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A quick introduction to

probability theory

Probability theory focuses on the results of one or many experiments which outcomes cannot be
predicted deterministically. A certain number of outcomes constitute what is called an event. It
is not necessary to specify the physical nature of the outcomes. For example, they could be the
“head” or the “tail” occurrence in a coin toss experiment. In some cases, these outcomes can be
characterized by real numbers like “the time instant of a phone call” or “the position coordinate
of a particle of pollen in a fluid suspension”. However, the numerical character of a result is just
one of the possible ways of labeling or identifying it.

0.1 Basic notions

In order to obtain a precise definition of the “probability concept”, probability theory introduces
a mathematical structure, named probability space, which is in fact a collection of three different
objects:

1. An abstract space Ω, called sample space which contains all distinguishable elementary

outcomes or results of an experiment. These elementary outcomes might be names, numbers,
complicated signals,. . . .

2. An event space (sigma-field or sigma-algebra) F consisting of the collection of subsets of the
sample space Ω we wish to consider as possible events and to which we would like to a prob-
ability. Every element in F is called an event. The event space is required to have a closed
algebraic structure in the following sense: Any finite or countably infinite sequence of the
basic set operations (union, intersection, complementation, difference, symmetric difference)
on events must produce other events contained in F .

3. A probability measure P : F → [0, 1], i.e. an assignment of a number between 0 and 1 to
every event. A probability measure must obey certain rules or axioms and will be practically
computed by integrating or summing its associated probability density.

The necessity of the introduction the event space in place of dealing directly with the individual
points of the sample space can be understood on the basis of the following practical example. If
we spin an unbiased pointer around its rotation pin, the outcome is known to be equally likely any
number between 0 and 2π. Then, the probability that any particular point such as 0.371529613
or exactly 1/π occurs is zero, because within the interval [0, 2π) there is an uncountable infinity
of possible numbers, none more likely than the others (the set of both irrational and rational
numbers in an interval is uncountable). Hence, knowing only that the probability of each and
every point is zero, is not useful for making inferences about the probabilities of other events such
as, for example, the outcome being between 1/3 and 3/4 or between π/2 and π.
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0.1.1 Probability spaces

Here we introduce more formal definitions of the mathematical structure of probability spaces.
The basic idea is to relate any probability space to a model space in which explicit calculations
are easily performed.

Definition (Sample space Ω). A sample space Ω is an abstract space, a nonempty collection of
points or members or elements called sample points (or elementary events or elementary outcomes).

Definition (Event space or σ-algebra F). A σ-algebra (or sigma field) F is a collection of subsets
of Ω such that:

(i) ∅ ∈ F ;

(ii) If A ∈ F then Ac ≡ Ω−A ∈ F (closed under complement);

(iii) If A1, A2, . . . ∈ F then
⋃∞

k=1 Ak ∈ F (closed under countable unions).

In short, a σ-algebra is a collection of subsets which must be “closed” with respect to the basic
set operations.

There are two extreme examples of σ-algebras:

• The collection {∅,Ω} is a σ-algebra of subsets of Ω;

• The set S(Ω) of all subsets of Ω is a σ-algebra

Clearly any σ-algebra F of subsets of Ω lies between these two extremes:

{∅,Ω} ⊂ F ⊂ S(Ω) (1)

Some properties of a σ-algebra are the following:

Proposition 0.1.1. Let F be a σ-algebra of subsets of Ω then

1. Ω ∈ F ;

2. If A1, · · · , An ∈ F , then A1 ∪ · · · ∪An ∈ F ;

3. If A1, · · · , An ∈ F , then A1 ∩ · · · ∩An ∈ F

4. If A1, A2, · · · is a countable collection of sets in F , then ∩∞
n=1An ∈ F ;

5. If A,B ∈ F , then A−B ∈ F .

The pair (Ω,F) constitute a measurable space, a space on which a measure can be defined. If
the measure satisfies some specific properties, then it defines a probability measure on this space.

Definition (Probability measure P). Let F be a σ-algebra of subsets of Ω. A probability measure
on a measurable space (Ω,F) is an application P : F → [0, 1] satisfying

(i) P(∅) = 0, P(Ω) = 1;

(ii) If A1, A2, . . . ∈ F then P (
⋃∞

k=1 Ak) ≤
∑∞

k=1 P(Ak) (subadditivity);

(iii) If A1, A2, . . . are disjoint sets in F then P (
⋃∞

k=1 Ak) =
∑∞

k=1 P(Ak).

Putting all together we have the following definition of the probability space:

Definition (Probability space (Ω,F ,P)). A triple (Ω,F ,P) is called a probability space provided
Ω is any set, F a σ-algebra of subsets of Ω, and P is a probability measure on F . A set A ∈ F is
called an event; the points ω ∈ Ω are called sample points.
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There is a simple σ-algebra which allows for the construction of a probability space which
serves as a model for all other spaces.

Definition (Borel σ-algebra B). B is the smallest σ-algebra containing all the open subsets of R.

Given any nonnegative integrable function p such that
∫

R
dxp(x) = 1, consider the probability

measure on B given by

P(B) ≡
∫

B

dxp(x) (2)

for each B ∈ B. The triple (R,B,P) is a probability space. We call p the density of the probability
measure P. In the model-space (R,B,P) the events are identified through real numbers. Loosely
speaking, the probability density function p establishes which numbers are more or less probable
as an outcome. The importance of the model relies on the fact that since the probability is
defined through an ordinary integral, it allows explicit calculations. Any abstract probability
space (Ω,F ,P) is connected to the above model through mappings called random variables.

Definition (Random variable X). Let (Ω,F ,P) be a probability space. A mapping

X : Ω → R

is called a random variable if for each B ∈ B
X−1(B) ∈ F .

Remark. Following common notations in probability theory, we usually write X in place of X(ω).
In the same spirit, P(X−1(B)) is indicated as P(X ∈ B). More specifically,

P(X ∈ B) ≡ P ({ω ∈ Ω : X(ω) ∈ B}) (3)

Analogously, given x ∈ R the notation P(X ≤ x) means the probability measure of the event
A ∈ F defined by the property ∀y ∈ X(A), y ≤ x:

P(X ≤ x) ≡ P ({ω ∈ Ω : X(ω) ≤ x}) (4)

Definition (Probability distribution function PX). Given a probability space (Ω,F ,P) and a
random variable X : Ω → R, its probability distribution function is the function PX : R → [0, 1]
defined by:

PX(x) ≡ P(X ≤ x) ∀x ∈ R. (5)

It is often useful to work with the density distribution functions.

Definition (Probability density function pX). Given a probability space (Ω,F ,P) and a random
variable X : Ω → R, its probability density function is the function pX : R → R

+ such as:

PX(x) =

∫ x

−∞
dx′pX(x′) ∀x ∈ R. (6)

Of course, we have

P(x1 ≤ X ≤ x2) =
∫ x2

x1
dx′pX(x′), (7)

pX(x)dx = P(x ≤ X ≤ x+ dx). (8)

Remark (Normalization). It is straightforward to see that

PX(+∞)− PX(−∞) =

∫

R

dx′pX(x′) = 1. (9)

Note. For discrete random variables all the above holds if one considers

pX(x) =
∑

i

piδ(x− xi), (10)

where pi ≡ P(X = xi).
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0.2 Moments of a random variable

Definition (Expected value E{X} = η). The expected value (or mean value) of the random
variable X is the real number:

E{X} =

∫ ∞

−∞
dx x pX(x) ≡ η. (11)

Definition (Variance σ2). The variance of the random variable X is the real number:

σ2 ≡ E{(X − η)2} =

∫ ∞

−∞
dx(x− η)2pX(x). (12)

Definition (Moment of order r, mr). The moment of order r = 1, 2, . . . of the random variable
X is the real number:

mr ≡ E{(X)r} =

∫ ∞

−∞
dx xrpX(x). (13)

Definition (Central moment of order r, µr). The central moment of order r = 1, 2, . . . of the
random variable X is the real number:

µr ≡ E{(X − η)r} =

∫ ∞

−∞
dx(x− η)rpX(x). (14)

0.3 Examples of probability distributions

Normal distribution N(η, σ2)
One of the most important real valued random variables is the Gaussian or normal distribution. A
random variable is Gaussian with mean value η and variance σ2 if its probability density function
is given by

pX(x) =
1

σ
√
2π

e−
(x−η)2

2σ2 . (15)

We also indicate X ∈ N(η, σ2)

Uniform distribution
One says that a random variable X is uniformly distributed within the interval (x1, x2) if its
probability density is defined as

pX(x) =

{
1

x2−x1
x1 ≤ x ≤ x2

0 otherwise
(16)

For example the built in routines for the generation of random numbers in computers generate
random numbers uniformly distributed between 0 and 1.

Cauchy distribution
One says that a random variable X follows a Cauchy distribution if its probability density is
defined as

pX(x) =
α/π

α2 + (x− x0)2
(17)

where x0 is the location parameter, giving the location of the peak of the distribution and α is the
scale parameter which specifies the half-width at half-maximum. As a probability distribution,
it is known as the Cauchy distribution while among physicists it is also known as the Lorentz

distribution or the Breit-Wigner distribution. Its importance in physics is largely due to the fact
that it is the solution of the differential equation characterizing forced resonance. In spectroscopy,
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Figure 1: Two example of Normal distributions. Both distribution have mean zero but different
σ2. In particular the lower curve has σ2 = 4 while the upper curve has σ2 = 2.
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Figure 3: Cauchy distributions (upper α = 1, lower α = 2). In these two examples x0 = 0. The
maximum is indeed at x = 0 and has the value 1

απ

it describes the line shape of spectral lines which are broadened by several mechanisms including
resonance broadening. The special case when x0 = 0 and α = 1 is called the standard Cauchy

distribution. Note that the mean of the Cauchy distribution is undefined while the second moment
and higher moments are divergent.

Binomial distribution
An example of a discrete random variable is given by the binomial distribution for which the
probability that the random variable assumes the value k among n possible values is given by

P(X = k) =

(
n

k

)

pkqn−k, k = 0, 1, . . . , n, p+ q = 1. (18)

Its probability density function is then

pX(x) =
n∑

k=0

(
n

k

)

pkqn−kδ(x− k). (19)

A practical example of a random variable following the binomial distribution comes from the coin
toss experiment. The outcomes are a series ζ1, ζ2, . . . , ζn of “heads” and “tails”. Let us define X
such that X(ζ1, ζ2, . . . , ζn) is equal to the number of “heads”:

X(ζ1, ζ2, · · · , ζn) = k if k ≤ n are the “head” outcomes. (20)

In this way {X = k} is the event “k heads in n outcomes”. Since each toss is an independent
process the probability of a given string having k heads is given by pkqn−k where p is the probability
that in a given toss the coin gives head and q is the probability that in a given toss the coin gives
tail.

On the other hand the total number of strings having k heads out of n slots is given by the
combination Cn

k =
(
n
k

)
. The probability of having k heads out of n trails is then given by

P(X = k) =

(
n

k

)

pkqn−k, with p = q = 1/2. (21)
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Poisson distribution
A random variable X follows a Poisson distribution with parameter λ(> 0) is the probability that
the value k occurs is given by

P(X = k;λ) = e−λλ
k

k!
, k = 0, 1, . . . (22)

The probability density is given by

pX;λ(x) =
n∑

k=0

e−λλ
k

k!
δ(x− k) (23)

It is easy to show that (Exercise)

E{X;λ} = λ, σ2
X = λ. (24)

The Poisson distribution has many applications since it can be used as a good approximation of
a binomial r.v. with parameters (n, p) when n is big enough and p is sufficiently small in such a
way that the term np as a finite value (see Problem) Some examples of random variables following
the Poisson distribution are

• The number of phone calls reaching a node at different time intervals.

• The number of missprints in a page of a book.

• The number of people that enter, say into a post office, at different time intervals.

0.4 Conditional probabilities

In the axiomatic theory of probability if B ∈ F is an event such that P(B) 6= 0, then the probability
of a given event A ∈ F conditioned by B is defined as

P(A|B) ≡ P(A ∩B)

P(B)
. (25)

where P(A ∩B) is the probability of the both events A and B occur.

Definition (Conditional distribution function). The probability distribution PX(x|B) of the
random variable X, conditioned by B is defined as the conditional probability of the event
A ≡ {X ≤ x}:

PX(x|B) ≡ P{X ≤ x|B} =
P{X ≤ x ∩B}

P(B)
. (26)

If the event B is expressed in terms of X then PX(x|B) can be determined in terms of PX(x).

0.5 Characteristic functions

Characteristic functions are convenient tools in probability theory. They are the Fourier transforms
of the probability density functions and often offer a practical alternative for calculating interesting
quantities.

Definition (Characteristic function, fX). The characteristic function of a random variable X is
the complex function fX : R → C:

fX(k) ≡ E{eikx} =

∫ +∞

−∞
dx eikx pX(x). (27)
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The characteristic function fX(k) uniquely identifies the probability density function of the
random variable. In fact, from the characteristic function one can re-obtain pX(x) through an
inverse Fourier transform:

pX(x) =
1

2π

∫ +∞

−∞
dx e−ikx fX(k). (28)

From the normalization condition on pX(x), the characteristic function inherits the following
property

fX(0) = 1. (29)

Moreover,

|fX(k)| ≤ 1 ∀k ∈ R, (30)

fX(−k) = fX(k)∗ ∀k ∈ R. (31)

Finally, if pX is even (pX(−x) = pX(x)), then fX is real and even (fX(−k) = fX(k)∗ = fX(k)).
The moments mr are easily calculated from the characteristic function:

mr = E{Xr} = lim
k→0

(−i)r
drfX(k)

dkr
. (32)

Therefore, in general a regular characteristic function can be written as the series:

fX(k) =
∞∑

r=0

drfX(k)
dkr |k=0

r!
kr

=

∞∑

r=0

ir mr

r!
kr (33)

= 1 + iηk − m2k
2

2
+ . . . . (34)

Examples: (see Problems)

• The characteristic function of a normal distribution N(η, σ2) is

fX(k) = eikηe−
σ2k2

2 , k ∈ R. (35)

• The characteristic function of a Cauchy distribution is

fX(k) = eikx0e−α|k|, k ∈ R. (36)

• The characteristic function of a uniform distribution is

fX(k) =
eikx2 − eikx1

ik(x2 − x1)
, k ∈ R. (37)

• The characteristic function of a binomial distribution is

fX(k) =
(
q + peik

)n
, k ∈ R. (38)

0.6 Function of a random variable

Given a random variable X1, consider the new random variable

X2 ≡ h(X1), (39)
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where h : R → R is a regular function. The probability density function and the characteristic
function of X2 are respectively given by:

pX2
(x2) ≡

∫

R

dx1 δ(x2 − h(x1)) pX1
(x1) (40)

fX2
(k) =

∫

R

dx1 eikh(x1) pX1
(x1) (41)

Example (Scaling property of a normal distribution). Let X1 = N(η, σ2) and X2 ≡ αX1 with
α ∈ R, then

fX2
(k) =

∫

R

dx1 eiαkx1pX1
(x1)

= eikαηe−
α2σ2k2

2 . (42)

Hence we have
α N(η, σ2) = N(αη, α2σ2). (43)

0.7 Two random variables

In this section we consider two random variables X1, X2 referring to the same stochastic exper-
iment. This means that X1 and X2 are both defined with respect to the same probability space
(Ω,F ,P). The central object defining their property is the joint distribution.

Definition (Joint probability density function pX1,X2
). The joint probability density function of

the random variables X1, X2 defined with respect to the probability space (Ω,F ,P) is the function
pX1,X2

: R2 → R such that

pX1,X2
(x1, x2) dx1dx2 = P ({x1 ≤ X1 ≤ x1 + dx1} ∩ {x2 ≤ X2 ≤ x2 + dx2}) . (44)

The single variable probability density functions are re-obtained through an operation called
reduction.

Definition (Reduced density function pX). Given two random variables X1, X2 with joint prob-
ability density function pX1,X2

, the reduced probability density functions are defined as

pX1
(x1) ≡

∫

R

dx2 pX1,X2
(x1, x2), (45)

pX2
(x2) ≡

∫

R

dx1 pX1,X2
(x1, x2) (46)

In terms of characteristic functions one simply has

fX1
(k1) ≡

∫

R

dx1 eik1x1 pX1
(x1) = fX1,X2

(k1, 0), (47)

fX2
(k2) ≡

∫

R

dx2 eik2x2 pX2
(x2) = fX1,X2

(0, k2), (48)

where

fX1,X2
(k1, k2) ≡

∫

R2

dx1dx2 ei(k1x1+k2x2) pX1,X2
(x1, x2) (49)

is the joint characteristic function.

Remark. In general, the joint probability density function pX1,X2
cannot be determined only

from the knowledge of the reduced probability density function pX1
, pX2

.
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Suppose the realization of a certain event A ∈ F , with X1(A) = x1 (hence P(A) 6= 0). It
is then interesting to know if this fact influences or not the realization of another event B, with
X2(B) = x2. A is called the conditioning event, while B is the conditioned event. The answer to
this question is given by the conditional probability density function.

Definition (Conditional probability density function pX2|X1
). Given two random variables X1,

X2 with joint probability density function pX1,X2
, one could ask which is the probability of the

event {x2 ≤ X2 ≤ x2 + dx2} conditioned to the event {x1 ≤ X1 ≤ x1 + dx1}. According to what
we said in the case of one random variable we can write

P{x2 ≤ X2 ≤ x2 + dx2|x1 ≤ X1 ≤ x1 + dx1} =
P{x2 ≤ X2 ≤ x2 + dx2 ∩ x1 ≤ X1 ≤ x1 + dx1}

P{x1 ≤ X1 ≤ x1 + dx1}
(50)

that, in terms of probability density functions becomes

pX2|X1
(x2|x1)dx2 =

pX1,X2
(x2, x1)dx1dx2

pX1
(x1)dx1

(51)

giving the definition for pX2|X1
(x2|x1):

pX2|X1
(x2|x1) ≡

pX1,X2
(x1, x2)

pX1
(x1)

. (52)

It it interesting to notice that given the conditional probability density function pX2|X1
(x2|x1)

and the reduced density function pX1
(x1) it is possible to obtain the reduced density function for

the variable X2, namely

pX2
(x2) =

∫

R

dx1 pX2|X1
(x2|x1) pX1

(x1). (53)

0.7.1 Moments of two random variables

Given two random variables X1, X2 with joint probability density function pX1,X2
, we have the

following definitions:

Definition (Mixed moment of order r1+r2, mr1,r2). The mixed moment of order r1+r2 = 1, 2, . . .
is the real number:

mr1,r2 ≡ E{(X1)
r1(X2)

r2} =

∫

R2

dx1dx2 xr1
1 xr2

2 pX1,X2
(x1, x2). (54)

In particular we have m1,0 = ηX1
, m0,1 = ηX2

. m1,1 is also called the correlation, CX1,X2
,

between X1 and X2:
CX1,X2

≡ E{X1X2} = m1,1. (55)

As for the single variable case, the moments are easily calculated from the joint characteristic
function:

mr1,r2 = lim
k1,k2→0

(−i)r1+r2
∂r1+r2fX1,X2

(k1, k2)

∂kr11 ∂kr22
. (56)

Definition (Central mixed moment of order r1 + r2, µr1,r2). The central mixed moment of order
r1 + r2 = 1, 2, . . . is the real number:

µr1,r2 ≡ E{(X1−ηX1
)r1(X2−ηX2

)r2} =

∫

R2

dx1dx2 (x1−ηX1
)r1 (x2−ηX2

)r2 pX1,X2
(x1, x2). (57)

In particular we have µ2,0 = σ2
X1

, µ0,2 = σ2
X2

. µ1,1 is also called the covariance, CovX1,X2
,

between X1 and X2:
CovX1,X2

≡ E{(X1 − ηX1
)(X2 − ηX2

)} = µ1,1. (58)
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0.8 Conditional expectation

If (X1, X2) is a two-dimensional random variable with joint density probability function pX1X2
(x1, x2),

the expectation value of X2 conditioned to X1 = x is given by

E({X2|x1}) =
∫

R

x2pX2|X1
(x2|x1)dx2 (59)

Notice that E({X2|x1}) is a function of x. Similarly, the second central moment of X2 given
X1 = x1 is defined as

E({(X2 − ηX2
)2|x1})

∫

R

(x2 − ηX2
)2pX2|X1

(x2|x1)dx2 (60)

0.9 n random variables

The definition of the previous section generalizes straightforwardly to the case of n = 2, 3, . . .
random variables. We have then the following self-explanatory formulas:

Definition (Joint probability density function pX1,...Xn
).

pX1,...,Xn
: Rn → R

pX1,...,Xn
(x1, . . . , xn) dx1 · · · dxn = P(x1 ≤ X1 ≤ x1 + dx1 ∩ · · · ∩ xn ≤ Xn ≤ xn + dxn). (61)

Definition (Characteristic function of the joint probability density function fX1,...Xn
).

fX1,...,Xn
: Rn → C

fX1,...Xn
(k1, . . . , kn) ≡

∫

Rn dx1 . . . dxn ei(k1x1+···+knxn) pX1,...,Xn
(x1, . . . , xn) (62)

Definition (Reduced density function pX1,...,Xl
).

pX1,...,Xl
(x1, . . . , xl) ≡

∫

Rn−l

dxl+1 · · · dxn pX1,...,Xn
(x1, . . . , xn), l < n. (63)

Definition (Reduced characteristic function fX1,...,Xl
).

fX1,...,Xl
(k1, . . . , kl) = fX1,...,Xn

(k1, . . . , kl, 0, . . . , 0). (64)

Definition (Conditional probability density function pXn,...,Xl+1|Xl,...,X1
).

pXn,...,Xl+1|Xl,...,X1
(xn, . . . , xl+1
︸ ︷︷ ︸

left variables

|xl, . . . , x1
︸ ︷︷ ︸

right var.

) ≡ pX1,...,Xn
(x1, . . . , xn)

pX1,...,Xl
(x1, . . . , xl)

. (65)

It is easy to prove the following important rules for eliminating a “left” or a “right” variable.

Remark (Elimination of “left” variables).

∫

R2

dx2dx3 pX4,X3,X2|X1
(x4, x3, x2|x1) = pX4|X1

(x4|x1). (66)

Remark (Elimination of “right” variables).

∫

R2

dx2dx3 pX4|X3,X2,X1
(x4|x3, x2, x1) pX3,X2|X1

(x3, x2|x1) = pX4|X1
(x4|x1). (67)
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An important application of rule (67) is the integral Chapman-Kolmogorov formula.

Definition (Integral Chapman-Kolmogorov formula).

pX3|X1
(x3|x1) =

∫

R

dx2 pX3|X2,X1
(x3|x2, x1) pX2|X1

(x2|x1). (68)

Exercise. Calculate the characteristic function of a zero-mean multivariate Gaussian distribution
for the variables {Xi}i = 1, 2, . . . , n. Use the result to prove Wick’s theorem, i.e., that all higher
order moments can be expressed in terms of 〈x2

i 〉 and 〈xixj〉.

0.9.1 Function of many random variables

Given the random variables X1, . . . , Xn, consider the new random variable

X ≡ h(X1, . . . , Xn), (69)

where h : Rn → R is a regular function. The probability density function and the characteristic
function of X are respectively given by:

pX(x) ≡
∫

dx1dx2 · · · dxn δ(x− h(x1, . . . , xn)) pX1,...,Xn
(x1, . . . , xn) (70)

fX(k) =

∫

dx1dx2 · · · dxn eikh(x1,...,xn) pX1,...,Xn
(x1, . . . , xn). (71)

Example (Sum of n random variables Sn). Let Sn ≡ X1 + · · · + Xn, then its characteristic
function is given by

fSn
(k) = fX1,...,Xn

(k, k, . . . , k). (72)

0.9.2 Independent random variables

Definition (Independent events). Two events A,B ∈ F are said independent when

P(A ∩B) = P(A)P(B). (73)

An analogous definition holds for random variables

Definition (Independent random variables). n random variables X1, . . . , Xn are said independent
when

P(X1 ≤ x1 ∩ · · · ∩Xn ≤ xn) = P(X1 ≤ x1) · · ·P(Xn ≤ xn) (74)

for any (x1, . . . , xn).

For independent random variables we have then the following properties:

pX1,...,Xn
(x1, . . . , xn) = pX1

(x1) · · · pXn
(xn) (75)

fX1,...,Xn
(k1, . . . , kn) = fX1

(k1) · · · fXn
(kn) (76)

pXn|Xn−1,...,X1
(xn|xn−1, . . . , x1) = pXn

(xn). (77)

Example (n independent Gaussian variables). The probability density function of n independent
identically distributed Gaussian random variables is given by

pX1,...,Xn
(x1, . . . , xn) ≡

1

(2πσ2)
n/2

e−
x2
1+···+x2

n

2σ2 (78)
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Example (Stability property of a normal distribution). Let X1 = N(η1, σ
2
1) and X2 = N(η2, σ

2
2)

be two independent variables and S2 ≡ X1 +X2, then

fS2
(k) = fX1

(k)fX2
(k)

= eikη1e−
σ2
1k2

2 eikη2e−
σ2
2k2

2 (79)

= eik(η1+η2)e−
(σ2

1+σ2
2)k2

2 . (80)

Hence we have
N(η1, σ

2
1) + N(η2, σ

2
1) = N(η1 + η2, σ

2
1 + σ2

2). (81)

0.10 Infinitely divisible Distributions

Definition. A random variable X is infinitely divisible if ∀N ∈ N, it can represented by a sum

X = X1 +X2 + · · ·XN (82)

of i.d. random variables, (X1, · · · , XN )

TODO

0.11 Central limit theorem

Consider the sum Sn = X1 + · · · + Xn of independent random variables identically distributed
(pXi

(xi) = pX(x) ∀i = 1, 2, . . . n) with mean η and variance σ2. Moreover let us assume that
E{X2

i } < ∞. Then
p (Sn−nη)

σ
√

n

∼
n→∞ = N(0, 1) (83)

Sketch of the proof. Let us consider the set of random variables ζi = Xi − η. Since the
Xi are independent also the ζi are independent. Moreover E{ζi} = 0 and V ar{ζi} = σ2. The
characteristic function for the probability density pζ(x) is given by

fζ(k) =

∞∑

n=0

1

r!

drf

dkr

∣
∣
∣
∣
k=0

kr

=

∞∑

n=0

(i)r

r!
mrk

3

= 1− m2

2
k2 + · · · = 1− σ2

2
k2 + · · · (84)

since the first moment E{ζi} is zero by construction. We now consider the random variable
Sn − ηn = (X1 − η) + (X2 − η) + · · ·+ (Xn − η). Because of independence we have

fSn−nη(k) = [fζ(k)]
n (85)

=

[

1− (nσ2k2)

2n
+ o

(
1

n

)]n

(86)

∼
n→∞ exp

(

−1

2
(σk

√
n)2

)

. (87)

Hence
(Sn − nη) ∈ N(0, nσ2) for n → ∞. (88)

Now let us consider the function h(Sn − nη) = Sn−nη
σ
√
n

= α(Sn − nη). From the scaling property

of the normal distribution, αN(η, σ2) = N(αη, α2σ2), we finally have

(Sn − nη)

σ
√
n

∈ N(0, 1) for n → ∞ (QED). (89)
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Remark (Stable laws and CLT). The theorem above requires that the variance of Xi is finite.
For random variables Xi with unbounded variances one can show the following: If there exists
{an} and {bn} such that

P {an(Sn − bn) ≤ x} → G(x) as n → ∞, (90)

then the distribution G(x) is stable. Clearly if the variance is finite than G(x) is the Gaussian
with bn = η = E{X1} and an =

√

V ar{X1}.

0.12 Statistics of Extrema

In many cases one is interested in estimating the maximum or minimum of a set of random
variables. Let {Xi}ni=1 be a sequence of i.i.d. random variables and let,

Mn = max{X1, X2, · · · , Xn}. (91)

The goal is to study the distribution of Mn as n → ∞. Let us first look at some examples to have
an idea.

Example. Assume that Xi is expnentially distributed, i.e., if we denote by p(x) the PDF of Xi

we have

p(x) =

{
e−x if x > 0
0 if x ≤ 0

(92)

In terms of comulative distribution this means

P{Xi < x} =

∫ x

−∞
e−ydy = 1− e−x, for x > 0. (93)

For any x > 0 we then have

P{Mn ≤ x} = P{Xi ≤ x ∀i = 1, 2, · · · , n}

=

n∏

i=1

P{Xi < x} = (1− e−x)n, (94)

where in the last equation we have used the independence of the {Xi}ni=1. The above equation
remains true even if x depends on n. For example let us chose x = xn such that (1− e−xn)n has
a non trivial limit. Let

xn = − log(e−x) + log n = x+ log n. (95)

Hence

P{Mn ≤ x} = (1− e−xn)n =

(

1− e−x

n

)n

→ e−e−x

, as n → ∞. (96)

In other words
P{Mn ≤ x+ log n} → e−e−x

, as n → ∞. (97)

The last equation tell us that Mn grows as log n as n → ∞.

Example. Suppose that Xi is uniformly distributed on [0, 1],i.e.

p(x) =

{
1 if x ∈ [0, 1]
0 otherwise

(98)

For this distribution we expect that Mn → 1 as n → ∞. The question is: how does Mn converges
to this limit ? Suppose we consider xn = 1− x/n, then

P{Mn ≤ xn} =
(

1− x

n

)n

→ e−x, as n → ∞. (99)

In other words
P{n(Mn − 1) ≤ x} → e−|x| for x ≤ 0. (100)

This implies that 1−Mn = O(1/n) as n → ∞.
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For the general case we have the following result

Theorem 0.12.1. If there exists {} and {} such that

P{an(Mn − bn) ≤ x} → G(x) as n → ∞, (101)

then G(x) must be one of the following types:

Type I:

G(x) = e−e−x

. (102)

This distribution is known as the Gumbel distribution.

Type II:

G(x) =

{
0 if x ≤ 0

e−x−α

if x > 0
(103)

for some α > 0;

Type III:

G(x) =

{
e−|x|α if x ≤ 0

1 if x > 0
(104)

for some α > 0.

In the examples above we have bn = log n, an = 1 for the exponential distribution which is a
type I situation, and bn = 1, an = n for the uniform distribution which is a type III situation
with α = 1.

Exercise. Verify that

an =
√

2 log n, bn =
√

2 log n(log log n+ log 4π) (105)

for the normal distribution N(0, 1).
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Problems

1. Show that if the zero-mean random variable ξ is Gaussian-distributed, the kurtosis (or flatness)
defined as

E{ξ4}
E{ξ2}2

equals 3.

2. Let y = f cos θ, where f and θ are independent zero-mean random variables, with f chosen
from a Gaussian distribution of unit variance and θ from the uniform distribution on [−π, π].
Prove that y is not a Gaussian variable.

3. Let z = f cos θ + g sin θ with f and θ as above, and g chosen from a Gaussian distribution of
unit variance, independent of f and θ. Is z Gaussian ?

4. Find the distribution of cos θ for θ uniformly distributed in [0, 2π].

5. Two boxes of volumes V1 and V2 contain N non-interacting molecules and are connected
through a hole. Calculate the probability of finding N1 molecules in V1.

6. Show that

• the characteristic function of a normal distribution N(η, σ2) is

fξ(k) = eikηe−
σ2k2

2 , k ∈ R, (106)

• the one of a Cauchy distribution is

fξ(k) = eikx0e−α|k|, k ∈ R, (107)

• the one of a uniform distribution is

fξ(k) =
eikx2 − eikx1

ik(x2 − x1)
, k ∈ R. (108)

• whereas for a binomial distribution we have

fξ(k) =
(
q + peik

)n
, k ∈ R. (109)

7. A binary source generates 1’s and 0’s randomly, respectively with probablity 0.6 and 0.4.

(A) Which is the probability that two 1’s and three 0’s occur in a five bits sequence ?

(B) Which is the probability that at least three 1’s occur in a five bits sequence ?

8. A fair coin is tossed ten times. Compute the probability of having 5 or 6 head in this experiment.

9. The probability density function of a tw0-dimensional random variable (ξ1, ξ2) si given by

pξ1ξ2(x1, x2) =

{
kx1x2 0 < x1 < 1, 0 < x2 < 1

0 otherwise
(110)

where k is a constant.

(A) Compute the value of k

(B) Are ξ1 and ξ2 independent r.v. ?
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(C) Compute the probability P{ξ1 + ξ2 < 1}.

10. Let (ξ1, ξ2, ξ3) be a three-dimensional random variable with probability density

fξ1,ξ2ξ3(x1, x2, x3) =

{
ke−(ax1+bx2+cx3) x1 > 0, x2 > 0, x3 > 0

0 otherwise
(111)

where a, b, c are constants.

(A) Compute the value of k.

(B) Compute the jont marginal distribution for ξ1 and ξ2.

(C) Compute the marginal distribution for ξ1.

(D) Are ξ1,ξ2 and ξ3 independent ?

11. Two independent stochastic variables X and Y have normal even distributions with vari-
ance σ2

x and σ2
y respectively. Find the joint probability density functions for the stochastic

variables V = X + Y and W = X − Y .
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