0, t0). (2.126)

If we restrict ourselves to solutions that are cylindrically symmetric i.e. to solutions p(r, φ, z, t|r0, φ0, z0, t0) =
p(r, z, t|r0, z0, t0) equation above simplifies to

∂tp(r, z, t|r0, z0, t0) = D⊥
1

r

∂

∂r

(

r
∂p

∂r

)

+D||∂
2
zp(r, z, t|r0, z0, t0). (2.127)

Note that eq. (2.127) holds also for D⊥ = D⊥(t), D|| = D||(t). Let us look first to the stationary
solutions. These are given by imposing the condition ∂tp = 0 i.e.

D⊥
1

r

∂

∂r

(

r
∂ps(r, z|r0, z0, t0)

∂r

)

+D||∂
2
zps(r, z|r0, z0, t0) = 0, (2.128)

or

D⊥
∂2

∂r2
ps(r, z|r0, z0, t0) +D⊥

1

r

∂

∂r
ps(r, z|r0, z0, t0) +D||

∂2

∂z2
ps(r, z|r0, z0, t0) = 0. (2.129)

If D⊥ > 0, D|| > 0 we can divide the above equation by D⊥ obtaining

∂2

∂r2
ps(r, z|r0, z0, t0) +

1

r

∂

∂r
ps(r, z|r0, z0, t0) + α2 ∂2

∂z2
ps(r, z|r0, z0, t0) = 0. (2.130)

where

α2 =
D||
D⊥

. (2.131)
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To obtain a stationary solution it is necessary to define the boundary conditions. Suppose that
the cylindrical surface is a reflecting boundary (no flux trough this surface) i.e.

∂

∂r
ps(r, z|r0, z0, t0)

∣

∣

∣

∣

r=ρ

= 0. (2.132)

In addition suppose that the disk (z = 0, r ≤ R) is an absorbing boundary i.e. ps(r, 0|r0, z0, t0) = 0
whereas the disk at z = L0 is at constant value pb. This is a reasonable assumption if, for example,
L0 is large enough and pb can be seen as a molecule concentration in the bulk, i.e. far away from
the exit at z = 0. Equation (2.130) can be integrated by method of separation of variables, i.e.
by assuming that the stationary solution ps(r, z|r0, z0, t0) can be written as

ps(r, z) = R(r)Z(z) (2.133)

where we have omitted the conditional initial conditions (r0, z0) for simplicity. Inserting in equa-
tion (2.130) we get

R′′Z +
1

r
R′Z + α2RZ ′′ = 0 (2.134)

Hence
R′′

R
+

1

r

R′

R
= −α2Z

′′

Z
= −λ2. (2.135)

The two equations above must be solved independently. Let us consider first the radial part

r2R′′ + rR′ + r2λR = 0 (2.136)

This equation in the form of a Bessel equation x2y′′+xy′+(x2−n2)y = 0 with x = λr and n = 0
(i.e. order zero). We the expect a general solution of the form

R(r) = C1J0(λr) + C2Y0(λr) (2.137)

where J0 and Y0 are the zero order Bessel functions of, respectively, the first and second kind.
Clearly the full solution is a sum of two solutions since we have a second order differential equation.
A plot of J0(x) and Y0(x) are reported in figure. To determine the constants C1 and C2 we should
consider the BC. Since Y0(0) = −∞ and we expect instead R(0) < ∞, we should put C2 = 0. We
then have

R(r) = C1J0(λr). (2.138)

The second BC is given by the no flux condition at the cylinder surface , i.e.

dR

dr

∣

∣

∣

∣

R=ρ

= 0, (2.139)

i.e.
dJ0(x)

dx

∣

∣

∣

∣

x=λρ

= 0. (2.140)

Since C1 6= 0, we have to find the values of λ for which condition (2.140) is satisfied i.e. the values
λm such that

dJ0(x)

dx

∣

∣

∣

∣

x=λmρ

= 0. (2.141)

On the other hand, from the properties of the Bessel functions Jp we know that

d

dr
Jp(λr) = −λJp+1(λr) +

p

r
Jp(λr) (2.142)

and in our specific case
d

dr
J0(λr) = −λJ1(λr). (2.143)
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Hence the BC condition (2.140) can be re-casted as follows: find the values of λm such that

J1(λρ) = 0. (2.144)

Denoting by j1m the m-th zero of J1(λmρ) we have

R(r) = C1J0(λmr), with λm = j1m/ρ. (2.145)

For any fixed value λm we now solve the equation for Z(z):

Z ′′ − λ2
m

α2
Z = 0. (2.146)

A general solution is the well known sum

Zm(z) = A sinh

(

λm

α
z

)

+B cosh

(

λm

α
z

)

(2.147)

From the absorbing boundary condition at z = 0 we have Z(0) = 0 giving

Z(z) = A sinh

(

λm

α
z

)

. (2.148)

For fixed λm we then have the eigenfunction

psm(r, z) = Am sinh

(

λm

α
z

)

J0(λmr), λm = j1m/ρ, m = 1, 2, · · · (2.149)

The general solution is then

ps(r, z) =
∞
∑

m=1

Am sinh

(

λm

α
z

)

J0(λmr). (2.150)

Since p(z = L0, r) = pb we have

pb =

∞
∑

m=1

Am sinh

(

λm

α
L0

)

J0(λmr) (2.151)

Multiplying both sides by rJ0(λmr) and integrating in [0, 1] we have

pb

∫ 1

0

rJ0(λmr)dr =

∞
∑

m=1

Am sinh

(

λm

α
L0

)
∫ 1

0

rJ0(λmr)J0(λmr)dr. (2.152)

On the other hand since (see appendix)
∫ 1

0

xJ0(ax)dx =
[x

a
J1(ax)

]1

0
= J1(a)/a (2.153)

and from the orthogonality properties
∫ 1

0

xJα(xλα,m)Jα(xλα,n)dx =
δm,n

2
[Jα+1(xλα,m)]

2
, (2.154)

we have

pb
J1(λm)

λm
= Am sinh

(

λm

α
L0

)

1

2

[

J2
1 (λm)

]

(2.155)

giving

Am =
2pb

λmJ1(λm) sinh
(

λm

α L0

) (2.156)

The steady state solution is then

ps(r, z) =

∞
∑

m=1

2pb

λmJ1(λm) sinh
(

λm

α L0

) sinh

(

λm

α
z

)

J0(λmr). (2.157)
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Full solution

We now consider the solution of the full problem i.e.

∂tp(r, z, t|r0, z0, t0) =
∂2

∂r2
p(r, z, t|r0, z0, t0) +

1

r

∂

∂r
p(r, z, t|r0, z0, t0) + α2 ∂2

∂z2
p(r, z, t|r0, z0, t0),

(2.158)
where

α2 =
D||
D⊥

. (2.159)

Since we are looking for a full solution, in addition to the boundary conditions

∂

∂r
p(r, z, t|r0, z0, t0)

∣

∣

∣

∣

r=ρ

= 0

p(r, 0, t|r0, z0, t0) = 0, p(r, L0, t|r0, z0, t0) = pb (2.160)

we have to consider the initial condition

p(r, z, t → t0|r0, z0, t0) = p(r0, z0) (2.161)

As before we can use the separation of variables trick by assuming

p(r, z, t|r0, z0, t0) = R(r)Z(z)T (τ). (2.162)

Inserting this assumption in (2.158) we get

R′′

R
+

1

r

R′

R
+ α2Z

′′

Z
=

T ′

T
= −λ2 (2.163)

and we can write
T (τ) = T1 exp(−λ2τ) (2.164)

and
R′′

R
+

1

r

R′

R
+ λ2 = −α2Z

′′

Z
= µ2 (2.165)

The above equations would give a trivial solution unless µ2 > 0. we can then take µ2 = µ2 and
the above equations become

R′′

R
+

1

r

R′

R
+ λ2 = −α2Z

′′

Z
= µ2 (2.166)

that is

R′′ +
1

r
R′ + (λ2 − µ2)R = 0 (2.167)

and

Z ′′ +
µ2

α2
Z = 0 (2.168)

From the first equation
r2R′′ + rR′ + (λ2 − µ2)r2R = 0 (2.169)

we should look for a general solution of the form

R(r) = C1J0(γr) + C2Y0(γr), γ2 = λ2 − µ2 (2.170)

with BC
R′(0) = 0, Y0(0) = −∞, giving C2 = 0 (2.171)

and
R′(ρ) = 0..... (2.172)

TODO
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2.1.5 Appendix

Let us consider the indefinite integrals

Sn =

∫

xnJ0(ax)dx. (2.173)

They can be solved by recursion as follows. By inserting the following properties of the Bessel
functions J0(ax):

d

dx
(xJ1(ax)) = axJ0(ax) (2.174)

and
d

dx
J0(ax) = −axJ1(ax) (2.175)

we have

Sn =

∫

xnJ0(ax)d =
1

a

∫

xn−1axJ0(ax)dx =
1

a

∫

xn−1 d

dx
(xJ1(ax)) dx

=
1

a

[

xn−1xJ1(ax)−
∫

(n− 1)xn−2xJ1(ax)dx

]

=

=
xn

a
J1(ax) +

n− 1

a2

∫

xn−1 (−aJ1(ax)) dx =
xn

a
J1(ax) +

n− 1

a2

∫

xn−1

(

dJ0(ax)

dx

)

dx =

=
xn

a
J1(ax) +

n− 1

a2

[

xn−1J0(ax)−
∫

(n− 1)xn−2J0(ax)dx

]

=

=
xn

a
J1(ax) +

n− 1

a2
xn−1J0(ax)−

(n− 1)2

a2

∫

xn−2J0(ax)dx (2.176)

Hence

Sn =
xn

a
J1(ax) +

n− 1

a2
xn−1J0(ax)−

(n− 1)2

a2
Sn−2 (2.177)

For n = 1 we have

S1 =

∫

xJ0(ax)dx =
1

a

∫

axJ0(ax)dx =
x

a
J1(ax). (2.178)

Orthogonality
∫ 1

0

xJα(xuα,m)Jα(xuα,n)dx =
δm,n

2
[Jα+1(uα,m)]

2
(2.179)

2.2 Processes with drift and diffusion terms depending on
time: D1(t), D2(t).

If the drift and diffusion terms depend on t, i.e. D(1)(x, t) = D1(t) and D(2)(x, t) = D2(t), the FP
equation becomes:

∂tp(x, t|x0, t0) = −D1(t)
∂

∂x
p(x, t|x0, t0) +D2(t)

∂2

∂x2
p(x, t|x0, t0). (2.180)

Following the previous case we look first for solutions in Fourier space where eq. (2.180) becomes

∂

∂t
p̃(k, t) =

(

ikD1(t)− k2D2(t)
)

p̃(k, t). (2.181)

The solution in logarithmic form is then

ln p̃(k, t)− ln p̃(k, t0) = ik

∫ t

t0

D1(τ)dτ − k2
∫ t

t0

D2(τ)dτ, (2.182)
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giving

p̃(k, t) = exp

[

ik

∫ t

t0

D1(τ)dτ − k2
∫ t

t0

D2(τ)dτ

]

p̃(k, t0), (2.183)

and since p̃(k, t0) = exp(ikx0), one gets

p̃(k, t) = exp

[

ik

(

x0 +

∫ t

t0

D1(τ)dτ

)

− k2
∫ t

t0

D2(τ)dτ

]

. (2.184)

By antitransforming the above equation one finally gets that p(x, t|x0, t0) follows a Normal distri-
bution with

E{x(t)} = x0 +

∫ t

t0

D1(τ)dτ (2.185)

E{x(t)2} = 2

∫ t

t0

D2(τ)dτ. (2.186)

2.3 Ornstein-Uhlenbeck process

Let us now look at the Ornstein-Uhlenbeck process where D2 is still constant but D(1) = D1(v).
In this case

D(1)(v) = −γv(t) and D(2)(v) =
σ2

2
= const. (2.187)

The corresponding FP equation is

∂

∂t
p(v, t|v0, t0) = γ

∂

∂v
(v(t)p(v, t|v0, t0)) +

σ2

2

∂2

∂v2
p(v, t|v0, t0), (2.188)

with initial condition
p(v, t0|v0, t0) = δ(v − v0). (2.189)

By taking the Fourier transform of equation (2.188) one gets

∂

∂t
p̃(k, t|v0, t0) = −γk

∂

∂k
p̃(k, t|v0, t0)−

σ2k2

2
p̃(k, t|v0, t0) (2.190)

where the substitutions ∂/∂v → ik and v → i∂/∂k have been considered. The initial condition
becomes

p̃(k, t0|v0, t0) = eikv0 (2.191)

Eq. (2.190) is a first order PDE whose general form is

a(k, t)
∂p̃

∂k
+ b(k, t)

∂p̃

∂t
+ c(k, t)p̃ = 0 (2.192)

with initial condition p̃(k, t0|v0, t0) = f(k). This class of PDE’s can be solved with the method of

characteristics. The idea beyond this method consists in performing a change of coordinates from
(k, t) to a new coordinate system, say (k0, s), in which the PDE becomes an ordinary differential
equation (ODE) along a certain curves in the (k, t) plane. These curves {[k(s), t(s)] : 0 < s < ∞}
are called characteristic curves. The new variable s will vary while the new variable k0 will be
constant along the characteristics. The variable k0 will change along the initial curve (i.e. along
the line t = 0). The equations determining the characteristic curves can be obtained by the
following considerations. If one chooses the differential equations

dt

ds
= b(k, t) (2.193)

dk

ds
= a(k, t) (2.194)
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we get

dp̃

ds
=

dk

ds

∂p̃

∂k
+

dt

ds

∂p̃

∂t

= a(k, t)
∂p̃

∂k
+ b(k, t)

∂p̃

∂t
(2.195)

and along the characteristic curves the PDE becomes the ODE

dp̃

ds
+ c(k, t)p̃ = 0. (2.196)

with initial condition
p̃(k, t0|v0, t0) = p̃(k0, s0|v0, t0) = f(k0). (2.197)

The first step consists in solving the characteristic equations (2.193) (2.194) that in this case
become

dt

ds
= 1 (2.198)

dk

ds
= γk (2.199)

Eq. (2.198) gives t = s+A and using t(0) = 0 one gets t = s. In this situation the second equation
becomes

dk

dt
= γk , k(0) = k0 (points along the t = 0 axis) (2.200)

whose solution is
k = k0 exp (γ(t− t0)) . (2.201)

We now have the transformation from (k, t) to (k0, s), k = k(k0, s) and t = t(k0, s) and we can
solve the ODE (2.196)

dp̃

ds
= −σ2k2

2
p̃ (2.202)

with initial condition p̃(t0, k|t0, v0) = f(k0) = eik0v0 . We can pass from s to k by using the second
characteristic equation (eq. 2.199). This gives ds = dk

γk and plugging into eq. (2.202) one gets

dp̃

dk
= −σ2k

2γ
p̃ (2.203)

whose solution is

p̃ = f(k0) exp

(

−σ2

4γ
(k2 − k20)

)

= exp

(

ik0v0 −
σ2

4γ
(k2 − k20)

)

. (2.204)

The parameter k0 is then obtained by inverting eq. (2.201). By inserting the expression for k0 in
eq. (2.204) one gets

p̃ = exp

[

ike−γ(t−t0)v0 −
σ2k2

4γ

(

1− e−2γ(t−t0)
)

]

(2.205)

By antitransforming we obtain that the transition probability density p(v, t|v0, t0) for the OU
process follows a Normal distribution with mean

E{v|v0, t0} = v0e
−γ(t−t0), (2.206)

and variance

E{v2|v0, t0} =
σ2

2γ

(

1− e−2γ(t−t0)
)

, (2.207)
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namely

p(v, t|v0, t0) =
√

γ

πσ2
(

1− e−2γ(t−t0)
) exp

[

−γ
(

v − e−γ(t−t0)v0
)2

σ2
(

1− e−2γ(t−t0)
)

]

. (2.208)

In the limit γ → 0 the solution for the Wiener process is recovered. Note that the solution is valid
either for γ > 0 or for γ ≤ 0. For γ > 0 and in the limit γ(t − t0) >> 1 (large time scales) the
general solution converges to

p(v, t|v0, t0) →
√

γ

πσ2
exp

[

−γv2

σ2

]

(2.209)

i.e. the stationary solution (1.104) found previously with the method of the probability current.

2.4 Harmonic oscillator

It is interesting to notice that the Ornstein-Uhlenbeck process written in the space of coordinates
x furnishes the following Fokker-Planck equation

∂

∂t
p(x, t|x0, t0) = β

∂

∂x
(x(t)p(x, t|x0, t0)) +

σ2

2

∂2

∂x2
p(x, t|x0, t0). (2.210)

The above equation is similar to a Smoluchowski equation (1.46) for a Brownian particle that
experiences an external harmonic force FE(x) = −βx (i.e. with a potential U(x) = 1

2βx
2 where

β =
ω2

0

m is always positive. Hence all the results obtained before for the O-U process apply also to
this case with the substitutions v → x, γ → β.

2.5 Application to problems of metastability

The Fokker- Planck formalism can be applied to study the life time of a particle in a local potential
minimum that experiences thermal fluctuations. This is a direct application of the Kramers’
equation. Let us consider a particle in a potential V (x) and lat us suppose that the particle
occupies the equilibrium position a (local minimum of the potential). Due to thermal fluctuations
the particle eventually will overcome the potential gap of amplitude V0 in x = b. The process of
overcoming a potential barrier by thermal fluctuation is called thermal activation. This effect can
be, for example, represent the dissociation of a molecule in a solvent of temperature T . Kramers
supposed that the particle experience a random force f(T ) due to the fluctuations of the medium.
The goal is to compute the first time in which the particle leaves the minimum a x = a given that
at t = 0 it is in its neighborhood (leaving time). The deterministic equation would be

d2

dt2
x(t) = −V ′ (x(t))

m
− γv(t). (2.211)

If one switch on the thermal noise and if the thermal energy if weak compared to V0 (i.e. κBT <<
V0) the particle will eventually reach sufficient kinetic energy to overcome the barrier V0. The case
κBT >> V0 it is clearly not interesting since the particle in this case will overcome the barrier
quite easily. Before doing any calculation it is clear that a proper definition of the leaving time is
needed. In principle one has to solve the Kramers’ equation

∂tp(x, v, t) + v
∂

∂x
p(x, v, t) +

FE

m

∂

∂v
p(x, v, t)

= γ

(

∂

∂v
(vp(x, v, t)) +

κBT

m

∂2

∂v2
p(x, vt)

)

. (2.212)

with initial distribution centered in a and to determine the probability of finding the particle in
x ∈ {b,∞}. The leaving time can be the defined as the average of the first passage time of the
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V(x)

x

V
0

baa b
0 0

Figure 2.1: Sketch of the potential energy for the problem of the metastability.

particle in x = b. Since the potential considered is not a confining potential there are no stationary
states to be found and the solution of the Kramers’ equation becomes more difficult since it would
be a non stationary solution. However one can change slightly the problem in the following way:
one can imagine that once the particle has overcomes the point b, say in b0 it is reinserted in the
system with the same velocity to the left of the origin a0. This effect can be taken into account
by adding a term S(x, t) in the Kramers’ equation who plays the role of a sink in b0 (adorbing
boundary), of a source in a0 and that is zero for x ∈ [a0, b0]. Under these conditions a stationary
state is possible in the system with a stationary current between a0 and b0. It is not necessary
to make explicit the form for S(x, t) because we will concentrate only on the properties of the
stationary state. The effect of the adsorption in b0 is given by the boundary condition

p(x = b0, v, t) = 0. (2.213)

On the other hand, since the potential is confining for x → −∞ it is possible to consider a0 = −∞.
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Exercises

1. Let x = ±1. Show that

p(x, t|x′, t′) =
1

2

(

1 + e−2γ(t−t′)
)

δx,x′ +
1

2

(

1− e−2γ(t−t′)
)

δx,−x′ (2.214)

obeys the Chapman-Kolmogorov equation. Write p(x, t|x′, t′) as a 2×2 matrix and formulate
the Chapman-Kolmogorov equation as a property of that matrix.

2. The conditional probability that a stochastic variable Y takes the value y2 at time t2, given it
had value y1 at time t1 is

p(y2, t2|y1, t1) =
1

√

2π(t2 − t1)
exp

[

− (y2 − y1 − (t2 − t1))
2

2(t2 − t1)

]

, (2.215)

for all y1, y2 ∈ R and t2 > t1. Show that p(y2, t2|y1, t1) satisfies the Chapman-Kolmogorv
equation.

3. The 2D deterministic system (with positive constants ν and Ω

dx1

dt
= ν(1− x2

1 − x2
2)x1 − Ωx2

dx2

dt
= ν(1− x2

1 − x2
2)x2 − Ωx1 (2.216)

can be expressed in polar coordinates r =
√

x2
1 + x2

2, θ = tan−1 x1

x2
as

dr

dt
= ν(1− r2)r

dθ

dt
= Ω (2.217)

(to see that consider x1 = r cos θ and x2 = r sin θ). This represents a nonlinear oscillator
with an asymptotically stable limit cycle at r = 1. The rotation frequency Ω is constant.
The steady-state deterministic solution in the original variables x1 and x2 is

x1(t) = cos(Ωt+ θ0)

x2(t) = sin(Ωt+ θ0)

(2.218)

Since this system is asymptotically stable it is interesting to understand the effect of noise
upon the system (Risken chapt 12). Let us consider additive noise with independent equal in-
tensity noise source η1(t) and η2(t) in the two directions respectively. The Langevin equation
are

dx1

dt
= ν(1− x2

1 − x2
2)x1 − Ωx2 + η1(t)

dx2

dt
= ν(1− x2

1 − x2
2)x2 − Ωx1 + η2(t) (2.219)

with
〈ηi(t)ηj(t′)〉 = 2κδijδ(t− t′). (2.220)

(A) Write the FP equation for the joint PDF p(x1, x2, t).
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(B) Rewrite the FP in cylindrical polar coordinates (r, θ).

(C) Find a stationary solution ps(r, θ).

4. Consider the two dimensional stochastic process (X(t), V (t)) whose evolution is described by
the Langevin equations

∆x = v(t)∆t

∆v = −γv(t)∆t− ω2
0x(t)∆t+∆W (2.221)

A Write the corresponding 2D Fokker-Planck equation by first computing the coefficients

D(1)
x = lim

∆t→0

1

∆t
〈∆x〉

D(1)
v = lim

∆t→0

1

∆t
〈∆v〉

D(2)
xx = lim

∆t→0

1

∆t
〈(∆x)2〉

D(2)
xv = lim

∆t→0

1

∆t
〈(∆x)(∆v)〉

D(2)
vv = lim

∆t→0

1

∆t
〈(∆v)2〉. (2.222)

B Solve the Fokker-Planck equation with the initial condition

p(x, v, t → 0) = δ(x− x0)δ(v − v0). (2.223)

Hint: for the solution it is simpler to work with the independent variables

z1 = v + ax, z2 = v + bx, (2.224)

where
a =

γ

2
+ iω1 and b =

γ

2
− iω1. (2.225)


