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Langevin Equation

0.1 Langevin equation

The Einstein’s theory of Brownian motion is not a dynamical theory in the Newton’s sense since
there is no notion either of velocity or acceleration. A more elaborate model that takes into account
the inertial effects of the Brownian particles was introduced by P. Langevin in 1908. According to
classical mechanics, the motion of a mesoscopic particle in a fluid of microscopic particles would
be described by the Netwon’s second law:

m
d~v

dt
= ~FE + ~FT (1)

where

• ~FE is the sum of the external forces (gravitational field, electric field etc etc).

• ~FT is the sum of the forces that each molecule of the fluid exerts on the mesoscopic particle:

~FT =
∑

i

~fi. (2)

To have a complete description one should consider, in addition to eq. (1), the evolution equations
for the fluid particles and the solution of the full problem would correspond to solve N+1 coupled
differential equations with N comparable to the Avogradro’s number. Clearly this is an unsolvable
problem and one must rely on simplifications based on physically reasonable assumptions. This
is, for example, Langevin’s approach to the problem, a phenomenological classical approach, in
which the effect of the surrounding fluid on the motion of the mesoscopic particle is described as
follows:

Note. If the Brownian particle were a macroscopic object, the hydrodynamic (Stokes law) would
tell us that a good (approximate though) description of the interaction particle-fluid is given by
considering a viscous force

~Fv = −α~v (3)

where α is the damping coefficient that, for a spherical particle of radius a is given by

α = 6πaη (4)

with η being the fluid viscosity. This classical result can be obtained by considering the effect of
a uniform flow on a sphere at rest (Navier-Stokes in the Stokes regime with BC).

This is, however, a macroscopic description that cannot explain the never-ending and irregular
motion of the Brownian particle since, for ~FE = 0 an exponentially decreasing (and regular)
behaviour of the velocity is expected. The Langevin’s idea was then to consider two contributions

for ~FT .

1. The deterministic damping (Stokes) term

−α~v (5)
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2. A fluctuating term ~F (t) who represents the contributions of the continuous collisions of the
fluid molecules with the mesoscopic particle in the reference frame in which the particle is
at rest. This force is considered to be independent on the particle velocity but depends on
time.

With these hypothesis the equation of motion (Langevin equation) becomes:

m
d~v

dt
= −α~v + ~F (t), ~v =

d~r

dt
. (6)

The Langevin equation is historically the first example of a stochastic differential equation, that
is a differential equation with a random term ~F (t). For this reason the solution itself would be a
random function of time, i.e. a stochastic process.

0.2 Hypothesis on the Langevin force

Since the Langevin force ~F (t) is a random variable it is necessary to define its statistics. Let us

suppose that we have N different realization of the force ~F (t), {~F1(t), ~F2(t), · · · , ~FN (t)}. For a
given realization the Langevin equations are integrable giving a particular solution that depends
on the initial conditions. Suppose to consider the same initial condition for all the N realization
v(t = 0) = v0. In this case the N equations of motions will differ from one another by the term
Fi(t). For fixed i the Cauchy problem ((eq. 6) + initial conditions) admit a unique solution and
for N realizations of F there would be N distinct solutions {~v1(t), ~v2(t), · · · , ~vN (t)}. This form
N realizations of the ensemble of solutions that can be used to perform ensemble averages. It is
then important to define the statistical properties of ~F (t).

Hypothesis 0.2.1. Since the friction effect has been already taken into account and that ~F (t)
considers just the random effects of the collisions of the fluid molecules with the particle at rest
i.e. in a isotropic and homogeneous space, the average of ~F over the realizations must be zero:

〈~F (t)〉 = 1

N

N∑

i=1

~Fi(t) = 0 ∀t and N >> 1 (7)

As a consequence, the effects of the collisions, described by ~F (t) are, in average, zero and the only
systematic force acting on the particle would be the friction one.

Note. This hypothesis is necessary to get that, at equilibrium, the average velocity of the particle
is zero, as it must be in the case in which no external forces are present.

The correlation function of the force ~F (t) between the times t1 and t2 is defined operatively as

CF (t1, t2) ≡ 〈~F (t1)~F (t2)〉 =
1

N

N∑

i=1

~Fi(t1)~Fi(t2). (8)

Since the fluid (or thermal bath) is supposed to be in a stationary state (actually most of the
time it is supposed to be in thermodynamic equilibrium) the average taken at two different times

〈~F (t1)~F (t2)〉 depends only on the difference t1 − t2 and one can write

CF (τ) = 〈~F (t)~F (t+ τ)〉. (9)

The function CF (τ) is even with respect to τ (CF (τ) = CF (−τ)) and in general it decreases with
|τ | with a characteristic time τc (characteristic collision time).
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Hypothesis 0.2.2. We know that in general

CF (τ) ∼ exp(−t/τc) (10)

where τc is the correlation time of the Langevin force F related to the collisions with the sur-
rounding fluid. In other words for ∆t >> τc collision events occurring around t can be considered
statistically independent from the ones occurring around t + ∆t. The second assumption is the
so called two time scales hypothesis, i.e. that the collision times τc are much smaller that the
evolution time of the velocity ~v. In other words the time at which a collision occurs is much
smaller that all the other characteristic times of the problem such as, for example, the relaxation
time m/α of the average of the velocity ~v,

τc << m/α. (11)

One can also say that ~F (t1) and ~F (t2) are independent random variables for |t1 − t2| >> τc. We
can then formally write

〈~F (t1)~F (t2)〉 = Aδ(t1 − t2) (12)

where A ∈ R is a constant. We have then a δ-correlated random force. One can also say that the
random force considered follows the statistics of a white noise.

Note. Actually the delta function is not a function (but a distribution) and what we have formally
written above must be reconsidered in a more careful way. Will we do it later.

Hypothesis 0.2.3. Often, for simplicity, one supposes that ~F (t) is a Gaussian process. In this

case, given eq. (7), all the statistical properties of ~F (t) are simply obtained by knowing the
two points correlation function. This hypothesis can be justified starting from the central limit

theorem, if one considers that due to the big numbers of fluid molecules surrounding the mesoscopic
particle the force ~F (t) can be considered as a sum of a big number of elementary collisions. If
~F (t) is Gaussian process then the constant A is determined by the variance 〈~F (t)2〉 ≡ σ2 of the
Gaussian distribution and we get

〈~F (t1)~F (t2)〉 = σ2δ(t1 − t2) (13)

Remark. From the theory of the stochastic processes we know that an uncorrelated Gaussian
process is also independent. Hence, on the time scale of the evolution of v the process F (t) is a
completely random process.

0.3 Ornstein-Uhlenbeck’s integration method

This is a simple and elegant method to find the solution of the Langevin equation [2]. It works

nicely in the case of zero external force (~FE = 0) and for other few cases. For general cases the
approach based on the Fokker-Planck equation turns out to be more appropriate. Let us focus
for simplicity to the 1D case. The idea is to integrate the Langevin equation of motion for the
velocity

dv(t)

dt
= −γv(t) +A(t) (14)

with the initial condition v(t = 0) = v0 and where γ = α/m and A(t) = F (t)/m is the fluctuating
force per unit mass (fluctuating acceleration). This gives formally

v(t) = v0e
−γt +

∫ t

0

e−γ(t−s)A(s)ds. (15)

If we now average over several independent realizations of the stochastic force F keeping the same
initial condition v(0) = v0, since 〈A(t)〉v0

= 0 by hypothesis, we get

〈v(t)〉v0
= v0e

−γt. (16)



4 CONTENTS

0 50 100

time

0.01

1

100
 <

 v
(t

) 
 >

 v
0

Log y = 16.67 + 0.0988 x
Log y = 17.2 + 0.049 x
 γ = 0.05
 γ = 0.1

v
0
= sqrt ( 3 x 10

2
)=17.32

Figure 1: Log-linear plots of the time dependence of the averaged velocity for a Brownian motion
in d = 3. The velocity has been averaged over 1000 configurations and the two curves correspond
to two different values the γ.

The average velocity decreases exponentially to zero due to the damping term −γv. Figure 1 shows
the time dependence of the velocity averaged over 1000 configurations and for two different values
of γ. The model considered is a d = 3 Brownian motion. The plot is linear in x and logarithmic
in y. The linear behaviour clearly indicates an exponential decay of the average velocity from

the initial condition v0 =
√

v20x + v20y + v20z =
√
102 + 102 + 102 = 10

√

(3). The estimate of the

slopes agrees quite nicely with the real values of the γ parameter.

One can also easily compute the velocity-velocity correlation function

〈v(t1)v(t2)〉v0
= v20e

−γ(t1+t2) +

∫ t1

0

ds1

∫ t2

0

ds2e
−γ(t1−s1)e−γ(t2−s2) 〈A(s1)A(s2)〉

︸ ︷︷ ︸

= σ2

m2 δ(s1−s2)

(17)
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The term with the double integral can be simplified as follows

∫ t1

0

ds1

∫ t2

0

ds2e
γ(s1+s2)δ(s1 − s2) =

=

∫ ∞

0

ds1

∫ ∞

0

ds2e
γ(s1+s2)θ(t1 − s1)θ(t2 − s2)δ(s1 − s2)

=

∫ ∞

0

ds1e
2γs1 θ(t1 − s1)θ(t2 − s1)

︸ ︷︷ ︸

θ(min(t1,t2)−s1)

=

∫ min(t1,t2)

0

ds1e
2γs1

=
1

2γ

(

e2γ min(t1,t2) − 1
)

. (18)

By inserting eq. (18) in (17) and by using the identity t1+ t2−2min(t1, t2) = |t1− t2| one obtains

〈v(t1)v(t2)〉v0
= v20e

−γ(t1+t2) +
σ2

2m2γ

(

e−γ|t1−t2| − e−γ(t1+t2)
)

. (19)

In particular, for t1 = t2 = t, one obtains the behaviour of the mean squared velocity:

〈
v2(t)

〉

v0
= v20e

−2γt +
σ2

2m2γ

(
1− e−2γt

)
. (20)

Note. The subscript v0 reminds us that the initial velocity is not a random variable but is a fixed
value.

For short time scales the process v(t) is not stationary since its two point correlation function
is not simply a function of t1 − t2. To look for the stationary state one has to consider the limit
of long time scales, i.e., for t1, t2 very large. In this case one can assume γt1 >> 1 and γt2 >> 1
giving

〈v(t1)v(t2)〉v0
≃ σ2

2m2γ
e−γ|t1−t2|. (21)

Relations (16) and (21) indicate that for time scales longer than the characteristic time 1/γ, v(t)
is a stationary stochastic process in the weak sense. Note that in this regime the correlation
velocity-velocity correlation function does not depend on the initial condition v0 but only on the
time interval |t1 − t2|. By looking again at the particular case t1 = t2 we get, for the stationary
state,

lim
t→∞

〈v2(t)〉v0
=

σ2

2m2γ
(22)

In the large time scale (t → ∞), where the particle reaches a stationary state its average kinetic
energy is given by

〈K〉v0
=

1

2
m〈v2(t)〉v0

=
1

2
m

σ2

2m2γ
. (23)

If we now suppose that the stationary state coincides with the state of thermodynamic equilibrium
(particle in a thermal bath of temperature T ) one can determine the constant σ2 by assuming
that at equilibrium the equipartition of the energy holds that is (we are in d = 1):

〈E〉 = 1

2
κBT. (24)

We then have

lim
t→∞

1

2
m〈v2(t)〉 = 1

2
κBT, (25)
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Figure 2: Log-linear plots of the time dependence of the averaged squared velocity for a d=3
Brownian motion. The curves are obtained by averaging over 1000 independent configurations.
The two curves correspond to two different values of γ.
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giving

σ2 = 2mγκBT. (26)

With this value of σ2 the Langevin equation for v(t) can be written as

d

dt
v(t) = −γv(t) +

√

2mγκBTÂ(t), (27)

with 〈Â(t1)Â(t2)〉 = δ(t1− t2). In this respect the Langevin equation describes the thermalization
of a particle in a thermal bath at temperature T and with initial velocity v0.

Note. Remembering that
∫

R

〈A(0)A(t)〉dt =
∫

R

σ2δ(t)dt = σ2 = 2mγkBT (28)

eq. (26) gives

γ =
1

2mκBT

∫

R

〈A(0)A(t)〉dt. (29)

Eq. (29) says that the deterministic (dissipative) force is expressed in terms of the autocorrelation
function of the fluctuating (stochastic) force. This relation is known as the second theorem of

fluctuation-dissipation. Given the importance of this theorems let us formulate it in a more
canonical form.

0.3.1 Fluctuation-dissipation theorem for Langevin equation of motion

Suppose we consider a mesoscopic particle moving within a heat bath at temperature T . If an
external force FE(t), is switched on the time evolution of the particle velocity will follow the
Langevin equation

dv(t)

dt
= −γv(t) +

FE(t)

m
+

√

2mγkBTÂ(t) (30)

with
〈Â(t1)Â(t2)〉 = δ(t1 − t2). (31)

From the theory of linear response we know that due to the presence of an external force FE(t),
the system will respond with a variation of the average velocity field given by

〈v(t)〉 =
∫

R

χ(t− t′)FE(t
′)dt′ =

∫

R

χ(t′)FE(t− t′)dt′ (32)

where χ(t) is the response function (or mobility in this case) of the mesoscopic particle. Since
the response function must be casual (the response cannot precede the force which causes it),
χ(t− t′) = 0 if t− t′ < 0. From the Lagevin equation one has

d

dt
〈v(t)〉 = −γ〈v(t)〉+ 1

m
FE(t) (33)

that in Fourier space becomes

−iω ˜〈v〉(ω) = −γ ˜〈v〉(ω) + F̃E(ω)

m
(34)

and since
˜〈v〉(ω) = χ̃(ω)F̃E(ω) (35)

one gets the result

χ̃(ω) =
1

m

1

γ − iω
. (36)
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On the other hand we have shown that the velocity-velocity correlation function in the stationary
state behaves as

〈v(t)v(0)〉s ∼
kBT

m
e−γ|t| (37)

that in Fourier space becomes

C̃v(ω) =

∫

R

eiωt〈v(t)v(0)〉sdt =
2kBT

m

γ

γ2 + ω2
. (38)

From eq. (36) and eq. (38) one obtains

Im (χ̃(ω)) ≡ χ̃′′(ω) =
1

m
Im

(
1

γ − iω

)

=
1

m

ω

γ2 + ω2

=
ω

2kBT
C̃v(ω). (39)

Hence,

χ̃′′(ω) =
ω

2kBT
C̃v(ω), (40)

that is the fluctuation-dissipation theorem given in its canonical form [4]. To see that the imaginary
part of the response function is related to the energy dissipated by the system let us look for the
power absorbed by the system in presence of an external force FE(t).

0.3.2 Power absorption

The work done by an external force FE to change the observable v (in this case) by an amount dv
is

δW = −FEdv. (41)

This is the work done on the medium. On the other hand the average rate at which work is done
on the medium is just the power dW (t)/dt absorbed by the medium, i.e.

dW

dt
= −FE(t)

dv

dt
(42)

Since the above relation depends on the realization it is useful to consider the average over all the
realization with the external force FE fixed. This gives

〈
dW

dt

〉

= −FE(t)〈
dv

dt
〉. (43)

On the other hand, by the linear response theory (eq. 32) we have

〈
dW

dt

〉

= −FE(t)
d

dt

∫

R

χv(t− t′)FE(t
′)dt′. (44)

By writing the right-hand side in terms of the Fourier transforms χ̃v(ω) and F̃Ev(ω) one gets

〈
dW

dt

〉

= i(2π)−2

∫

R2

dωdω′ω′F̃Ev(ω)χ̃v(ω
′)F̃Ev(ω

′)e−i(ω+ω′)t. (45)

Given an expression for FE(t) one can then compute the power adsorbed by the medium.
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Example. Suppose that at time t = 0 a delta function force is applied i.e. FE(t) = F0δ(t). This
gives F̃Ev(ω) = F0 and by plugging it in equation (45) one gets

〈
dW

dt

〉

= i(2π)−2

∫

R2

dωdω′ω′χ̃v(ω
′)F 2

0 e
−i(ω+ω′)t. (46)

The total energy absorbed is then obtained by integrating over all times

W =

∫

R

〈
dW

dt

〉

dt = −(2π)−2

∫

R

dωωχ̃′′
v(ω)F

2
0 . (47)

Note that only the imaginary part of χ̃v(ω) is kept since the total absorbed energy is a real
quantity.

Example. Suppose to consider now a monochromatic force of the form

FE(t) = F0 cosωt =
1

2
F0

(
eiω0t + e−iω0t

)
. (48)

In this case
F̃Ev(ω) = πF0 (δ(ω + ω0) + δ(ω − ω0)) (49)

and from eq. (45) one obtains
〈
dW

dt

〉

= −F 2
0

4

[
(−iω0)

(
e−i2ω0t + 1

)
χ̃v(ω0) + (iω0)

(
ei2ω0t + 1

)
χ̃v(−ω0)

]
(50)

Clearly the istantaneous power absorption oscillates in time and one can compute the absorbed
power by taking the time average of the above equation over one period of oscillation:

W (t) =
ω0

π

∫ π/ω0

0

dt

〈
dW

dt

〉

=
iω0F

2
0

4
[χ̃v(ω0)− χ̃v(−ω0)] =

ω0F
2
0

2
χ̃′′
v(ω0) (51)

0.3.3 Velocity distribution function

It is possible to show that the random variable

u(t) ≡ v(t)− v0e
−γt (52)

follows the normal distribution, i.e., v ∈ N(0, var) where

V ar ≡ 〈u2(t)〉 = 〈
(
v(t)− v0e

−γt
)2〉 = σ2

2m2γ

(
1− e−2γt

)
=

kBT

m

(
1− e−2γt

)
. (53)

In other words the velocity v(t) follows the distribution law

p(v, t)v0
=

(
m

2πκBT (1− e−γt)

)1/2

exp

{

m

2κBT

(v(t)− v0e
−γt)

2

1− e−2γt

}

(54)

Notice that in the limit t → ∞, the distribution (54) approaches the well known Maxwell distri-
bution

Remark. The proof that the random variable u(t) follows a Normal distribution is easy but
cumbersome. It reduces to show that for the moments 〈u(t)m〉v0

the following relations hold
(Uhlenbeck and Ornstein, Phys. Rev. 36):

〈u(t)2m+1〉v0
= 0 (55)

〈u(t)2m〉v0
= (2m− 1)!〈u(t)2〉v0

. (56)

In other words one has to show that all the odd moments are zero and that all the even moments
can be expressed by the moment of order 2. This can be easily accomplished if the random force
F (t) follows itself a Normal distribution, namely F ∈ N(0, σ2) = N(0, 2γkBT/m).
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0.3.4 Velocity autocorrelation function and diffusion coefficient

From kinematics we know that, for sufficiently long times (t >> τv) the system is in the diffusive
regime, i.e.

〈x2〉 ≃ 2Dt (57)

with

D =

∫ ∞

0

〈v(0)v(t)〉dt. (58)

On the other hand, from the solution of the Langevin equation we now know

〈v(t1)v(t2)〉v0
= v20e

−γ(t1+t2) +
σ2

2m2γ

(

e−γ|t1−t2| − e−γ(t1+t2)
)

(59)

that, for γt1 >> 1, γt2 >> 1 simplifies to

〈v(t1)v(t2)〉v0
≃ σ2

2m2γ
e−γ|t1−t2|. (60)

By putting τ = t1 − t2 we then have

〈v(t)v(t+ τ)〉v0
≃ σ2

2γ
e−γ|τ | (61)

giving

τv = γ−1 . (62)

This relation shows that the average interval beyond which the velocities of the Brownian particle
are essentially uncorrelated coincides with the inverse of the damping parameter. Moreover

D =

∫ ∞

0

〈v(0)v(t)〉dt

=

∫ ∞

0

σ2

2m2γ
e−γtdt =

σ2

2m2γ

[

−e−γt

γ

]∞

0

=
σ2

2m2γ2
(63)

and remembering that σ2 = 2mγκBT we get the Einstein’s relation

D =
κBT

mγ
=

κBT

α
≡ µκBT , (64)

where µ = (α)−1 is called mobility of the particle.

0.3.5 Simple applications of Einstein’s relation

As an application we can compute the diffusion coefficient of a colloidal particle in water. We
assume for simplicity a spherical particle of radius a = 1µm. The viscosity of the water is roughly
η = 10−3Pas. Since the Boltzmann constant is 1.38 × 10−23 Joule per degree at the room
temperature we may have

kBT = 4.1× 10−21J = 4.1pNnm. (65)

By plugging all the values in eq. (64) we have

D ∼ 4.1pNnm

6π10−3Pas× 103nm
= 2× 106nm2/s (66)
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where we have used the definition of Pascal

1Pa =
1N

1m2
=

1012pN

1018nm2
= 10−6pN/nm2. (67)

It is interesting to notice that the diffusion coefficient is inversely proportional to the linear size
of the particle: smaller particle will have a larger diffusion coefficient. For example if we replace
the colloidal particle with a protein of typical linear size a = 5nm we get a diffusion coefficient
(still in water)

D ∼ 108nm2/s. (68)

From the relation 〈x2〉 ≃ Dt we can see that, on average, a protein (in water) will travel 10µm in
one second.

Suppose now to consider the case of a bacterium such as the E.Coli. Despite the E. Coli is a
spherocylinder with dimensions ∼ 5−µm×0.8µm we can assume for simplicity he has a spherical
shape with radius 1µm. Since it is known that this bacterium tumbles every ∆t ≃ 1s after having

travelled linearly for ∆x ≃ 30µm, a simple estimate of its diffusion coefficient is ∆x2

6∆t ≃ 150µm2s−1

i.e. two orders of magnitude larger than the corresponding ”close-to-equilibrium” colloidal particle.
Suppose that the bacterium is in equilibrium and that the fluctuation-dissipation theorem holds.
In particular we can start from the Einstein’s relation D = kBT

α and find for the Dbact estimated
above which it would be the corresponding equilibrium T . By plugging the values above this
would give a fictitious temperature of the order of 90.000K !!!

This is a clear indication that a bacterium such E. Coli in suspension with water is not an
equilibrium system.

0.3.6 Fluctuations of the positions

We can now consider the fluctuations of the positions. From the integration of the velocity

v(t) = v0e
−γt + e−γt

∫ t

0

eγsA(s)ds (69)

one obtains for the position x(t)

x(t) = x0 +

∫ t

0

v(s)ds = x0 +
v0
γ

(
1− e−γt

)

+

∫ t

0

dse−γs

∫ s

0

eγqA(q)dq. (70)

By taking the average values and remembering the statistics of F (t) we get

〈x(t)〉v0
= x0 +

v0
γ

(
1− e−γt

)
. (71)

In particular the average distance covered in the time interval t, with average velocity 〈v(t)〉 is
given by:

〈s(t)〉v0
≡ 〈x(t)〉v0

− x0 =
v0
γ

(
1− e−γt

)
=

1

γ
(v0 − 〈v(t)〉v0

) . (72)

In figure 3 the time dependence of the x coordinate of a d = 3 Brownian particle is plotted for
two different values of γ. One can easily see that the curves behave indeed as in Eq. (71).

By using the expression for 〈x(t)〉v0
we can write the law for the position x(t) as

x(t) = 〈x(t)〉v0
+

∫ t

0

dse−γs

∫ s

0

eγqA(q)dq. (73)
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Figure 3: Time dependence of the averaged x-coordinate of a d=3 Brownian motion. The two
curves are obtained by averaging over 1000 independent configurations and correspond to two
different values of γ.
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Integrating by part, where

f(s) =

∫ s

0

dqeγqA(q), g′(s) = e−γs, (74)

one obtains
∫ t

0

ds

[

e−γs

∫ s

0

dqeγqA(q)

]

=

[

− 1

γ
e−γs

∫ s

0

dqeγqA(q)

]t

0

−
∫ t

0

ds

(

−e−γs

γ

)

eγsA(s)

= −e−γt

γ

∫ t

0

dqeγqA(q) +

∫ t

0

ds
A(s)

γ
. (75)

Hence,

x(t) = 〈x(t)〉v0
− e−γt

γ

∫ t

0

eγsA(s)ds+
1

γ

∫ t

0

A(s)ds. (76)

The mean square for the fluctuations of the distance covered in time t can be obtaining by using its
relation with the autocorrelation function of the velocities (see kinematics). Indeed if one assumes
the initial conditions x(0) = x0 and v(0) = v0 the variance of the distance s is:

〈s2(t)〉v0
≡ 〈(x(t)− x0)

2〉v0

=

〈[∫ t

0

v(t1)dt1

]2
〉

v0

=

〈∫ t

0

v(t1)dt1

∫ t

0

v(t2)dt2

〉

v0

=

∫ t

0

∫ t

0

〈v(t1)v(t2)〉v0
dt1dt2. (77)

By using eq. (19) one gets

〈s2(t)〉v0
=

∫ t

0

dt1

∫ t

0

dt2〈v(t1)v(t2)〉v0

=
σ2

2m2γ









∫ t

0

dt1

∫ t

0

dt2e
−γ|t1−t2|

︸ ︷︷ ︸

=2
∫

t

0
dt1

∫ t1
0 dt2e−γ(t1−t2)

−
(∫ t

0

dt1e
−γt1

)2









+ v20

(∫ t

0

dt1e
−γt1

)2

=
σ2

2m2γ

[

2

(
t

γ
+

e−γt − 1

γ2

)

−
(
1

γ

(
e−γt − 1

)
)2

]

+ v20

(
1

γ

(
e−γt − 1

)
)2

, (78)

Giving,

〈s2(t)〉v0
=

σ2

m2γ2
t+

σ2

2m2γ3

(
4e−γt − e−2γt − 3

)
+ v20

(
1

γ

(
e−γt − 1

)
)2

(79)

Now let us look at two extreme cases:

Ballistic (early times) regime For very small time scales t ≃ 0 and by developing the terms
e−γt and e−2γt of Eq. (79) in power of t one can see that, in order to have a non zero
contribution, the terms up t3 must be taken into account. Indeed

〈s2(t)〉v0
≃ σ2

m2γ2
t

+
σ2

2m2γ3

(

4

(

1− γt+
γ2t2

2
− γ3t3

6

)

−
(

1− 2γt+
4γ2t2

2
− 8γ3t3

6

)

− 3

)

+
v20
γ2

(−γt)2

= (v0t)
2 +

σ2

3m2
t3 + other terms in t3. (80)
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Finally

〈s2(t)〉v0
≃ (v0t)

2. (81)

Hence, for small t one finds the law of ballistic motion
√

〈s2〉v0
≃ v0t. This is reasonable

since, in the early time regime (t ≃ τc) the collisions with the fluid molecules have not been
sufficiently effective.

Diffusive (large times) regime For large times scales, i.e. for γt >> 1 one has:

〈s2(t)〉v0
≃ σ2

m2γ2
t+

v20
γ2

− 3σ2

2m2γ3

≃ σ2

m2γ2
t. (82)

On the other hand σ2 = 2γκBTm = 2Dm2γ2 giving at late times:

〈s2〉v0
≡ 〈(x(t)− x0)

2〉v0
≃ 2κBT

γm
t = 2Dt. (83)

This regime, where

√

〈(x(t)− x0)
2〉v0

∝
√
t is called Diffusive regime.

Note. In d dimensions, since 〈s2〉 = 〈∑d
i=1 x

2
i 〉 we have

〈s2〉v0
= 2dDt (84)

that in three dimensions becomes

〈s2〉v0
= 6Dt, d = 3 (85)

In figure 4 the time dependence of the averaged squared position is plotted for two different values
of γ. One can indeed notice the two time scale regimes. In summary we can say that the Langevin
theory interpolates quite well between the ballistic and the diffusive regime.

Note. Up to now we have supposed that the particle has a well defined initial value of the velocity
v0. If this is not the case one can assume, for example, that the particle, before being inserted
in the heat bath with temperature T was is in solution with a fluid at equilibrium at different
temperature T1. It is then natural to replace v20 with its thermal average κBT1/m. The previous
relations (19) and (79) then become (dropping now the subscript v0):

〈v(t1)v(t2)〉 =
kBT1

m
e−γ(t1+t2) +

σ2

2m2γ

(

e−γ|t1−t2| − e−γ(t1+t2)
)

. (86)

and

〈s2(t)〉 = σ2

m2γ2
t+

σ2

2m2γ3

(
4e−γt − e−2γt − 3

)
+

kBT1

m

(
1

γ

(
e−γt − 1

)
)2

(87)

Note that in order to obtain eqs. (86) and (87) one is implicitly assuming that 〈v0〉T1
= 〈x0〉T1

= 0
and that x0 and v0 are statistically independent so that 〈x0v0〉T1

= 0.

0.3.7 Positions distribution function

As in the case of the velocities it is possible to show that the random variable

S(t) ≡ s(t)− v0
γ
(1− e−γt) = x(t)− x0 −

v0
γ
(1− e−γt) (88)
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Figure 4: Log-Log plots of the time dependence of the averaged squared distance for a d=3
Brownian motion. The curves are obtained by averaging over 1000 independent configurations.
The two curves correspond to two different values the γ.
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follows a Normal distribution, i.e., S(t) ∈ N(0, var), with

var = 〈S2(t)〉 = 〈s2(t)〉 − 2〈s(t)〉v0
γ
(1− e−γt) +

v20
γ2

(1− e−γt)2. (89)

As for the velocity case one has to show that

〈S2m+1〉 = 0

〈S2m〉 = (2m− 1)!〈S2〉. (90)

The proof is similar to the case of the velocity and relies on the assumption that the statistics of
the random force is the one of the white noise with Gaussian statistics. One then obtains for the
one-point distribution function

p(x, t)x0
=

[
mγ2

2πκBT (2γt− 3 + 4e−γt − e−2γt)

]1/2

exp






mγ2

2κBT

(

x− x0 − v0

γ (1− e−γt)
)2

2γt− 3 + 4e−γt − e−2γt




, (91)

and for large time scales one gets

p(x, t)x0
≃

(
1

4πDt

)1/2

e
1

4πDt
(x−x0−v0/γ)

2

. (92)

0.4 Remarks on the Langevin approach

There are some remarks on the meaning of the random force that are worth to be mentioned:

1. The statistical properties of the random force considered in the Langevin approach are the
ones of a delta-correlated noise, i.e.

〈F (t)〉 = 0 (93)

〈F (t1)F (t2)〉 = σ2δ(t1 − t2) (94)

It is also known as withe noise since the power spectrum of F (t), namely the Fourier trans-
form of its autocorrelation function (the F (t) is a stationary process) is given by

S(ω) =

∫

R

eiωτ 〈F (0)∗F (τ)〉dτ =

∫

R

eiωτσ2δ(τ)dτ = σ2. (95)

In other words the power spectrum does not depend on the frequency (it does not depend on
the colour i.e. is white).

2. We have seen that, by integrating the equation of motion, starting from a white noise force
we get a new random variable v(t) with the following statistical properties

〈v(t)〉 = v0e
−γt (96)

〈v(t1)v(t2)〉 = v20e
−γ(t1+t2) +

σ2

2m2γ

(

e−γ|t1−t2| − e−γ(t1+t2)
)

(97)

that in the large time scale limit become

〈v(t)〉 ≃ 0 (98)

〈v(t1)v(t2)〉 ≃ σ2

2m2γ
e−γ|t1−t2|. (99)
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In this limit the v(t) is a stationary stochastic process but it is not delta-correlated. The
process exhibits instead a correlation function that decays exponentially with τ = t1 − t2 as

〈v(t1)v(t2)〉 ≃
D

τv
e−τ/τv (100)

where τv = 1/γ and D = σ2

2m2γ2 . This statistics is typical of a coloured noise since its power
spectrum is given by

S(ω) =

∫

R

eiωτCv(τ)〉dτ (101)

≃ D

τv

∫

R

eiωτe−τ/τvdτ

=
D

τv

1/τv
ω2 + 1/τ2v

=
D

τ2vω
2 + 1

. (102)

This spectrum show a Lorentzian behaviour that depends on the frequency ω.

3. When we have made the hypothesis

〈A(t)A(t+ s)〉 = σ2

m2
δ(s) (103)

we have implicitly introduced a pathological term in the mathematical description of the
Brownian motion and some caution must be taken into account. Indeed δ(s) is not a function
and this is reflected somehow from the fact that is not possible to draw A(t) as so it is dv/dt.
The fact that dv/dt is not a function implies that v(t) is nowhere differentiable. On the
other hand if one looks at the motion of the particle on time intervals that are smaller than
the average time between two consecutive collisions one would see a free motion. The limit
s → 0 really means that very small time, but not infinitesimal, are considered. The key point
(already mentioned before) is that the time evolution of v(t) is much slower then the one of
the fluctuating force. To see that let us integrate the Langevin equation (14) between t and
t+∆t. By assuming that in the time interval ∆t many collisions occur but the variable v(t)
does not vary significantly one gets

∆v ≡ v(t+∆t)− v(t) = −γv(t)∆t+

∫ t+∆t

t

A(s)ds. (104)

The term
∫ t+∆t

t

A(s)ds ≡ ∆W (∆t) (105)

represents the net acceleration experienced by the Brownian particle in a time interval ∆t
due to collisions. Clearly

∆W ≡ W (t+∆t)−W (t) (106)

where

W (t) =

∫ t

0

A(s)ds. (107)

Let us now deduce the statistical properties of W (t) knowing the ones of A(t). Clearly, from
〈A(t)〉 = 0 one gets

〈W (t)〉 =
∫ t

0

〈A(s)〉ds = 0 (108)
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whereas from the property 〈A(s1)A(s2)〉 = σ2

m2 δ(s1 − s2) one obtains

〈W (t1)W (t2)〉 =

∫ t1

0

ds1

∫ t2

0

ds2〈A(s1)A(s2)〉

=
σ2

m2

∫ t1

0

ds1

∫ t2

0

ds2δ(s1 − s2)

=
σ2

m2

∫ ∞

0

ds1

∫ ∞

0

ds2δ(s1 − s2)θ(s1 − t1)θ(s2 − t2)

= σ2

∫ ∞

0

ds1θ(s1 − t1)θ(s1 − t2)

=
σ2

m2

∫ ∞

0

ds1θ (min (t1, t2)− s1)

=
σ2

m2

∫ min (t1,t2)

0

ds1 =
σ2

m2
min (t1, t2). (109)

Moreover, if we assume A(t) to be Gaussian also W (t) will be Gaussian since the two
processes are related through a linear transformation (the integral) (see Lemma ??). Sum-
marizing we have for W (t) the following properties

• W (t) is a Gaussian process. Hence is completely determined by the properties

• 〈W (t)〉 = 0,

• 〈W (t1)W (t2)〉 = σ2

m2 min (t1, t2).

It is then clear that the integral of the white noise A(t) is a Wiener-Levy process.

Remark. Despite A(t) is a stationary process, W (t) is not stationary since 〈W (t1)W (t2)〉 =
σ2

m2 min (t1, t2) is not a function of the difference t1 − t2.

Given that W (t) is a Wiener process we have (see eq. (??) in chapter on stochastic processes)

〈

(W (t+∆t)−W (t))
2
〉

=
σ2

m2
∆t. (110)

Hence from eqs. (??) and (105) one obtains the Langevin equation in differential form:

∆v(t) = −γv(t)∆t+
σ

m
∆t1/2∆Ŵ (t) (111)

v(0) = v0

where ∆Ŵ (t) is an uncorrelated stationary Gaussian process with variance 1 and average 0 (i.e.
∆Ŵ (t) ∈ N(0, 1). Since σ2 = 2γmkBT eq. (112) can be more written more explicitely ad

∆v(t) = −γv(t)∆t+

√

2γkBT∆t

m
∆Ŵ (t) (112)

Eq. (112) is the usual starting equation for a numerical simulation of a Brownian motion.

Remark. There are different classes of white noise that are defined in terms of the derivative

A(t) =
dz(t)

dt
(113)

where z(t) is a stochastic process with independent and stationary increments. We will see later
that the derivative of the Wiener process defines the Gaussian white noise. The derivative of a
Poisson process defines instead the so called white shot noise.
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0.5 Brownian motion as Markov process

The next question that arises naturally is the following:
Is the Brownian motion a Markov process ?
First it is important to notice that for Brownian motion one could mean the stochastic processes
x(t), v(t) or the bi-dimensional process [x(t), v(t)]. Let us consider first the processes v(t).

Ornstein-Uhlenbeck process v(t) We have seen that this process is the solution of the stochas-
tic equation (112) where dŴ (t) is a temporally uncorrelated normal random variable. From
eq. (112) one can immediately says that

• The process v(t) is continuous, because eq. (112) implies that v(t + dt) → v(t) as
dt → 0.

• The process v(t) ismemoryless orMarkovian, because, following (112), the computation
of v(t + dt) starting from v(t) requires no knowledge of any values of v(t′) for t′ < t.
Another important property of eq. (112) is its so called unique self-consistency [7]. This
goes as follows: if we split the time evolution from v(t) to v(t+ dt) into the two steps
t → t + dt/2 and t + dt/2 → t + dt, the corresponding two iterations of eq. (112) will
give the same result (statistically and to lowest order in dt) as the single application
t → t + dt. Note that for σ2 = 0 eq. (112) defines the evolution of a deterministic

process v(t) that not only is continuous but also differentiable. If on the other hand
σ2 > 0 the last term of the equation is ill behaved in the limit dt → 0 and the process
v(t) is not differentiable.

Process x(t) Since this process is the integral of the continuous Markov process v(t) it is perfectly
defined and it evolution equation would be given by

x(t+ dt) = x(t) + v(t)dt. (114)

On the other hand this equation does not have the form of eq. (112) since its right-hand
side involves a process other than x(t). For this reason x(t), i.e. the integral of the Markov
process v(t), is not itself a Markov process. (However we will see later that the overall
process {x(t), v(t)} constitute a bivariate Markov process.

Wiener process W (t) It is interesting to notice that within the stochastic differential approach
the Wiener process can be defined as the solution of the Langevin equation obtained by
putting γ = 0 in eq. (112) i.e. a Brownian motion with no damping term:

∆v(t) =
σ

m
∆Ŵ (t). (115)

Clearly in this case the particle wouldn’t reach any stationary state and the connection
between σ2 and γ is lost. It is then apparent that the Wiener process is a continuous

Markov process.

0.6 Hydrodynamic effects on Brownian motion

In the classical Langevin’s theory presented above when have seen that the friction force is istan-
taneously linear with the particle’s velocity, i.e. Fv ∼ −αv. However, when the particle receives
momentum, it displaces the fluid molecules in its immediate vicinity and beacuse of a non-negligible
fluid inertia the sorrounding flow field is altered and acts back on the particle motion. In particular
the time development of the vorticity field that forms around the particle is not taken into account
properly by the classical Langevin theory. The friction force then must included some terms that
depends on the past motion of the particle. These long-memory ( hydrodynamic) effects give rise
to the following new effects in the Brownian motion.
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• The motion of the Brownian particle persists in a given direction until the fluid momentum
(or vorticity) generated by the particle itself diffuses away. If a is the radius of the particle
and η and ρfl are respectively the viscosity and the density of the fluid, this occurs in a time
scale τfl = ρa2/η which corresponds to the time it takes the vorticity to diffuse a particle
radius away.

• Because of the ffect just described the transition from the ballistic to the diffusive regime
occurs at later times than the ones predicted by the simple Langevin theory. One can say
roughly that a purely diffusion regime sets in on time scales of the order of 103τfl. More
precisely, it turns out that the classical Langevin prediction

〈s2〉
2Dt

∼ 1 +
Cτv
t

(e−t/τv − 1) (116)

where τv = 1/γ = m/α =
4a3ρpπ/4

6πaη = 2
9a

2ρp/η, must be replaced by

〈s2〉
2Dt

∼ 1− 2

√
τfl
πt

+B
τfl
t

− τv
t
+ corr. terms. (117)

• The exponential decay of the velocity autocorrelation function

Cv(τ) ∼ exp−(tγ) (118)

must be replaced by an algebraic decay, the so-called long-time tail behaviour

Cv(τ) ≡ 〈v(t)v(0)〉 ∼ D
√

τfl/4πt
−3/2, (119)

at times t ≥ τfl. This long-tail behaviour was first observed by Adler and Wainwright [13]
in a simulation of the motion of a tagged particle in a hard-sphere fluid. In general they
obtained a long-time-tail behaviour t−d/2 where d is the dimensionality of the system. This
algebraic long-time tail gives a crucial contribution to the diffusion coefficient in d = 3. In
d = 1 and d = 2 this contribution is more dramatic since the integral

D =

∫

R

Cv(τ)dτ (120)

diverges and the diffusion law is not obeyed any more.

A simple,qualitatively, explanation of the velocity correlation function slow decay referes back to
the picture of the Brownian molecules moving inside the fluid. In fact a moving particle compresses
the liquid in front of it and rarefies the liquid behind it. This causes the formation of a vortex
flow that circulate around the particle. The vortex creates a long-time push from behind. The
vortex field occupies a volume of the fluid whose typical dimension grows diffusively i.e. as t1/2.
Hence its volume increases with time as td/2. Momentum coservation in this region leads to the
strength of the push felt by the Brownian particle decreasing as t−d/2.

A way to take into account the conservation of momentum of the fluid in Brownian motion is
by using a modified Langevin equation (known also as Stokes-Boussinesq equation) of the following
kind

m
dv

dt
= −ξ(ρ(a))v − 2π

3
ρpa

3 dv

dt
− 6a2(πρpη)

1/2

∫ t

−∞

dv

dt′
(t− t′)−1/2dt′ + F (t) (121)

where the Stokes-Cunningham coefficient ξ(a) becomes 6πηq and 4πηa respectively for stick and
slip boundary conditions. The first rerm in the right hand side of the equation is the usual friction
coefficient, the second is connected with the virtual mass of sphere in an uncompressible fluid,
and th ethird is a memory term associated with the hydrodynamic retardation effects and related
to the penetration depth of viscous unsteady flow around a sphere. A way to solve the above
equation is by Laplace transform (see Clercx and Schram PRA , 46, 1942 (1992)).
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Typical lenghts involved in experiments on Brownian motion

If one considers a, say, silica sphere of 2.25µm (ρp = 1.96g/cm3) immersed in water (ρfl =
1g/cm3, η = 10−3Pa · s) we have τv = 2.2µs and τfl = 5.1µs.

0.7 Testing the Langevin theory of Brownian Motion

0.7.1 Direct observation of nondiffusive motion for a Brownian Particle

Main reference: [12]
The thermal fluctuations of the position of a single micron-sized sphere (polysterene: radius=
a = 0.265, 0.5, 1.205, 1.25µm or silica (a = 1.2µm) suspended in water were recorded by optical
trapping interferometry with nanometer spatial and microsecond temporal resolution. More pre-
cisely the particle was confined inside a weak and harmonic optical trapping potential which adds
a force term Fext = −kx to the Langevin equation.

The authors in [12] found that, in accord with the theory of Brownian motion including hy-
drodynamic memory effects (see section above), the transition from ballistic to diffusive motion
is delayed to significantly longer times than predicted by the standard Langevin equation. This
delay is a consequence of the inertia of the fluid. On the shortest time scales investigated, the
spheres inertia has a small, but measurable, effect.

0.7.2 A direct measure of instant velocity in rarified gases

Main reference: [10]
They report on the Brownian motion of a single, micrometer-sized of glass held in air by a dual-
beam optical tweezer, over a wide range of pressures, and they measured the instantaneous velocity
of a Brownian particle. The velocity data were used to verify the Maxwell-Boltzmann velocity
distribution and the equipartition theorem for a Brownian particle. For short times, the ballistic
regime of Brownian motion was observed, in contrast to the usual diffusive regime.

For a 1µm-diameter silica (SiO2) sphere in water, τv is about 0.1µs and the root mean square
(rms) velocity is about mm/s in one dimension. Hence, in order to measure the instantaneous
velocity with 10% of uncertainty, one would require 2− pm spatial resolution in 10ns, far beyond
what is experimentally achievable today. On the other hand, because of the lower viscosity of gases,
compared to liquids, the τv = m/α of a particle for example in air is much larger. This lowers
the technical demand for both temporal and spatial resolution. The main difficulty of performing
high-precision measurements of a Brownian particle in air, however, is that the particle will fall
under the influence of gravity. The authors overcome this problem by using optical tweezers
to simultaneously trap and monitor a silica bead in air and vacuum, allowing long-duration,
ultrahigh-resolution measurements of its motion.

With these measures the authors have been able to have a direct verification of the Maxwell-
Boltzmann distribution of velocities and the equipartition theorem of energy for Brownian motion:

lim
t→∞

√

〈v2(t)〉 =
√

kBT/m. (122)

0.8 The Johnson (thermal) noise and the Nyquist theory.

One might naively believe that if all sources of electrical power are removed from a circuit than
there will be no voltage across any of the components, a resistor for example. On average this
is correct but a closer look at the rms voltage would reveal the presence of a ”noise” voltage at
equilibrium. This intrinsic noise was first discovered by Johnson in 1928 [5] when he shows that its
nature is purely a thermal one. This effect was then explained thermodynamically by Nyquist [6]
who gave for the averaged squared noise voltage (in a given band of frequency ∆f) the following
expression

〈∆V (t)2〉 = 4κBRT∆f, (123)
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where κB is the Boltzmann constant and T , R are respectively the temperature and the resistance
of the circuit.

0.8.1 Microscopic derivation of the Nyquist formula

By using the Langevin approach it is possible to deduce the Nyquist formula for the Johson
starting from the microscopic system. Let us suppose that the motion of the electrons in a circuit
of resistance R and at equilibrium with temperature T can be described by the following Langevin
equation (we still consider a 1D system for semplicity) :

m
du

dt
= −m

tc
u+ F (t) (124)

where u(t) is the velocity of the electrons and tc is the collision time i.e. the time after which the
collisions between the electron and the atoms of the crystal destroys completely the memory of
the previous dynamical state of the electron itself. As for the Brownian motion F (t) is a Gaussian
white noise.

Note. In the classical Brownian motion the mass of the Brownian particle is usually much bigger
than the one of the molecules of the fluid. Here this is not true since the electrons have mass much
smaller than the ones of the atoms of the conductor. On the other hand the Langevin picture is
still valid since at each interaction the average energy transferred from the medium to the electrons
is much smaller of their average kinetic energy. That’s was also true for the Brownian particle
because of its big mass (compared to the mass of the fluid molecules).

By calling γ = 1/tc we then have the usual Langevin equation:

du

dt
= −γu+

1

m
F (t). (125)

This equation has been already integrated before and in particular it gives for the velocity corre-
lation function the expression (see Eq. (19)):

〈u(t)u(t+ τ)〉u0
= u2

0e
−γ(2t+τ) +

σ2

2m2γ

(

e−γ|τ | − e−γ(2t+τ)
)

=

(

u2
0 −

σ2

2m2γ

)

e−γ(2t+τ) +
σ2

2m2γ
e−γ|τ |. (126)

Since in a metal at room temperature tc is of order 10−13s the first term of Eq. (126) can be
neglected being t/tc very big. This is the usual approximation for large time scale and gives

Cu(τ) = ū2e−γτ , where ū2 =
σ2

2m2γ
=

σ2tc
2m2

. (127)

If we now consider a conductor of resistance R with a charge carrier density n, and unitary
cross-sectional area and length, the voltage V across the conductor is

V = IR = Rj = Rneū (128)

where I is the current, j the current density, e the electron charge, and ū is the average speed
along the conductor. Since n is the total number of electrons in the conductor,

∑

i

ui(t) = nū (129)

Solving for ū in eq. (129) and substituting into eq. (128) gives,

V =
∑

i

Vi = eR
∑

i

ui (130)
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where ui(t) and Vi(t) are stochastic processes. The correlation function of the velocity can then
be converted to the correlation function of the potential in the following way:

CVi
(τ) = 〈Vi(t)Vi(t+ τ)〉 = (eR)2ū2e−τ/tc (131)

In the stationary state the W-K theorem applies and we get the spectral density of V 2 as

G(f) = 4

∫ ∞

0

CVi
(τ) cos (2πfτ)dτ

= 4(eR)2ū2

∫ ∞

0

e−τ/tc cos (2πfτ)dτ

= 4(eR)2ū2 tc
1 + (2πftc)2

. (132)

Since tc ≃ 10−13s and unless one considers signals with very high frequencies one can assume
2πftc << 1 giving

G(f) ≃ 4(eR)2ū2tc. (133)

Now let us suppose that at equilibrium the statistics of the electrons is the Boltzmann’s one. From

the equipartition theorem we know that σ2 = 2γmκBT and since ū2 = σ2

2m2γ we get ū2 = κBT
m .

Hence

G(f) = 4(eR)2
κBT

m
tc. (134)

Hence the mean-square voltage in the frequency range ∆f becomes:

〈∆V 2〉 = n〈∆V 2
i 〉

= nG(f)∆f

= n4(eR)2
(
κBT

m

)

tc∆f

= 4

(
ne2tc
m

)

R2κBT∆f. (135)

We now note that, from the classical (microscopic) theory of the electronic conduction (Drude
model), the electrical conductivity σc is given by

σc =
ne2tc
m

. (136)

On the other hand, if one considers a resistor of unitary dimension (unit section area and unit
length) R = 1/σc and by putting all together we finally get the result, i.e

〈∆V 2〉 = 4 σc
︸︷︷︸

1/R

R2κBT∆f, (137)

and the Nyquist theorem

〈∆V 2〉 = 4κBTR∆f (138)

is recovered.

Note. It is possible to show that the Nyquist formula holds also in the case in which we use the
Fermi-Dirac statistics for the electrons at equilibrium.
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0.8.2 Experimental estimate of the Boltzmann constant κB

In the previous sub-section we have just shown that in an interval of frequencies ∆f the average
squared potential difference at the ends of a resistor R for an open circuit at temperature T is
given by

〈∆V 2(t)〉 = 4RκBT∆f. (139)

In generale this potential difference is too small to be measured without amplifying the signal. If,
on the other hand, the resistance R is connected to one end with an amplifier having an high gain
Ga(f) and a very small noise, at the exit of the amplifier there will be the following signal

〈∆V 2(t)〉 = 4κBTR

∫ ∞

0

[Ga(f)]
2
df + 〈V (t)2N 〉, (140)

where 〈V (t)2N 〉 is the output noise generated by the amplifier itself. By measuring and plotting
〈V (t)2〉 as a function of R one then obtains the quantity

4κBT

∫ ∞

0

[Ga(f)]
2
df (141)

from the slope, while the intercept will give an estimate of 〈V (t)2N 〉. On the other hand, the
gain Ga(f) of the amplifier can be measured through an independent measure and, consequently,

an estimate of the integral
∫∞

0
[Ga(f)]

2
df can be obtained. Hence the slope will give (since the

temperature T can be estimated by different means) an estimate of κB (∼ 1.38× 10−23J/K).

0.8.3 Shot noise

While the thermal noise is due to the thermal motion of the charged particles , the shot noise
represents the fluctuations of the current around its average value that are due of the finite value
(quantum) of the charge carried by the particles. The name shot noise was given by Schotty in
1919 that compared this phenomenon to the noise that make the bullets when they hit a target.
It turned out that one of the simplest and efficient method to detect this noise consists in using
a circuit in which the current is generated by a photo-diod. The first theory that explained this
phenomenon was formulated by Goldman in 1948. The main point is actually to show that the
number of electrons emitted in a time interval τ follows the Poisson statistics. This can be achieved
for example by looking at the statistics of electrons being emitted by a hot metal. Such emission
are generally observed to occur according to the following rule:

αdt = the probability that an electron will be emitted from

the metal in the time interval dt (142)

The simplest theory for the thermoionic emission of electrons from metals is the (free electron
approximation) gives the Richardson-Dushman theory in which the electrons inside the metal are
treated as an ideal gas and emission occurs whenever an electron strikes the boundary of the metal
with enough energy to escape. This gives rise to the formula

α = CTφ exp(−Φ/κBT ) (143)

where Φ is the work function and φ is iether 2 or 1/2 depending on whether one assumes the
electron gas obeys Maxwell-Boltzmann statistics or Fermi-Dirac statistics. Since the electron
charge is quantized the electric current is spikey. Moreover the current is stochastic since the
randomness implicit in the emission law (142) means that one cannot predict when a given bit of
charge will pass.
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0.9 Stochastic forcing in the dynamics of geophysics fluids.

Several geophysics systems interacting between each others and having different dynamical times
scales can be described through the theory of stochastic processes. One example is the system
Ocean-Atmosphere. This system includes different time scales depending on the process considered.
For example the phenomenon of the glaciation has time scales of the order of tc ∼ 105years while
the atmospheric phenomena occur at most in periods of tc ∼ 10−2years. If one is interested to the
time evolution of the ”climatic” averages of some observables, it convenient to distinguish between
variables that

• vary (in an appreciate way) over long time scale

• vary over short time scales. These ones can then be seen as ”stochastic force” in the equation
of motion for the ”slow” variables.

As in the case of the motion of electrons inside a conductor the ”mesoscopic object” (i.e. the
Brownian particle) is not, in particular, characterized by a much bigger size with respect to the
molecules of the thermal bath but it has in general a much bigger inertia with respect to the
dynamical variations of some physical quantities that determine its dynamics.

0.9.1 Study of the temperature variations in a given region of the
oceanic surface

In this problem the ”fast” part of the system is given by the atmosphere above the surface ocean
whose dynamics varies over time scales of the order of days. The effects of these variations will
be described as a noise term over the ”slow” part of the system i.e. the ocean characterized by a
much bigger thermal inertia.

Let T be the average temperature in a given point of the ocean surface. As a first approximation
the ocean can be sketched as a uniform layer of width h (average deep). Let H the total heat flux
that hit the unit area of surface ocean considered. The variation of the heat in the layer by unit
time is then given by

dQ

dt
= H (144)

where we have neglected reflection phenomena. On the other hand the ocean will release, in a
time interval, tocean = 1/γ, a given quantity of heat Q and the full equation will be of the form

dQ

dt
= −γQ+H (145)

If ρ and cp are respectively the density and the specific heat (at constant pressure) of the ocean,
since Q = cpρV∆T , eq. (145) can be written in terms of the temperature field as

dT

dt
= −γT + g (146)

where
H

ρcph
= g. (147)

Note. The term g can be considered as a fluctuating force and if we limit ourselves to the study
of the climatic variations within an interval t such that

tatm << t << tocean (148)

the noise can be considered a delta-correlated stationary and Gaussian process (i.e. white noise)

〈g(t)g(t′)〉 = 2Dδ(t− t′) (149)
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By looking at the solution of the Langevin equation for the Brownian motion we have that the
average of the square of the temperature behaves as (m=1)

〈T (t)2〉 = T 2
0 e

−2γt +
D

γ

(
1− e−2γt

)
(150)

The power spectrum of the variance is then given by

T (f) =

∫

R

〈T (t)2〉ei2πftdt

= (T 2
0 −D/γ)

∫

R

e−2γtei2πft

+

∫

R

D

γ
ei2πftdt. (151)

Hence

T (f) = (T 2
0 −D/γ)

√

2/π
2γ

4π2f2 + 4γ
+

2πD

γ
δ(2πf). (152)

Since the above argument is meaningful in intervals t such that tatmo << t << tocean, the spectrum
T (f) must be limited to frequencies f such that

focean << f << fatmo. (153)

In this case the term δ(f) can be neglected (since it is different from zero for f = 0) obtaining

T (f) = (T 2
0 −D/γ)

√

2/π
2γ

4π2f2 + 4γ
. (154)

The diffusion coefficient can be expressed in term of h since D ∼ 1/h2 and we get

T (f) =
A

h2(π2f2 + γ)
. (155)

If one considers the h and γ as fitting parameters (h is of the order of tens of meters and γ of
the order of monts−1) the equation above turns out to be indeed a good fitting formula for the
experimental data that concern the oceanic temperatures.
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Problems

1. Consider a 1D Brownian particle of mass m which is attached to a harmonic spring with elastic
constant k. The Langevin equations are

dv

dt
= −γv(t)− ω2

0x(t) +A(t) and
dx

dt
= v(t) (156)

where ω0 =
√

k/m. Let x0 and v0 be the initial position and velocity of the Brownian
particle and assume it is initially in equilibrium at temperature T with the surrounding
fluid. Then, by the equipartition theorem, the average kinetic energy is 1

2m〈v20〉T = 1
2kBT

and the average vibrational energy 1
2ω

2
0〈x2

0〉T = 1
2kBT . One also assumes that x0 and v0 are

statistically independent so that 〈x0v0〉T = 0.

(A) Show that a condition for the process to be stationary is that the noise strength is
σ2 = 4γkBT .

(B) Compute the velocity correlation function 〈〈v(t1)v(t2)〉x0,v0
〉T

2. A Brownian particle of mass m is attached to a harmonic spring with force constant k and is
driven by an external force F (t). The particle is constrained to move in 1D. The Langevin
equation is

m
d2x

dt2
+ γ

dx

dt
+mω2

0x(t) = A(t) + F (t) (157)

where ω2
0 = (k/m) and A(t) is the white noise.

(A) Compute the two-point correlation function 〈x(t+ τ)x(t)〉 in the stationary regime.

(B) Clearly x(t) is not a Markov process. However the two-dimensional process [x(t), v(t)]
is Markov with evolution equation

dv

dt
= −γv(t)− ω2

0x(t) +A(t) and
dx

dt
= v(t). (158)

Compute in this case the correlation matrix

〈( 〈x(t)x(t+ τ)〉 〈x(t)v(t+ τ)〉
〈v(t)v(t+ τ)〉 〈v(t)v(t+ τ)〉 〉) (159)
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