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Chapter 1

Stochastic processes

In practical terms, a stochastic process is a time-evolution phenomenon whose analysis requires
probability theory. From an empirical point of view, a stochastic process is characterized by
the set of the different realizations of the process itself, where a single realization is obtained by
recording a number of outcomes during the experiment elapsing time. The random nature of the
time-evolution implies that a different realization of the same experiment produces a completely
different pattern for the observed physical quantities.

Some examples of stochastic processes are:

• The binomial process, consisting e.g. in recording the “head” and “tail” sequence during a
series of coin tosses;

• The Brownian process, consisting in recording the position of a mesoscopic particle in a fluid
suspension;

• The Poisson process, consisting e.g. in counting the number of people randomly arriving
and leaving a queue;

• The epidemic spread process, defined by the number of individual infected by a certain
disease;

• Meteorological processes, e.g. the number of hours during a day in which the sun shines on
a certain location;

• A finance process, where the value of a stock price is detected for various days.

The random nature of the processes is due in general to the presence of a large number of “agents”
whose unpredictable different actions determine the overall evolution of the process. For example, a
Brownian particle is displaced as the result of the collisions with the fluid particles. The dynamical
laws describing these collisions (both at the classical and at the quantum level) are well known,
thus in principle one could establish a relation between the movement of the Brownian particle
and the underlying microscopic dynamics. However, the complexity involved in such an analysis,
makes it impracticable and it is necessary to adopt a stochastic mesoscopic description in order to
get useful physical laws. In other cases, like e.g. the stock prices fluctuations, the impossibility of
producing a theory based on the physical-chemical state of the traders’ brains is evident, so that
again the only practicable alternative is a probabilistic description.

The important remarkable point is that notwithstanding (actually “exactly because of”) the
presence of this large number of stochastic agents, the overall statistics of the process (mean
value, variance,. . . ) follows simple reproducible regular laws, given that the analysis is made on
appropriate time-scales. The theory of stochastic processes amounts to formulate these time-
evolution laws, by substituting the lack of microscopic information with adequate probability
hypothesis.
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In summary, all processes whose time evolution is usefully analyzed in probabilistic terms are
called stochastic processes. This notion is quite general and includes scalar and vector processes,
with discrete or continuous values. In the following we will concentrate in scalar continuous
stochastic processes, but the generalization to the other cases are straightforward.

1.1 Basic definitions

Definition (Stochastic process I X(t)). A stochastic process is a collection of random variables
defined in the same probability space (Ω,F ,P) and parametrized by the time t ∈ R

+:

X(ω, t) : Ω× R
+ → R. (1.1)

Remark. A stochastic process is a two-variables function. There are hence two possible interpre-
tations:

1. For a given t∗ ∈ R
+, X(ω, t∗) is a random variable X(ω, t∗) : Ω → R;

2. For a given outcome ω∗ ∈ Ω, the expression X(ω∗, t) : R
+ → R means that as the time

passes by, the probability associated to the same outcome ω∗ is changing, because the random
variable itself is varying.

Remark. Following customary use in probability theory, we will drop in our notations explicit
reference to the dependence on ω and indicate the stochastic process as

X(t). (1.2)

Remark. In term of probability density functions it makes then sense to consider the following
distribution density:

pX(t) : R× R
+ → R

pX(t)(x, t) dx = P(x ≤ X(t) ≤ x+ dx). (1.3)

A more precise definition of a stochastic process is given by the following definition.

Definition (Stochastic process II X(t1). . . . , X(tn)). Given a partition set T = {t1, t2, · · · , tn}, a
stochastic process indexed by T is a collection n of random variables {X(t1), · · · , X(tn)} (equiva-
lently, a n-dimensional random variable X. If T ∈ Z

+ = {0, 1, · · · ,∞} the process is said discrete.
If T ∈ R

+ = [0,∞) the process is said continuous.

The central quantity defining a stochastic process is then the joint probability density function.

Definition (Joint probability density function pX(t1),...,X(tn)). Given a partition set T = {t1, t2, · · · , tn}
and the correspondent stochastic process {X(t1), · · · , X(tn)}, the joint probability density func-
tion of the stochastic process is defined as

pX(t1),...,X(tn)(x1, t1;x2, t2; . . . ;xn, tn) dx1 · · · dxn = P(x1 ≤ X(t1) ≤ x1+dx1∩· · ·∩x(tn) ≤ Xn ≤ xn+dxn).
(1.4)

The time-dependence of the stochastic process in the interval [t0, t0 + τ ] is defined by the
infinite hierarchy of joint probability density functions obtained ∀n = 1, 2, . . . and ∀(t1, . . . , tn)
with ti ∈ [t0, t0 + τ ]:

pX(t1)(x1, t1),

pX(t1),X(t2)(x1, t1;x2, t2),

pX(t1),X(t2),X(t3)(x1, t1;x2, t2;x3, t3),

.............................................................,

pX(t1),X(t2),···X(tn)(x1, t1;x2, t2; · · · ;xn, tn)
∀ti ∈ [t0, t0 + τ ]. (1.5)
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Figure 1.1: Ten different realization of a stochastic process.

For instance, the two-time correlation function of the stochastic process is given by

E {X(t1)X(t2)} ≡ 〈X(t1)X(t2)〉 =
∫

R2

dx1dx2 x1x2 p(x1, t1;x2, t2). (1.6)

Remark (Notation). When it does not generate confusion, we will simplify our notation for the
joint probability density function by setting

pX(t1),...,X(tn)(x1, t1;x2, t2; . . . ;xn, tn) ≡ p(x1, t1;x2, t2; . . . ;xn, tn). (1.7)

Remark (Properties of the joint probability density funciton). We remark that the joint proba-
bility density function of a stochastic process must satisfy the following properties for any given
partition set T = {t1, t2, · · · , tn}.

1. p(x1, t1;x2, t2; · · · ;xn, tn) ≥ 0 ∀{t1; · · · ; tn};

2.
∫

Rn dx1dx2 · · · dxn p(x1, t1;x2, t2; · · · ;xn, tn) = 1 ∀{t1; · · · ; tn};

3. p(x1, t1;x2, t2; · · · ;xn, tn) is a symmetric function with respect to the permutations of the
arguments {x1, t1; · · · ;xn, tn};

4.
∫

R
dxn p(x1, t1;x2, t2; · · · ;xn, tn) = p(x1, t1;x2, t2; · · · ;xn−1, tn−1).

The last property is a compatibility relation between the n-point and the n− 1-point joint proba-
bility density functions. It means that the n− 1-point joint probability density function must be
obtained by its n-point analogous through a reduction.

If tn → tn−1 we have

lim
tn→tn−1

p(x1, t1;x2, t2; · · · ;xn−1, tn−1;xn, tn) = p(x1, t1;x2, t2; · · · ;xn−1, tn−1) δ(xn − xn−1),

(1.8)
since in this limit the random variables X(tn) and X(tn−1) must coincide.

Notice also that the one-point probability density function p(x, t) is in fact a reduced density
function.
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Initial conditions
At the initial time t = t0 a stochastic process could begin exactly with the same deterministic
initial condition X(t0) = x0. In such a case, the one-point probability density function is given by
limt→t0 p(x, t) = δ(x− x0). Conversely, if the initial conditions are themselves a random variable,
then p(x0, t0) describes their distribution.

Remark (Experimental realization of a stochastic process). In practice, a stochastic process is
defined by an empirical determination of its joint probability density function. The fundamental
steps can be summarized as follows.

• Prepare many realizations N ≫ 1 of the same experiment under the same or different initial
conditions.

• Evaluate p(x1, t1) dx1 by calculating the frequency of the outcomes in [x1, x1 + dx1] at time
t1.

• Evaluate p(x1, t1;x2, t2) dx1dx2 by calculating the frequency of the outcomes in [x1, x1+dx1]
at time t1 and in [x2, x2 + dx2] at time t2.

• . . .

• Evaluate p(x1, t1;x2, t2, . . . ;xn, tn) dx1dx2 · · · dxn by calculating the frequency of the out-
comes in [x1, x1+dx1] at time t1 and in [x2, x2+dx2] at time t2, and . . . , and in [xn, xn+dxn]
at time tn.

Definition (Conditional probability density function). The conditional probability density func-
tion p(xn, tn; . . . ;xl+1, tl+1|xl, tl; . . . ;x1, t1) is defined in the customary way, i.e.,

P(xn ≤ X(tn) ≤ xn + dxn ∩ · · · ∩ xl+1 ≤ X(tl+1) ≤ xl+1 + dxl+1|X(tl) = xl, . . . , X(t1) = x1)

≡ p(xn, tn; . . . ;xl+1, tl+1|xl, tl; . . . ;x1, t1)dxn · · · dxl+1

= P(xn≤X(tn)≤xn+dxn∩···∩x1≤X(t1))
P(xl≤X(tl)≤xl+dxl∩···∩x1≤X(t1))

= p(x1,t1;...,xn,tn)dx1···dxn

p(x1,t1;...,xl,tl)dxl···dx1

, (1.9)

where p(x1, t1; . . . , xl, tl) ≡
∫

Rn−l dxl+1 · · · dxn p(x1, t1; . . . , xn, tn).

Hence, the conditional probability density functions inherit by the joint probability density
functions analogous properties.

Remark. By iterating the definition of conditional probability (1.9) one gets

p(x1, t1; . . . , xn, tn) = p(xn, tn|xn−1, tn−1; . . . ;x1, t1) p(xn−1, tn−1|xn−2, tn−2; . . . ;x1, t1)

× · · · p(x2, t2|x1, t1)p(x1, t1). (1.10)

This means that a stochastic process can be equivalently completely defined in terms of conditional
probability density functions.

Example. Let us consider the following stochastic process

X(t) = X1 +X2t, (1.11)

where X1 and X2 are random variables. This process is given by a family of straight lines. Its
average and two-point correlation functions are given by

E {X(t)} = E {X1}+ E {X2} t (1.12)

E {X(t1)X(t2)} = E {(X1 +X2t1)(X1 +X2t2)}
= E

{
X2

1

}
+ E {X1X2} (t1 + t2) + E

{
X2

2

}
t1t2 (1.13)
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1.1.1 Conditional expectation

Suppose Y is a random variable measuring the outcome of some random experiment. If one
knows nothing about the outcome of the experiment, then the best guess for the value of Y is its
expectation value E{Y }. If, on the other hadn, one has a complete knowledge of the outcome of
the experiment, then one knows the exact value of Y . Conditional expectations deals with making
the best guess for Y given some but not all information about the outcome.

Suppose that X and Y are discrete random variables with joint probability density function

p(x, y) = Prob{X = x, Y = y} (1.14)

and marginal probability density functions

pX(x) =
∑

y

p(x, y), pY (y) =
∑

x

p(x, y). (1.15)

The conditional expectation of Y given X, E{Y |X} can be then defined as

E{Y |X}(x) =
∑

y

yProb{Y = y|X = x}

=
∑

y

y
Prob{Y = y,X = x}

Prob{X = x}

=

∑

y yp(x, y)

pX(x)
. (1.16)

This is of course well defined if fX(x) > 0 i.e. if x is a possible outcome of the experiment.

Example. Suppose that two independent dices are rolled and let X and Y respectively be the
value of the first outcome and the sum of the two rolls. Then

p(x, y) =
1

36
, x = 1, 2, · · · , 6, y = x+ 1, x+ 2, · · · , x+ 6, (1.17)

and

E{Y |X}(x) = x+
7

2
. (1.18)

In the more general case of n+ 1 discrete random variables with joint probability density

p(x1, x2, · · · , xn, y) = Prob{X1 = x1, X2 = x2, · · · , Xn = xn, Y = y}, (1.19)

and marginal density with respect to X1, · · · , Xn given by

p(x1, · · · , xn) =
∑

y

p(x1, · · · , Xn, y), (1.20)

the conditional expectation of Y given X1, · · · , Xn is:

E{Y |X1, · · · , Xn}(x1, · · · , xn) =
∑

y yp(x1, · · · , xn, y)
p(x1, · · · , xn)

=
∑

y

yp(y|x1, · · · , xn). (1.21)

Again this is well defined if x1, · · · , xn is a possible outcome for the experiment, i.e., if p(x1, · · · , xn) >
0. If X and Y are continous random variables with join density p(x, y) and marginal densities

pX(x) =

∫

R

p(x, y)dy, pY (y) =

∫

R

p(x, y)dx, (1.22)

then the conditional expectation of Y given Xis defined in an analogous way

E{Y |X}(x) =
∫

R
yp(x, y)dy

pX(x)
. (1.23)
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which is well defined for pX(x) > 0. Similarly if X1 · · ·Xn, Y have joint density p(x1, · · · , xn, y),

E{Y |X1, · · · , Xn}(x1, · · · , xn) =
∫

R
yp(x1, · · · , xn, y)dy

pX1,··· ,Xn
(x1, · · · , xn)

=

∫

R

yp(y|x1, · · · , xn)dy. (1.24)

The conditional expectation E{Y |X1, · · · , Xn} is characterized by two properties:

1. The value of the random variable E{Y |X1, · · · , Xn} depends only on the values ofX1, · · · , Xn,
i.e., we can write E{Y |X1, · · · , Xn} = φ(X1, · · · , Xn). Remember that if a random vari-
able ζ can be written as a function of X1, · · · , Xn it is called measurable with respect to
X1, · · · , Xn

2. Suppose A is an event that depends on X1, · · · , Xn. For example it could be the event

A = {a1 ≤ X1 ≤ b1, · · · , an ≤ Xn ≤ bn}. (1.25)

Let IA denote the indicator function of A, i.e., the random variable which equals 1 if A
occurs and 0 otherwise. Then

E{Y IA} = E [E{Y |X1, · · · , Xn}IA] . (1.26)

Let us proof the last equality in the case of continuous random variables with density p(x1, x2, · · · , xn, y)
and A the above event.

E [E{Y |X1, · · · , Xn}IA]

=

∫ b1

a1

· · · ,
∫ bn

an

∫

R

E{Y |X1 = x1, · · · , Xn = xn}p(x1, x2, · · · , xn, y)dydxn · · · dx1

=

∫ b1

a1

· · · ,
∫ bn

an

∫

R

[∫

R
zp(x1, · · · , xn, z)dz

∫

R
p(x1, · · · , xn, z)dz

]

p(x1, x2, · · · , xn, y)dydxn · · · dx1

=

∫ b1

a1

· · · ,
∫ bn

an

∫

R

zp(x1, · · · , xn, z)dzdxn · · · dx1

= E{Y IA}. (1.27)

1.1.2 Stationary processes

A stationary process is process in which X(t) and X(t+ ǫ) have the same statistics for all ǫ ∈ R.

Definition (Stationary process). A stochastic process is said stationary if

p(x1, t1; . . . ;xn, tn) = p(x1, t1 + ǫ; . . . ;xn, tn + ǫ) ∀ǫ ∈ R. (1.28)

Specifically, we have that:

• The one-point probability density function does not depend on t:

p(x1, t1) = p(x1, t1 + ǫ) ∀ǫ ∈ R ⇒ p(x1, t1) = f(x1). (1.29)

As a consequence, the mean value of the stochastic process is constant

E {X(t)} ≡ 〈X(t)〉 = η = cost. (1.30)

• The two-point probability density function depends only onthe difference of the two times:

p(x1, t1;x2, t2) = p(x1, t1 + ǫ;x2, t2 + ǫ) ∀ǫ ∈ R ⇒ p(x1, t1;x2, t2) = f(x1, x2, t2 − t1).
(1.31)

As a consequence, for the two-time correlation function we have

E {X(t1)X(t2)} = E {X(t1)X(t1 + τ)} ≡ C(τ), (1.32)

with τ = t2 − t1.
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There is also a weaker definition of stationarity.

Definition (Stationary process in the weak sense). A stochastic process is said stationary in the
weak sense when

E {X(t)} = η = cost

E {X(t1)X(t2)} = E {X(t1)X(t1 + τ)} = C(τ) (1.33)

Of course, while a stationary process is stationary in the weak sense, a process could be
stationary in the weak sense but not stationary.

Remark (Deducing the statistics from a stationary time series). Sometimes, it is not possible to
average over several realizations of a stochastic process but just one long random path (i.e. one
X(t)) is available. This is for example the case of time series for a wether variable or for the light
intensity of a star. If however, the process is stationary it is possible to subdivide the time series
in N sub-series each of equal length T and then average over them.

1.1.3 Ergodic processes

Let us consider a stationary stochastic process {X(t)}t≥0 and let x(t) a given realisation of the
process X(t). If the arbitrarely chosen x(t) contains all the statistics informations of the process
X(t), the process itself is ergodic. To more precise let us define first the time average of a stochastic
process.

Definition. Time average of X(t) For a given realisation x(t) ed time interval [t− T/2, t+ T/2],
we define the time average over the interval as

XT (t;x) ≡
1

T

∫ t+T/2

t−T/2

x(t′)dt′ (1.34)

Clearly the above definition depends on T , t and also on the given realisation x(t). However,
in the limit T → ∞, one can define the time average of the process that does not depend either
on t or on T

X(x) = lim
T→∞

XT (t;x) (1.35)

In principle the above definition depends still on the given realisation x. If it doesn’t we finally
have

X(x) = X = E{X} (1.36)

and the process is said to be ergodic in mean. More generally the process X(t) is ergodic is the
equivalence between the time and ensemble averages holds not only for the first moment but for
all the moments of the distribution p(x1, t1, · · · , xn, tn).

1.2 Harmonic analysis of a stationary process

A given realization x(t) of a generic stochastic process {X(t)}t≥0 (stationary or not) is not, a
priori, neither a periodic function that can be expanded in Fourier series nor a L2 function for
which a Fourier transform exists. This is in particular true for stationary processes where a generic
realization x(t) does not go to zero as t → ∞. We can neverthenless define a Fourier transform
of x(t) by using the following trick. Suppose we have observed a stochastic process within a time
interval [0, T ], arbitrary large but finite. The Fourier transform of a given realization x(t) within
this interval can be defined for the function

XT (t) =

{
x(t) t ∈ [0, T ]
0 otherwise

(1.37)
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as

x̃(ω) =

∫

R

xT (t)e
iωtdt =

∫ T

0

x(t)eiωtdt. (1.38)

The inverse is then given by

xT (t) =
1

2π

∫

R

x̃(ω)e−iωtdω (1.39)

At the end of the calculation the limit T → ∞ can be taken. Since the chosen realisation is
arbitrary we can formally define the Fourier transform of the stochastic process {X(t)}t≥0 as

X̃(ω) =

∫

R

X(t)eiωtdt (1.40)

and

X(t) =
1

2π

∫

R

X̃(ω)e−iωtdω. (1.41)

1.2.1 Fourier Series of a stochastic process

Similarly, since a generic realization of a stochastic process is not a periodic function, we can make
it periodic on a large but finite interval [0, T ] as follows. For T fixed we consider the realization
y(t) obtained by repeating the original realisation x(t) on the interval [0, T ] on all the intervals
[T, 2T ], [2T, 3T ] · · · We can then define the Fourier series of x(t) as

(1.42)

x(t) =

+∞∑

n=−∞

ane
−iωnt 0 ≥ t ≥ T (1.43)

where ωn = 2πn/T , n = 0,±1,±2, . . ., and an is a complex number given by

an =
1

T

∫ T

0

x(t)eiωntdt. (1.44)

Since for every realization x(t) we define in such a way a countably infinite set of complex numbers
{an}n∈Z, the stochastic process X(t) within the interval [0, T ] is in fact expressed by a countably
infinite set of random variables {An}n∈Z. We can then define formally the Fourier transform of
the stochastic process X(t) as

X(t) =
+∞∑

n=−∞

Ane
−iωnt 0 ≥ t ≥ T (1.45)

with

An =
1

T

∫ T

0

dtX(t)eiωnt. (1.46)

It is important to notice that, being T fixed, the following relation

An =
1

T
X̃(ω). (1.47)

From the previous considerations we can define the expectation value of An as

E{An} =
1

T

∫ T

0

E{X(t)}eiωtdt. (1.48)
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If the process is stationary E{X(t)} = E{X} ≡ η and

E{An} =
E{X}
T

∫ T

0

e−iwnt dt =

{
0 if n 6= 0
E{X} = η if n = 0,

(1.49)

Since all the realisation a0 of A0 are equal to E{X} A0 is practially a deterministic variable and
we can consider instead the centred stochastic process X(t)−E{X}. By construction this process
can be expanded in Fourier series (in the sense explained above) with random coefficients An
having E{An} = 0, for all n = 0,±1 · · · . For this process we can define the two-points correlation
function as

CX(t, τ) ≡ E{X(t+ τ)X∗(τ)} (1.50)

and since

X(t) =

∞∑

n=−∞

Ane
−iωnt (1.51)

we have

CX(t, τ) =

n=∞∑

n=−∞

∞∑

n′=−∞

E{AnA∗
n′}e−i(ωn−ωn′ )te−iωnτ . (1.52)

On the other hand, if the process is stationary (even in the weak sence), the correlation function
cannot depend on t and the following relation must hold

E{AnA∗
n′} = E{|An|2}δnn′ . (1.53)

In other words, for a stationary process, there are no correlations between different modes of the
Fourier expansion.

1.2.2 Wiener-Khintchine theorem

Let {X(t)}t≥0 be a stationary process and consider a filter that select, among all the possible
frequencies ωn , the ones within the interval [ω, ω+∆ω]. We can define the average intensity σ(ω)
in this frequency band as

σ(ω)∆ω =
∑

ωn∈[ω,ω+∆ω]

E{|An|2}. (1.54)

Clearly the number of modes m within the interval [ω, ω +∆ω] is simply given by

m =
∆ω

2π/T
=
T∆ω

2π
. (1.55)

We now take the limit T → ∞ and ∆ω → 0. For very large observation times T the frequencies
spectrum tends to be continuous An 7→ A(ω). This, in addition, enables us to take the filtering
interval ∆ω very small. Under these conditions, the sum in Eq. (1.54) can be approximated by
m E{|A(ω)|2} and we get

σ(ω) ≡ lim
T→∞

1

∆ω
m E{|A(ω)|2} (1.56)

= lim
T→∞

T

2π
E{|A(ω)|2} (1.57)

Sometimes the quantity σ(ω) is replaced by S(ω) = 2πσ(ω). If, in addition, we consider the
relation (1.47) we finally have

S(ω) = lim
T→∞

1

T
E{|X̃(ω)|2} (1.58)
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To make an example: IfX(t) is the noise voltage between two terminals in an electrical network,
then S(ω) is the intensity of the noise “heard” by filtering the frequencies to a narrow bandwidth
∆ω around ω.

Note that relation (1.58) allows to establish the continuum limit of eq. (1.53), namely

E{X̃(ω)X̃∗(ω′)} = 2πδ(ω − ω′)S(ω). (1.59)

We can now establish the theorem by simply applying the above procedure to the expression

CX(τ) =

∞∑

n=−∞

E{|A(ωn)|2}e−iωnτ (1.60)

Indeed in the limits T → ∞, ∆ω → 0, and using An = 1
T X̃(ωn) we obtain

CX(τ) = lim
T→∞

1

2πT

∫

R

E{|X̃(ω)|2}e−iωτdω (1.61)

and from (1.58) we finally get

CX(τ) =
1

2π

∫

R

S(ω)e−iωτdτ (1.62)

Similarly

S(ω) =

∫

R

CX(τ)eiωτdτ (1.63)

Eqs. (1.62) and (1.63) correspond to theWiener-Khintchine theorem (Wiener 1930 and Khintchine
1934), a result that relates the power spectrum to the autocorrelation function of the stochastic
process, showing that one is the Fourier transform of the other. Each of these two quantities
contain the same information about the process.

Note that, if the stochastic process is real, the power spectrum is real and even, S(−ω) =
S∗(ω) = S(ω). In such a case, a simplified definition of the power spectrum is

S(ω) =
1

2π

∫

R

dτ cos(ωτ) C(τ) =
1

π

∫ +∞

0

dτ cos(ωτ) C(τ). (1.64)

1.3 Classification of stochastic processes

1.3.1 Completely random stochastic process

Definition (Completely random stochastic process). A completely random stochastic process is
characterized by the property

p(xn, tn|xn−1, tn−1, . . . ;x1, t1) = p(xn, tn). (1.65)

In other words, the probability of X(tn) conditioned to the previous n − 1 events (n ≥ 2)
does not depend on the outcomes xi = X(ti), with ti < tn. Hence, the process is completely
memoryless. We have then that the joint probability density function is given by

p(x1, t1; . . . ;xn, tn) = p(x1, t1) · · · p(xn, tn), (1.66)

and the whole process is determined by p(x1, t1).
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1.3.2 Markov Processes

A very important class of stochastic processes is the one of Markov processes whose definition goes
as follow:

Definition (Markov process). A stochastic process X(t) ∈ R is called Markov process if ∀t1 <
t2 < · · · < tn and ∀n, the conditional probability p(xn, tn|x1, t1;x2, t2; · · · ;xn−1, tn−1) satisfies the
property:

p(xn, tn|x1, t1;x2, t2; · · · ;xn−1, tn−1) = p(xn, tn|xn−1, tn−1). (1.67)

The above definition is equivalent to say that the event characterized by {xn ≤ X(tn) ≤
xn + dxn} depends only on the previous event {X(tn−1) = xn−1}. In other words a Markov
process does not depend on its whole history (stochastic process with no memory).

Lemma 1.3.1. A Markovian stochastic process is completely determined by the one-point density
probability p(x, t) and by the conditional probability p(x2, t2|x1, t1).

Proof. We know that for a generic stochastic process the n-point joint distribution is given by

p(x1, t1;x2, t2; · · · ;xn, tn) = p(x1, t1)p(x2, t2|x1, t1)p(x3, t3|x2, t2;x1, t1)
· · · p(xn−1, tn−1|xn−2, tn−2; · · · ;x1, t1)p(xn, tn|xn−1, tn−1; · · · ;x1, t1). (1.68)

By applying the Markov property to the previous equation we then obtain the lemma:

p(x1, t1;x2, t2; · · · ;xn, tn) = p(x1, t1)p(x2, t2|x1, t1)p(x3, t3|x2, t2)
· · · p(xn−1, tn−1|xn−2, tn−2)p(xn, tn|xn−1, tn−1). (1.69)

Note. For Markov processes the 1|1 conditional probability p(xk+1, tk+1|xk, tk) is also known as
transition probability.

Lemma 1.3.2. Let X(t) be a stochastic process. Show that if for t1 < t2 the increment X(t2)−
X(t1) does not depend on X(t), ∀t ≤ t1, then the process X(t) is a Markov process.

Proof. Exercise.

A consequence of the above result is the following theorem:

Theorem 1.3.3. If X(t) is a stochastic process with independent increments X(tk+1) − X(tk)
and X(t = 0) = 0, then X(t) is a Markov process.

Proof. Since the increments X(tk+1)−X(tk) are independent, in particular the increment X(t2)−
X(t1) does not depend on

X(t)−X(0) = X(t), ∀t ≤ t1. (1.70)

We can then use lemma 1.3.2 to obtain the result.

Remark. From the definition of Markov process and conditional probability it turns out that

E {X(tn)|X(tn−1), · · · , X(t1)} = E {X(tn)|X(tn−1)} (1.71)

Indeed

E {X(tn)|X(tn−1), · · · , X(t1)} =

∫

R

x(tn)p(xn, tn|xn−1, tn−1, · · · , x1, t1)dxn

=

∫

R

x(tn)p(xn, tn|xn−1, tn−1)dxn = E {X(tn)|X(tn−1)}(1.72)
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1.3.3 Chapman-Kolmogorov equation

Theorem 1.3.4 (Chapman-Kolmogorov equation). Let X(t) a Markov process. Then the 1|1
conditional density probability p(x3, t3|x1, t1) satisfies the relation:

p(x3, t3|x1, t1) =
∫

R

p(x3, t3|x2, t2)p(x2, t2|x1, t1)dx2 (1.73)

Proof. From the integration rule on right variables one gets

p(x3, t3|x1, t1) =
∫

R

p(x3, t3|x2, t2;x1, t1)p(x2, t2|x1, t1)dx2. (1.74)

On the other hand, since X(t) is a Markov process,

p(x3, t3|x2, t2;x1, t1) = p(x3, t3|x2, t2) (1.75)

and eq. (1.73) is recovered.

The integral equation (1.73) is fundamental for the theory of Markov processes. Its importance
comes from the fact that it is a closed equation for the two-point conditional probability density
function. Note that the expression (??) for the one-point probability density function of a Markov
process is instead not closed.

Remark. A possible intuitive interpretation of the Chapman-Kolmogorov equation is the fol-
lowing: The process started in {x1, t1} reaches the event {x3, t3} by passing through any of the
possible events described by X(t2). Indeed the integration over x2 does represent the sum over
all possible ways, at time t2 to reach x3 at time t3.

Note. Usually in physics one can say that an evolution has a markovian character if it can be
described by a 1|1 conditional probability satisfying the Chapman-Kolmogorov equation. However,
from a more rigorous point of view, in order to say that an evolution has a markovian character
it is necessary to check that such evolution satisfy also eq. (1.67) for any value of n. This is, of
course, not possible experimentally.

Definition (Homogeneous Markov processes). A stochastic Markov process is homogenous (in
time) if

1. p(x2, t2|x1, t1) = p(x2, t2 − t1|x1).

Remembering the definition of a generic stationary stochastic process we can define it for
Markov processes as follows:

Definition. A stochastic Markov process is stationary if

1. p(x2, t2|x1, t1) = p(x2, t2 − t1|x1).

2. p(x, t) = p(x).

Clearly a stationary Markov process is also a homogeneous one while the contrary is not true.

Example (Deterministic equation). Let us consider a first order differential equation

dx

dt
= F (x(t), t), (1.76)

and let φ(x0, t − t0) the flux of the equation that gives the trajectory x(t) = φ(x0, t − t0) corre-
sponding to the initial condition x(t0) = x0. Let us choose some points of that trajectory, for
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example {x0, t0;x1, t1; · · · ;xn, tn}. Since the initial condition determines completely the solution,
we have:

x1 = φ(x0, t1 − t0),

x2 = φ(x0, t2 − t0) = φ(x1, t2 − t1),

...

xn = φ(x0, tn − t0) = φ(xn−1, tn − tn−1). (1.77)

Since the particle starting from {x0, t0} has to pass through all the points {xi, ti}ni=1, we have by
definition:

p(x1, t1; · · · ;xn, tn) = δ(x1 − φ(x0, t1 − t0))δ(x2 − φ(x0, t2 − t0))×
× δ(x3 − φ(x0, t3 − t0)) · · · δ(xn − φ(x0, tn − t0)), (1.78)

and from eq. (1.77) one gets

p(x1, t1; · · · ;xn, tn) = δ(x1 − φ(x0, t1 − t0))δ(x2 − φ(x1, t2 − t1))×
× δ(x3 − φ(x2, t3 − t2)) · · · δ(xn − φ(xn−1, tn − tn−1)). (1.79)

By inserting the definitions

p(xk, tk|xk−1, tk−1) = δ(xk − φ(xk−1, tk − tk−1)), (1.80)

p(x1, t1) = δ(x1 − φ(x0, t1 − t0)), (1.81)

in eq. 1.79 we then obtain

p(x1, t1; · · · ;xn, tn) = p(x1, t1)p(x2, t2|x1, t1)p(x3, t3|x2, t2) · · · p(xn, tn|xn−1, tn−1), (1.82)

i.e. the Markov property.

Note. The classical mechanics is then a vectorial Markov process given that the pairs {q(t), p(t)}
are the solutions of the Hamilton equations

q̇(t) =
∂

∂p
H(q, p) (1.83)

ṗ(t) = − ∂

∂q
H(q, p), (1.84)

(1.85)

with initial conditions q(0) = q0 and q̇(0) = v0. It is interesting to notice that if one considers just
the time evolution of the variable q, the mechanics process loose the Markov property since the
value of just the position does not determine completely the trajectory. This is actually a general
property of Markov process, i.e., a process that is not Markovian for a set of variables can become
Markovian by adding another (or more) variables.

Definition (Non-Markovian process). A process which is not completely random nor Markovian
is said a non-Markovian stochastic process.

A non-Markovian process could be characterized by long-time memory effect. A strategy to
handle non-Markovian processes is to introduce auxiliary variables in order to obtain a Markov
process of higher dimension and then to project back the results for original process.
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1.3.4 Markov sequences

Up to now we have considered Markov processes in which both time and X(t) were continues
variables i.e. with values in R. It is possible, however, to consider a sequence of random variables

X1, X2, · · · , Xn (1.86)

in which t ∈ N. Similarly to the Markov process theMarkov sequence can be defined as follows:

Definition (Markov sequence). A sequence of random variables is markovian if, for any n we
have:

P (xn|xn−1, xn−2, · · · , x1) = P (xn|xn−1), (1.87)

namely, if the distribution of Xn conditioned by the sequence

Xn−1, Xn−2, · · · , X1 (1.88)

is equal to the probability distribution of Xn conditioned only by xn−1. If the random variables
considered are continues the above definition can be extended to the density distribution p:

p(xn|xn−1, xn−2, · · · , x1) = p(xn|xn−1). (1.89)

Again we will have:

p(x1, x2, · · · , xn) = p(xn|xn−1)p(xn−1|xn−2) · · · p(x2|x1)p(x1). (1.90)

Definition (Homogeneous Markov sequence). A Markov sequence is called homogeneous if the
conditional density

p(xn|xn−1) (1.91)

does not depend on n.

Similarly to Markov processes, the transition probability of a Markov sequence satisfies the
Champan-Kolmogorov equation:

p(xn|xs) =
∫

R

p(xn|xr)p(xr|xs)dxr, for any integers n > r > s. (1.92)

1.3.5 Markov chains

If, in addition to the discrete nature of the time, also the random variables Xk can assume only
discrete values such as, for example,

a1, a2, · · · , an. (1.93)

and
P{Xn = ain |Xn−1 = ain−1

, · · · , X1 = ai1} = P{Xn = ain |Xn−1 = ain−1
}. (1.94)

the sequence Xn is called Markov chain.

Example. Given the sequence X1, X2, · · · , Xn of independent random variables with density
pXn

(xn) = p(x) we can form the sequence:

Y1 = X1, Y2 = X1 +X2, · · · , Yn = X1 + · · ·+Xn. (1.95)

This sequence is a Markov sequence. Indeed, since from the definition of Yk we have

p(y1, y2, · · · , yn) = p1(y1)p2(y2 − y1) · · · pn(yn − yn−1) (1.96)

giving

p(yn|yn−1, · · · , y1) =
p(y1, · · · , yn)
p(y1, · · · , yn−1)

= pn(yn − yn−1). (1.97)
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Figure 1.2: Formation of Polystyrene

Figure 1.3: Formation of PMMA

On the other hand the last expression is independent on yn−2, · · · , y1 and the Yn is a Markov
sequence. Note that if

E{Xn} = 0, then E{Yn} = 0. (1.98)

Moreover, since
Yn = Xn + Yn−1, (1.99)

we have
E{Yn|Yn−1} = E{Xn|Yn−1}+ E{Yn−1|Yn−1} = Yn−1, (1.100)

since Xn is independent on Yn−1 and E{Xn} = 0. Hence,

E{Yn|Yn−1, · · · , Y1} = Yn−1, ∀n. (1.101)

A sequence with this property is a martingale.

1.4 Ideal polymer models as markov sequences

Polymers are in general made by assembling a large number of elementary units called monomers.
The simplest way to assemble these monomers is to connect them sequencially forming a chain.
This gives the topology of a linear polymer. There are also situations in which monomers are
connected following different graph topology resulting for example, to polymer rings, star polymers
and branched polymers. If all the monomers in the polymer are equal (or better to say they
have similar chemical properties) one talks about homopolymer. There are situations, however
in which different monomer types concur to form the polymer. This is the more general case of
heteropolymers. Note that important biological polymers such as DNA, RNA and proteins are
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Figure 1.4: Elementary unit for the Polyacrylamide



1.4 Ideal polymer models as markov sequences 17

heteropolymers. Another interesting class of heteropolymer are the block copolymers where the
chain (linear polymer) is made by two blocks of homopolymers made by by different monomer units.
Because monomers can be quite big (think for example to the aminoacids in proteins) contiguous
monomers along the chain can interact quite easily by steric hyndrance. This interaction makes
the chain sufficiently rigid within a given length scale. In a more statistical sense one can say that
in its spatial arrangement the chain tends to follow a given direction for an average number of
monomers defining the persistence length of the polymer. If the persistence length is sufficiently
long the polymer is said to be semiflexible or even rigid. Otherwise the polymer is flexible. An
important example of semiflexible polymer is the DNA that in the double-stranded form has a
persistence length of roughly 150 bais pairs. For length scales much larger than the persistence
length the polymer is highly flexible and in equilibrium, in free space, it can assume a large number
of spatial configurations. In general the number of these configurations grows exponentially with
N giving rise to an extensive (i.e. proportional to N) configurational entropy

SN ∝ log cN (1.102)

This high number of configurations and the fact that in general a polymer is in solution and
hence in contact with a heat bath at a given temperature justifies the use of statistical mechanical
approaches to these systems.

Since we are interested to study the behaviour of long macromolecules we can consider a coarse-
grained version of the polymer in which all the chemical details are neglected by considering each
monomer as a point in space described by the position vector ~Ri

For a polymer made by N+1 monomers we have a system with 3N degrees of freedom and each
spatial configuration C is represented by the set {~R1, ~R2, · · · , ~RN}. One is in particular interested
in studying the probability of a configuration

pN (~R1, ~R2, · · · , ~RN ) (1.103)

If, among all the possible interactions between monomers and solvent molecules-monomers, we
consider only to keep the covalent bonds interactions that is responsible of the connectivity, a
configuration {~R1, ~R2, · · · , ~RN} can be see as a realization of a stochastic process in R

3. A very
simple model in this respect is the so called freely-jointed chain. It is a model of ideal (i.e. no
excluded volume interactions) chain in which the chain is build up by joining segments of equal
length b in a completely random fashion. In particular given the chain up to N − 1 segments the
next segment (step) is chosen with length b and with direction uniformly on the surface of the
sphere with radius b. Since the system is translational invariant, we can assume the first monomer
to be fixed at the origin, i.e. ~R0 = ~0. From the theory of stochastic processes we can write

p(~R1, ~R2, · · · , ~RN ) == p(~RN |~RN−1 · · · ~R1)p(~RN−1|~RN−2 · · · ~R1) · · · p(~R2|~R1). (1.104)

Let us consider the generic conditional distribution p(~Rk+1|~Rk · · · ~R1). Clearly the new vector

position ~Rk+1 depends only on the previous position ~Rk and on the way in which the next step is
chosen in space. This gives

p(~Rk+1|~Rk · · · ~R1) = p(~Rk+1|~Rk) (1.105)

i.e. the ideal polymer is a Markov sequence. In the particular case of the FJC we have

p(~Rk+1|~Rk) =
1

4πb2
δ
(

|~Rk+1 − ~Rk| − b
)

(1.106)

where the factor 1/4πb2 is for normalization. Notice that the transition probability above does
not depend on k, i.e. the Markov sequence is homogeneous. The probability of a given polymer
configuration with N monomers is then given by

p(~R1, ~R2, · · · , ~RN ) = p(~RN |~RN−1)p(~RN−1|~RN−2) · · · p(~R2|~R1)

=
1

4πb2
δ
(

|~RN − ~RN−1| − b
)

· · · 1

4πb2
δ
(

|~R2 − ~R1| − b
)

. (1.107)
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Now let us consider the elementary step vectors ~rk ≡ ~Rk − ~Rk−1. Those are somehow the incre-

ments of the Markov sequence {~R1, · · · , ~RN}. It is easy to see that the process of the increments
has joint probability distribution

p(~r1, ~r2, · · · , ~rN ) =

[
1

4πb2
δ (|~r| − b)

]N

, (1.108)

i.e. the process of the increments is a completely random process. In other words the increments
of the process are independent random variables. An important quantity that characterizes a
polymer conformation (for linear polymers) is the end-to-end vector ~Re = ~RN − ~R0. This can be
easily defined as a function of the increments {~ri}

~Re =

N∑

i=1

~ri = h(~r1, · · · , ~rN ). (1.109)

It is interesting to study the distribution function of the end-to-end distance. From the theory of
function of random variables we now

p(~Re;N) =

∫

RN

d~r1 · · · d~rNδ(~Re −
N∑

i=1

~ri)p(~r1, ~r2, · · · , ~rN ) (1.110)

∫

R3

d3~r
δ(|~r| − b)

4πb2
e−i

~k·~r =
1

4πb2

∫ ∞

0

drr2δ(r − b)

∫ π

0

dθ sin θe−i|
~k|r cos θ

∫ 2π

0

dφ

=
1

2

∫ 1

−1

d(cos θ)e−i|
~k|b cos θ

=
sin |~k|b
|~k|b

. (1.111)

The end-to-end distribution is then given by

G(~R,N) =
1

(2π)3

∫

R3

d3~κ

(

sin |~k|b
|~k|b

)N

ei
~k·~R. (1.112)

Using the spherical coordinates system again such that φ is the rotation angle around ~R (fixed in

this integration), one can write (using the relation ~k · ~R = |~k||~R|) we obtain

G(~R,N) =
1

(2π)2

∫ π

0

∫ ∞

0

e−ikR cos θ

[
sin kb

kb

]N

k2 sin θdkdθ

=
1

(2π)2

∫ ∞

0

[
sin kb

kb

]N

k2
[∫ 1

−1

e−ikRsds

]

dk (1.113)

where we have used k ≡ |~k|, R = |~R| and s = cos θ. Hence

G(~R,N) =
1

2π2R

∫ ∞

0

k sin(kR)

[
sin kb

kb

]N

dk (1.114)

The integral above is not easy to perform but we can look at the asymptotic formula in the
case of N → ∞

To simplify notations let us write formula 1.114 as follows

G(~R,N) =
1

2π2R

∫ ∞

0

k sin(kR)eNψ(k)dk (1.115)
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where

ψ(k) = log

[
sin(kb)

kb

]

(1.116)

In the limit N → ∞ we can perform a saddle point approximation by expanding the integrand
around k = 0 i.e. where ψ(k) has its maximum (Gram-Charlier expansion):

sin(kb)

kb
= 1− (kb)2

3!
+

(kb)4

5!
+O(k6) (1.117)

and

ψ(k) = − (kb)2

6
− (kb)4

180
+O(k6). (1.118)

If we keep just the first term in the expansions we get

G(~R,N) ∼ 1

2π2R

∫ ∞

0

k sin(kR)e−N(kb)2/6dk. (1.119)

The right hand side is an integral that can be performed and we finally get

G(~R,N) ∼
(

3

2πb2N

3/2
)

exp

(

− 3R2

2b2N

)

. (1.120)

Thus in the N → ∞ limit, the distribution function of the end-to-end vector is Gaussian. To see
the first correction to the Gaussian behaviour let us consider also the second term of the expansion.
This gives

eNψ(k) = e−N(kb)2/6e−N(kb)4/180 = e−N(kb)2/6 − N(kb)4

180
e−N(kb)2/6 (1.121)

and

G(~R,N) ∼ 1

2π2R

[∫ ∞

0

k sin(kR)e−N(kb)2/6dk − Nb4

180

∫ ∞

0

k5 sin(kR)e−N(kb)2/6dk

]

. (1.122)

Simplification and integration gives

G(~R,N) ∼
(

3

2πb2N

3/2
)

exp

(

− 3R2

2b2N

)[

1− 3

4N
+

3R2

2b2N2
− 9R4

20b4N3

]

. (1.123)

The result (1.120) is indeed a consequence of the central limit theorem where the variable
Sn corresponds to the end-to-end distance and the i.i.d. variables to the increments ~ri having
E{~ri} = 0 and V ar{~ri} = σ2 = b2. This gives

G(~R,N) → N
(
0, Nb2

)
, as N → ∞. (1.124)

Note that the above result give the well known property of an ideal chain (random walk)

〈R2
e〉 ≃ Nb2. (1.125)

1.5 Martingales

Another particular collection of stochastic process are the so called Martingales. We will see that
among these processes there are the random walk (discrete in time) and the Brownian motion
(continous in time). Martingales play an important role in computations involving stopping times.
We first deal with discrete time martingales.
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1.5.1 Time discrete martingales

Roughly speaking a discrete time martingale is a sequence of random variables {X0, X1, · · · }
with finite means (i.e. integrables ) and such that the conditional expectation of Xn+1 given
X0, X1, · · · , Xn is equal to Xn. A more general (and slightly more precise) definition of discrete
time martingale could be the following:

Definition. A sequence Yn = f(X0, X1, · · · , Xn) (n ≥ 0) is a martingale with respect to the
sequence X0, X1, · · · if for all n ≥ 0

1. E{|Yn|} <∞, i.e. integrable

2. E{Yn+1|X0, X1, · · · , Xn} = Yn

As an example of time discrete martingale let us consider a random walk on the real line starting
at x0 = 0 with steps {∆Xk}k=1,n. The k-esim step can in principle depend on its history. Let Xn

be the position after n steps i.e. Xn =
∑n
k=1 ∆Xk. The steps {∆Xk}k=1,n are the increments of

the process Xn. The conditional probability of the kth step given the history ∆X1, · · · ,∆Xk−1 is

p(∆Xk|∆X1, · · · ,∆Xk−1) =
p(∆X1, · · · ,∆Xk−1,∆Xk)

p(∆X1, · · · ,∆Xk−1,∆Xk−1)
. (1.126)

The random process {Xn}n≥0 forms a martingale if each increment ∆Xk (or martingale difference)
has zero conditional mean: i.e. if for each k ≥ 1

E[∆Xk|∆X1, · · · ,∆Xk−1] = 0 (1.127)

for all histories {∆Xk}k=1,k−1. Note that althouh the mean value is independent on the history
of the walk, the conditional probability density (1.126) can depend on {∆Xk}k=1,n. If we define
the expected value of the location Xn as

E[Xn] =

∫

xnp(∆X1, · · · ,∆Xn)d∆X1 · · ·∆Xn (1.128)

it is possible to proof the following Lemma for martingale processes:

Lemma 1.5.1. If {Xn}n≥0 is a martingale with x0 = 0, then

• E[Xn] = 0

• V ar[Xn] =
∑n
k=1 V ar[∆Xk]

This result can be proven inductively by using
∫

d∆xn+1p(∆xn+1|∆x1, · · · ,∆xn) = 1 (1.129)

and
∫

d∆xn+1∆xn+1p(∆xn+1|∆x1, · · · ,∆xn) = E[∆Xn+1|∆X1, · · · ,∆Xn] = 0. (1.130)

Before stating the Martingale central limit theorem let us recall that a sequence Yn of random
variables is said to convergence in probability to a random variable Y if ∀δ > 0, the probability of
|Yn − Y | > δ goes to zero as n→ ∞.

Theorem 1.5.2 (Martingale central limit theorem). Suppose that ∆X1,∆X2, · · · are square-
integrable martingale differences such that

•
max

1≤k≤n

(
|∆Xk|

√
n
)
→ 0 in probability (1.131)
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•
n∑

k=1

∆x2k/n→ Z2, in probability (1.132)

•
E

[

max
1≤k≤n

(∆x2k/n)

]

is bounded in n, (1.133)

where the random variable Z si finite with probability 1; then

1√
n

n∑

k=1

∆Xk → Y, (1.134)

where the convergence is in distribution and the random variable Y has characteristic function
given by

fY (k) = E

[

exp−
(
1

2
z2k2

)]

∀k. (1.135)

Observe that the martingale differences ∆Xk are not required to be independent or to be
identically distributed.

Lemma 1.5.3. If the random variable Y and Z satisfy eq. (1.135), then Y is Gaussian if and
only if Z2 is a constant.

1.6 Processes with stationary and independent increments

Definition (Process with independent increments). A stochastic process X(t) ∈ R has indepen-
dent increments if, ∀T = {t1, t2, · · · , tn}

X(0), X(t1)−X(0), X(t2)−X(t1), · · · , X(tn)−X(tn−1) (1.136)

are independent random variables.

Definition (Process with stationary increments). A stochastic process X(t) ∈ R has stationary
increments ifX(t)−X(s) has the same probability distribution thanX(t+τ)−X(s+τ), ∀s, t, τ ≥ 0,
s < t.

If X(t) ∈ R is a stochastic process with stationary and independent increments the following
properties hold (see Problem )

E{X(t)} = η1t, (1.137)

V ar{X(t)} = σ2
1t (1.138)

and

E{X(t)X(s)} = σ2
1 min(t, s) (1.139)

where η1 = E{X(1)}, σ2
1 = V ar{X(1)}.

1.7 Gaussian processes

In this section we will define the Gaussian stochastic processes and show their basic properties.
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Definition (Gaussian process). A Gaussian, zero average, stochastic process X(t) ∈ R is a
stochastic process in which for any given time partition T = {t1, t2, · · · , tn} the joint probability
density function is given by

p(x1, t1; . . . xn, tn) ≡
1

(2π)n/2
(detA)1/2e−

1

2

∑n
i,j=1

xiAijxj , (1.140)

where A ∈ Mn(R) is a real (Aij ∈ R), symmetric (Aij = Aji), invertible (detA 6= 0), strictly
positive defined (

∑n
i,j=1 xiAijxj > 0), n× n matrix.

The matrix A depends of course on the chosen time partition t1 · · · tn, but for any given
ti, i = 1..n A can be diagonalized and all the eigenvalues are strictly positive.

Exercise (Characteristic function of a Gaussian process). Show that the Fourier transform of the
n-point joint probability density function of a Gaussian process, p(xn, tn;xn−1, tn−1; · · ·x1, t1), is
given by:

f(kn, tn; · · · k1, t1) = e
− 1

2

∑n
i,j=1

ki(A−1)
ij
kj (1.141)

Lemma 1.7.1 (Correlations of a Gaussian process). The n-point correlation functions of a Gaus-
sian process are given by the relation

E{X(t1) · · ·X(tn)} = (−i)n ∂

∂k1
· · · ∂

∂kn
f(kn, tn; · · · k1, t1) |ki=0∀i . (1.142)

Proof. Just notice that

E{X(t1) · · ·X(tn)} =

∫

Rn

dx1 · · · dxnx1 · · ·xnp(kn, tn; · · · k1, t1)

= (−i)n ∂

∂k1
· · · ∂

∂kn

∫

Rn

dx1 · · · dxne〈k|x〉p(x1, t1; · · ·xn, t1)
︸ ︷︷ ︸

=f(k1,t1;···kn,tn)

|ki=0∀i(1.143)

Exercise. Show that for a zero-average Gaussian process the two-time correlation (covariance)
C(ti, tj) is given by:

C(ti, tj) ≡ E{X(ti)X(tj)} =
(
A−1

)

ij
. (1.144)

The above result is showing that the covariance determines all the matrix elements of A−1 and
thus of A. Hence, a zero-average Gaussian process is completely determined by its covariance. As
a consequence, the covariance must also determine all higher-order correlation terms. This result
is summarized in the following theorem.

Theorem 1.7.2 (Wick’s theorem). For a zero-average Gaussian process we have:

E{X(t1) · · ·X(tn)} =

{ ∑

P(n) E{X(tp1)X(tp2)} · · ·E{X(tpn−1
)X(tpn)}, n even,

0, n odd,
(1.145)

where the sum is over all the partitions P(n) of 1, · · · , n in k = n/2 elements, with n even. The

number of such terms is (2k − 1)!! = 1 · 3 · 5 · · · · (2k − 1) = (2k)!
k!2k

.

For a general proof see (TODO). With the aid of Eq (1.142) one can easily verify that for the
4-point correlation function we have

E{X(t1)X(t2)X(t3)X(t4)} = E{X(t1)X(t2)}E{X(t3)X(t4)}+ E{X(t1)X(t3)}E{X(t2)X(t4)}
+ E{X(t1)X(t4)}E{X(t2)X(t3)} (1.146)
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Observation. The correlation functions of the free quantum fields follow the same relations and
the above theorem in quantum field theory is known as Wick’s theorem.

Remark. Note that the result of Eq. (1.144) tell us that a Gaussian process that is uncorrelated
it is also completely random (i.e. the X(ti) are independent ∀i). Indeed if the Gaussian process
is uncorrelated we have:

E{X(ti)X(tj)} = δij =
(
A−1

)

ij
(1.147)

Hence the matrix A is the identity and from Eq. (1.140) this means that the joint density
distribution is just a product of n Gaussian random variables.

Lemma 1.7.3 (Linear transformation). A stochastic process obtained from a Gaussian process
through a linear transformation is still a Gaussian process.

Definition (Stationary Gaussian process). For a general stationary process the two-point corre-
lation function depends only on the time difference:

E{X(ti)X(tj)} = C(tj − ti). (1.148)

For a stationary Gaussian process, this function determines the whole process. Hence, a stationary
Gaussian process is completely defined by a function C(t) positively defined.

Remark. If a Gaussian process is stationary in a weak sense then it is also stationary in the
strong sense (see Problems section). This is somehow understandable since a Gaussian process is
completely determined by the first and second moments to which the definition of weak stationarity
is applied.

Observation. If, more generally, a Gaussian process has E{X(t)} 6= 0, one can verify that the
stochastic process X(t) − E{X(t)} is a zero-average Gaussian process, for which all the above
results are valid.

Up to now we defined two important classes of stochastic processes: the Markovian and the
Gaussian processes. Dobb’s theorem characterizes the conditions under which these two classes
are equivalent.

Theorem 1.7.4 (Dobb’s theorem). A stationary Gaussian process is also a Markovian process if
and only if its autocorrelation function C(t) is an exponential function.

Definition (Gaussian process with independent increments). A zero-average Gaussian process
has independent increments if the random variables

X(t2)−X(t1), · · ·X(tn)−X(tn−1) are independent (1.149)

for all 0 ≤ t1 < · · · < tn <∞.

Lemma 1.7.5. A zero-average Gaussian process has independent increments if and only if such
increments are not correlated, i.e.,

E{[X(s)−X(r)][X(u)−X(t)]} = 0 (1.150)

for all 0 ≤ r < s ≤ t < u <∞.

Proof. We have previously seen that if two random variables are independent, then they are
also not correlated. This is valid in general for random variables, and in particular for normal
random variables. Independency is a stronger condition than the absence of correlation and in
general two random variables can be not correlated without being independent. In contrast, for
normal random variables we have seen that independency and absence of correlation are equivalent
properties. This demonstrates the lemma.
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1.8 Wiener-Levy process

An important example of a zero-average Gaussian process with stationary independent increments
is the Wiener-Levy process W (t).

Definition (Wiener-Levy process). A stochastic process {W (t)}, t ≥ 0 is a Wiener-Levy process
if

1. W (0) = 0, W (t) is real.

2. E {W (t)} = 0.

3. W (t) has independent increments.

4. W (t) has stationary incrementa, i.e. the probability density function of W (t) −W (s)
only depends on (t− s).

5. The increments W (t)−W (s) follow a Gaussian distribution.

Note. In the mathematical community the Wiener process is often called Brownian motion pro-
cess. To avoid confusion with the Brownian motion introduced in chapter 1 the name Wiener
process is taken.

From the properties of stochastic process with stationary independent increments (see subsec-
tion above) one gets that a Wiener process is characterized by

W (0) = 0; (1.151)

and by an average and a autocorrelation function

E{W (t)} = 0 (1.152)

E{W (t1),W (t2)} =

{
σ2t1 t1 ≥ t2
σ2t2 t1 ≤ t2

= σ2 min(t1, t2), (1.153)

with σ ∈ R. It is also easy to show (see Problem) that the Wiener process is a Gaussian process.
Since the Wiener process is Gaussian, the quantities in (1.153) determine uniquely its statistics.

For example the single-variable reduced probability density function, p(w, t), is easily obtained once
noticed that the process W (t) has zero-average and variance

E{W (t)W (t)} = σ2t. (1.154)

As a consequence, the single-variable reduced probability density function is

p(w, t) =
1

σ
√
2π

exp [−w2/2σ2t]. (1.155)

Theorem 1.8.1. It possible to show that a Gaussian process X(t) with autocorrelation given by
Eq. (1.153) has independent increments.

Proof. Given
t1 > t2 > t3, (1.156)

we have

E {[X(t1)−X(t2)] [X(t2)−X(t3)]} = E{X(t1)X(t2)} − {X(t2)X(t2)} − E{X(t1)X(t3)}
+ {X(t2)X(t3)}
= σ2t2 − σ2t2 − σ2t3 + σ2t3 = 0. (1.157)

Thus the increments
X(t1)−X(t2) e X(t2)−X(t3) (1.158)
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are orthogonal random variables. Since they are Gaussian with zero-average, they must be inde-
pendent. Moreover, these increments are stationary, as

E

{

[X(t1)−X(t2)]
2
}

= σ2t1 + σ2t2 − 2σ2t2 = σ2(t1 − t2). (1.159)

Note. A Wiener-Levy process has stationary increments, but the process itself is not a stationary
process. In fact

E {W (t1)W (t2)} = σ2 min(t1, t2), (1.160)

which is not a function of the difference (t2 − t1) only.

The Wiener-Lévy process is particular case of a family of processes called Lévy processes.

Definition (Lévy process). A Lévy process, is any continous-time stochastic process that starts
at 0 and has stationary independent increments.

In general, the probability distributions of the increments of any Lévy process are infinitely
divisible. In other words there is a Lévy process for any given infinitely divisible probability
distribution.

1.9 Poisson processes

In addition to the mentioned Wiener process another well know Lévy process is the Poisson
process. In this respect a possible definition of a Poisson process can be the following:

Definition (Poisson process). A Poisson process is a Lévy process whose incrementsX(t1)−X(t2)
follow a Poisson distribution with expected value λ(t1 − t2) where λ is the intensity or rate of the
process.

The Poisson process is often related to the problem of arrivals and counting processes.

1.9.1 Arrival process

Let τ a time variable and consider an experiment starting at τ = 0. The events of this experiment
are randomly distributed in time. Say that the first is occurring at τ = τ1, the second at τ = τ2
and so on. The random variable τi denotes the time at which the i-esim event occurs and the
values ti are a realization of the random variable τ . Let

ζi = τi − τi−1 (1.161)

the time interval between the occurrence of the (i−1)esim event and the i-esim one. The sequence
of random variables {ζi, i ≥ 0} are called inter-event time process. The time random variable τi
can be written as

τi = ζ1 + ζ2 + · · ·+ ζi (1.162)

and describes the time interval between the occurrence of the event and the initial time. For this
reason the process {τi} it is also known as Arrivals process.

1.9.2 Counting processes

A stochastic process {X(t), t ≥ 0} is called counting process if X(t) represents the total number
of events occurred in the time interval (0, t). From this definition it is clear that X(t) must satisfy
the following properties:

1. X(t) ≥ 0 and X(0) = 0,

2. The realization of X(t) are integer numbers (X : Ω → N)

3. X(s) ≥ X(t) is s < t,

4. X(t)−X(s) corresponds to the number of events occured at the time interval (s, t).
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1.9.3 Poisson process as a counting process

A very important counting process is the Poisson process that we can define again in this respect
as follows:

Definition. A counting process X(t) is a Poisson process with frequency (or intensity) λ if

1. X(t) has independent increments,

2. The number of events in a time interval of length t (increments) follows the Poisson distri-
bution with average λt, i.e. for all s, t > 0

P(X(t+ s)−X(s) = k) = e−λt
(λt)k

k!
, k = 0, 1, 2, · · · (1.163)

From condition 3 of the definition it turns out that a Poisson process has stationary increments
and that

E{X(t)} = λt (1.164)

and from the result on the variance of a Poisson distribution one has

V ar{X(t)} = λt. (1.165)

Hence the average number of events that occur in the unit interval (0, 1) (or in any unit time
interval) is λ (velocity).

It is easy to show that (see Exercises section)

E{X(t)X(s)} = λmin(t, s) + λ2ts (1.166)

while
E{(X(t)− E{X(t)})(X(s)E{X(s)})} = λmin(t, s). (1.167)

1.10 Continuous processes

In general a continuous stochastic process is a stochastic process that may be said continuous
in time or with respect to an index parameter that is a continous variable.

Definition (Continuous with probability one). A stochastic process {X(t)}t≥0 is continuous
with probability one or strongly continuous at t if

P

{

ω ∈ Ω | lim
s→t

|X(s, ω)−X(t, ω)| = 0
}

= 1 (1.168)

Definition (Continuous in probability). A stochastic process {X(t)}t≥0 is continuous in prob-
ability at t if ∀ǫ > 0,

lim
s→t

P {ω ∈ Ω | |X(s, ω)−X(t, ω)| ≥ ǫ} = 0. (1.169)

Equivalently {X(t)}t≥0 is continuous in probability at t if

lim
s→t

E

{ |X(s)−X(t)|
1 + |X(s)−X(t)|

}

= 0. (1.170)

The continuity in probability also holds if the covariance E{X(t)X(s)} is continuous over E+×E
+.

Definition (Continuous in mean-square). A stochastic process {X(t)}t≥0 is continuous in mean
square at t if E{|X(t)|2} <∞ and

lim
s→t

E{|X(s)−X(t)|2} = 0 (1.171)
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Definition (Continuous in distribution). A stochastic process {X(t)}t≥0 is continuous in dis-
tibution at t if

lim
s→t

PX(x, s) = PX(x, t) (1.172)

for all points x at which P (x, t) is continuous where P (x, t) is the probability distribution of the
stochastic processs {X(t)}t≥0.

Note that all the continuity definition above concern the probability distributions, not the
sample paths. For sample paths we have the following definition of continuous process:

Definition (Continuous in sample paths or sample continuous). A stochastic process {X(t)}t≥0

is sample continuous if X(t, ω) is continuous in t for P-almost all ω ∈ Ω.

1.10.1 Relations between the different definitions of continuity

• A stochastic process {X(t)}t≥0 that is continuous with probability one is also continuous in
probability.

• A stochastic process {X(t)}t≥0 that is continuous in mean-square is continuous in probability.

• Continuity with probability one neither rimplies, nor is implied by, continuity in mean square.

• A stochastic process {X(t)}t≥0 that is continuous in probability is continuous in distribution.

1.10.2 Continuity with probability one and continuity in sample paths

Note that continuity with probability one at time t means that P{A(t)} where

A(t) = {ω ∈ Ω | lim
s→t

|X(s, ω)−X(t, ω)| 6= 0}, (1.173)

and it is reasonable to check whether or not this is true for each t. On the othe hand the continuity
in sample paths requires that P{A} = 0 where

A =
⋃

t∈T

A(t) (1.174)

is an uncountable union of events i.e. it may be not an event itself. If this is the case P{A} is ill
defined. Moreover, even if A is an event, P{A} can be stricly positive even if P{A(t)} = 0 ∀t ∈ T .
This is the case, for example, of the telegraph process.

1.11 Ornstein-Uhlenbeck process

A stochastic process {X(t)}t≥0 is an Ornstein-Uhlenbeck process or Gauss-Markov process
if it is stationary, Gaussian, Markovian and continuous in probability. A fundamental theorem,
due to Doob, ensures that {X(t)}t≥0 necesseraly satisfies the following linear stochastic differential
equation (see Chapter on Langevin equation)

dX(t) = −γ(X(t)− µ)dt+ σdW (t) (1.175)

where dW (t) = W (t + ∆t) −W (t) are the increments of a Wiener process {W (t)}t≥0 with unit
variance. The parameters γ, µ and σ are constants. The moments of the Ornstein-Uhlenbeck
process are

E{X(t)} = µ, E{X(t)X(s)} =
σ2

2γ
e−γ|s−t|, (1.176)



28 Stochastic processes

in the unconditional (stationary) case and

E{X(t)|X(0) = x0} = µ+ (x0 − E{X(t)})e−γt

E{X(t)X(s)|X(0) = x0} =
σ2

2γ

(

e−γ|s−t| − e−γ(s+t)
)

(1.177)

in the conditional (asymptotically stationary) case. Note that the latter case, for µ = x0 = 0,
σ = 1 and γ → 0+ the process reduces to the Wiener process. The former case encompasses
idealized white noise {dW (t)}t≥0 when µ = 0, γ = σ and γ → ∞. Because of the form of
E{X(t)X(s)}, the Ornstein-Uhlenbeck process is also known as coloured noise.

1.11.1 A simple algorithm to generate OU processes

Let N be a large integer and let w0, w1, · · · , wN be independent random numbers generated from
a normal distribution with mean 0 and V ar(w) = σ2/(2γ). Let us define x0 = µ + w0 for the
unconditional case and x0 = x(0) for the conditional case. The discrete version of the process can
be obtained recursively as

xk = µ+ e−γT/N (xk−1 − µ) + wk
√

1− exp(−2γT/N) (1.178)

for 1 ≤ k ≤ N and where T is the length of the integration interval [0, T ]. If one interpolates
linearly the values X(kT/N) = xk the desired path is obtained. For ore sophisticated simulation
methods refer for example to [10, 11].

1.12 Self-similar processes

Definition (Self-similar process with index H). A real-valued stochastic process {XHss(t)}t∈R
is

self-similar with index H > 0 (H-ss) if, for any a > 0,

{XHss(at)}t∈R
=
{
aHXHss(t)

}

t∈R
(1.179)

where the equality is in the distributional sense. One often talks about “statistical self-similarity”
or “self-affinity” and H is called the scaling Hurst exponent.

Note. An H-ss process cannot be stationary. However an important subclass of H-ss processes
are the ones having stationary increments.

Definition. A real valued stochastic process {XHss(t)}t∈R
is H-sssi if it is self-similar with index

H and has stationary increments.
H-sssi processes are of great interest in application since, as we will see below and later (see

Chapter on anomalous diffusion), they give rise to stationary sequences with remarkable features.

1.13 Fractional Brownian Motion

We have seen that a regular Brownian MotionWtis a Gaussian process with E{Wt} = 0,E{Wt1Wt2} =
min(t1, t2) having independent and stationary increments. If we relax the independence prop-
erty of the increments we loose the Markov property of the Brownian motion. This is the case,
for example, for the fractional Brownian motion.

Definition (Fractional Brownian motion). A fractional Brownian motion (fBm) of Hurst param-
eter H ∈ (0, 1) is a real centered (E{WH(t)} = 0) process of covariance

E{WH(t)WH(s)} =
σ2

2

(
s2H + t2H − |s− t|2H

)
(s, t ≥ 0) (1.180)

where σ2 = V ar(WH(1)). It is called standard if σ2 = 1.
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Note. A fractional Brownian motion is a Gaussian H-sssi process with 0 < H < 1.

If we take t = s we get the second moment of the fBM :

E{WH(t)2} = σ2|t|2H . (1.181)

The value of H determines what kind of fBm is:

• If H = 1/2 the process is in fact a regular Brownian motion;

• If H > 1/2 the increments of the process are positively correlated;

• If H < 1/2 the increments are negatively correlated.

• The case H = 1 is excluded because it corresponds merely to a line W1(t) = tW1(1) with
random slope W1(1).

Proposition 1.13.1. Suppose that {WH(t)}t∈R

• is a Gaussian process with mean E{WH(t)} = 0 and with WH(0) = 0,

• E{W 2
H(t)} = σ2|t|2H

• has stationary increments

then {WH(t)}t∈R
is a fractional Brownian motion.

Representation of fBm

An integral representation of the fBm must be of the general form

WH(t) =

∫

R

gt(s)dW (s) (1.182)

where W (s) is the Wiener process and dW (s) is the white noise. A possible form of gt(s) was
introduced by Mandelbrot and Van Ness (1968) gives the so called integral representation of the
fBm of type I:

WH(t) =

∫ 0

−∞

{

(t− s)H−1/2 − (0− s)H−1/2
}

dW (s)

+

∫ t

0

(t− s)H−1/2dW (s) (1.183)

Is the process defined above self-similar ? To see that take a > 0. Then

WH(at) =

∫ 0

−∞

{

(at− as)H−1/2 − (0− as)H−1/2
}

dW (as)

+

∫ t

0

(at− as)H−1/2dW (as) = aHWH(t) (1.184)

where we have used dW (as) = a1/2dW (s).

Does it have stationary increments ? Yes (TODO)

Is is well defined ? In this case we need to check that
∫

R
g2t (s)ds <∞ TODO.
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Alternative representation of fBM

An alternative integral representation can be given as follows: We previously had

WH(t) =

∫ 0

−∞

{(t− s)H−1/2 − (0− s)H−1/2}dW (s)

+

∫ t

0

(t− s)H−1/2dW (s)

=

∫ ∞

−∞

{(t− s)
H−1/2
+ − (0− s)

H−1/2
+ }dW (s). (1.185)

Let us know consider

s+ =

{
s s ≥ 0
0 s < 0

(1.186)

and

s− =

{
0 s > 0
−s s ≤ 0

(1.187)

Notice that s+ > 0 and s− > 0. Hence an alternative representation is the following: For any
a ≥ 0, b ≥ 0 (not both zero):

WH(t) = a

∫ ∞

−∞

{(t− s)
H−1/2
+ − (0− s)

H−1/2
+ }dW (s)

+ b

∫ ∞

−∞

{(t− s)
H−1/2
− − (0− s)

H−1/2
− }dW (s). (1.188)

Actually for the fBm process there exist lots of equivalent representation.

Some sample path properties of fBm

• For any 0 < H < 1, the paths of fBm are continuous but not differentiable.

• The paths of fBm get less weird as H goes from 0 to 1. On this basis, on etypically divides
the class of all fBm’s into

Antipersistent (0 < H < 1/2). In this case the increments of fBm tend to have opposite
signs and their covariance is negative (see subsection below);

Chaotic (H = 1/2);

Persistent (1/2 < H < 1). In this case the covariance of two consecutive increments is
positive (smaller ziz-zagging of the paths).

• Regularity
Sample-paths are almost nowhere differentiable. To be precise, almost-all tra-
jectories are Holder continuous of any order strictly less than H, i.e., for each
trajectory there exists a constant c such that

|WH(t)−WH(s)| ≤ c|t− s|H−ǫ, ∀ǫ > 0 (1.189)

The increment process of the fBm and long-range depedence

Let {Z(t)}t∈R
an H-sssi process with 0 < H < 1 and let

Xk = Z(k + 1)− Z(k), k ∈ Z (1.190)

be their increments.



1.13 Fractional Brownian Motion 31

Definition. If {Z(t)}t∈R
is a fBm, then the process of the incremenst {Xk}k∈Z

is called the
fractional Gaussian noise (fGn).

In a continuum version of the increment process we can also write

WH(t) =

∫ t

0

X(t′)dt′ (1.191)

Proposition 1.13.2. The increment-sequence {Xk}k∈Z
has the following properties

(a) {Xk}k∈Z
is stationary;

(b) E{Xk} = 0 (zero mean) ;

(c) E{X2
k} = σ2 = E{WH(1)2}

(d) The autocovariance function of the process {Xk}k∈Z
is given by

Cov(k) = E{XiXi+k}
σ2

2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
. (1.192)

(e) Let k 6= 0. Then Cov(k) = 0 if H = 1/2; Cov(k) < 0 is 0 < H < 1/2 and Cov(k) > 0 if
1/2 < H < 1.

(f) If H 6= 1/2 then
Cov(k) ∼ σ2H(2H − 1)|k|2H−2, as k → ∞. (1.193)

Note that in the time continuum version the covariance of the increment process X(t) is given
by

E{X(t1)X(t2)} = σ2H(2H − 1)|t1 − t2|2H−2 + 2σ2H|t1 − t2|2H−1δ(t1 − t2). (1.194)

Suppose also that Cov(k) has a spectral density f(ν) that is

Cov(k) =

∫ π

−π

eiνkf(ν)dν, k ∈ Z, (1.195)

and

f(ν) =
1

2π

∞∑

k=−∞

e−iνkCov(k), ν ∈ [−π, π]. (1.196)

Then
Cov(k) ∼ σ2H(2H − 1)|k|2H−2, as k → ∞. (1.197)

f(ν) ∼ Aν1−2H , as ν → ∞. (1.198)

When 1/2 < H < 1 one says that there is long-range dependence, or long memory or 1/f noise.
Long range dependence corresponds to a divergence of the spectral density f(ν) at the origin.

Note. The self-similarity and long memory properties make the fractional Brownian motion a
suitable input noise in a variey of models. Recently, for example, fBm has been applied in con-
nection with financial time series, hydrology and telecommunications. In order to develop these
applications there is need for a stochastic calculus with respect to the fBm. Nevertheless, fBm
is, for H 6= 1/2, neither a semimartingale nor a Markov process and, for this reason, the usual
stochastic (Ito) calculus cannot be applied to analyze it. It is however possible to define stochastic
calculus with respect to fBm (called fractional stochastic integrals). Moreover, since the fBm is a
Gaussian process, it possible to apply the stochastic calculus of variations which is valid on general
Wiener spaces (Ito-Clark formula and Girnasov theorem).

A discrete version of fBm is based on correlated random walks, i.e., discrete processes such
that the law of each move is ruled by the value of the previous move. In particular the model one
can refer to is the correlated random walk with persistence p. It is a process evolving on
Z by jumps of +1 or −1, whose probability of making the same jump as the previous one is p
(semi-flexible polymer).

Exercise. Let WH
t be a fractional Brownian motion with Hurst exponent H ∈ (0, 1) and define

bHj ≡WH
j −WH

j−1. Calculate E(bHj bHj+k) for k ≫ 1.
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1.14 ARCH Processes

TODO
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Exercises

1. Let X(t) = A cos(ω0t+Θ) where A and ω0 are constants and Θ is a continous random variable
uniformly distributed on (−π, π).

(i) Show that X(t) is stationary stochastic process in the weak sense (WSS).

(ii) Compute the spectral density S(ω):

2. What is the correlation function of the stationary process with spectrum

S(ω) =
1

√

π|ω|
e−|ω| ? (1.199)

What is the largest-t behaviour of this correlation function ?

3. Show that, for a stochastic process {ξ(t)} (ξ(0) = 0), with stationary and independent incre-
ments, the following properties hold:

(A)
E{ξ(t)} = η1t, (1.200)

(B)
V ar{ξ(t)} = σ2

1t (1.201)

(C)
Cov{ξ(t), ξ(s)} = E {(ξ(t)− E{ξ(t)}) (ξ(s)− E{ξ(s)})} = σ2

1 min(t, s) (1.202)

where η1 = E{ξ(1)}, σ2
1 = V ar{ξ(1)}.

4. Show that a Gaussian process, stationary in the weak sense, is also stationary in the strong
sense. (Hint: work with the characteristic function. Note that we do not need the Gaussian
process to have null averages.)

5. Show that for Poisson process with velocity λ the increments are stationary and, by using the
independence property of the increments, show that the following properties hold

E{X(t)X(s)} = λmin(t, s) + λ2ts (1.203)

and
E{(X(t)− E{X(t)})(X(s)− E{X(s)})} = λmin(t, s). (1.204)

6. Show that the inter-event times ζi (i.e. the time interval between two consecutive events) in
a Poisson process with frequency λ are independent and identically distributed exponential
random variables with parameter λ. Compute the first moment and the variance of the
single point distribution as a function of λ.

7. Let us consider the stochastic process

η(t) = (−1)ξ(t) (1.205)

where ξ(t) is a Poisson process with velocity λ. Hence η(t) begins in η(0) = 1 and it
commutes back and forth from +1 and −1 at the Poisson random instants Ti. The process
η(t) is known as Pseudo-random telegraphic signal given that the initial value ξ(t) = 1 is
not random.

(A) Compute the average of η(t).
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(B) Compute the autocorrelation function of η(t).

Let us now consider the random process

ζ(t) = Aη(t) (1.206)

where η(t) is the pseudo-random telegraphic process and A is a random variable independent
from η(t) that can assume the values ±1 with equal probability. The process is known as
random telegraphic signal.

(C) Show that ζ(t) is a stationary process in the weak sense.

(D) Compute the spectrum S(ω) of the process ζ(t).
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