Lista dei Problemi per l'Esame

- 1) Ricavare i vincoli di unitarieta' (g_{τ}/g_e) dal confronto tra i decadimenti $\tau \rightarrow ev_e v_t$ e $\mu \rightarrow ev_e v_\mu$;
- 2) Calcolare la larghezza di decadimento $\Gamma(\pi^+ -> \mu^+ \nu_\mu)$;
- 3) Ricavare il flusso di antineutrini emesso da una centrale a fissione di potenza pari a 3 GW. Si supponga che :
 - la fissione sia descritta dalla reazione $n+^{235}U_{92} \rightarrow^{94}Zr_{40}+^{140}Ce_{58}+2n$
 - vengano prodotti 200 MeV per fissione (trascurando l'energia trasportata dagli antineutrini)
 (sol.: 6 10²⁰ n/sec)
- 4) Si consideri il decadimento a due corpi $K^* \rightarrow \mu^+ \nu_\mu$. Si ricavi la relazione tra l'energia del E_μ muone e l'angolo Θ formato tra la direzione del muone e quella del K nel sistema del Laboratorio. Si calcoli la frazione di muoni emessi entro un cono di apertura angolare Θ_0 = 10 mrad nell'ipotesi che l'energia del Kaone sia E_K = 10 GeV.
- 5) Si stimi l'incertezza statistica sul valore di m_Z che si otterrebbe analizzando un milione di eventi di segnale con uno scan della risonanza.
- 6) Si svolgano gli esercizi 6.11 e 6.15 dell'Halzen-Martin
- 7) Nel decadimento semileptonico $B_d \rightarrow Dev$ il quadrimomento trasferito ai leptoni e' $q^{\mu}=(p_e+p_{\nu})^{\mu}=(p_B-p_D)^{\mu}$. Si calcoli
 - a) Il valore massimo e minimo della variabile $q^2 = q_{\mu} q^{\mu}$.
 - b) Quale delle due configurazioni non si puo' produrre data la struttura chirale della teoria, motivando schematicamente la risposta
- 8) L'energia all'interno del Sole è prodotta dalla reazione di fusione di 4 protoni in una particella alpha + 2 positroni + 2 neutrini +26.7 MeV. Assumendo che 0.5 MeV di tale energia siano portati fuori dal Sole dai neutrini, si calcoli il numero di neutrini solari che attraversano 1 cm² della superficie terrestre in 1 secondo. Sono dati: luminosità solare uguale a $3.85*10^{26}$ W, distanza Sole-Terra uguale a $1.5*10^{8}$ km.
- 9) I raggi cosmici possono interagire con la radiazione di fondo (E_{γ} = 2.7 °K). Nell'ipotesi semplificata che questa consista di fotoni di uguale energia, calcolare la soglia cinematica (ovvero l'energia minima) per l'assorbimento di protoni energetici nel processo $p\gamma \lambda^{+}$ (m_{Δ} = 1.232 GeV) e l'assorbimento di fotoni nel processo $\gamma\gamma \epsilon^{-}$